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Abstract

Bacteriophages (or phages), which infect bacteria, have two distinct lifestyles: virulent and temperate. Predicting the lifestyle of
phages helps decipher their interactions with their bacterial hosts, aiding phages’ applications in fields such as phage therapy.
Because experimental methods for annotating the lifestyle of phages cannot keep pace with the fast accumulation of sequenced
phages, computational method for predicting phages’ lifestyles has become an attractive alternative. Despite some promising results,
computational lifestyle prediction remains difficult because of the limited known annotations and the sheer amount of sequenced
phage contigs assembled from metagenomic data. In particular, most of the existing tools cannot precisely predict phages’ lifestyles for
short contigs. In this work, we develop PhaTYP (Phage TYPe prediction tool) to improve the accuracy of lifestyle prediction on short
contigs. We design two different training tasks, self-supervised and fine-tuning tasks, to overcome lifestyle prediction difficulties.
We rigorously tested and compared PhaTYP with four state-of-the-art methods: DeePhage, PHACTS, PhagePred and BACPHLIP. The
experimental results show that PhaTYP outperforms all these methods and achieves more stable performance on short contigs. In
addition, we demonstrated the utility of PhaTYP for analyzing the phage lifestyle on human neonates’ gut data. This application shows
that PhaTYP is a useful means for studying phages in metagenomic data and helps extend our understanding of microbial communities.
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Introduction
Bacteriophages (aka phages) are viruses that infect bacteria. They
are widely regarded as the most abundant and diverse entities
in the biosphere [1] and play an essential role in various ecosys-
tems [2, 3]. For example, by lysing the bacterial host, phages can
regulate both the composition and function of the microbiome.
With the in-depth study of phages, there is accumulating evidence
revealing phages’ significant impacts on various fields, such as
dairy production [4, 5], phage therapy [6, 7] and disease diagnostics
[8, 9].

Phages’ applications depend on annotations of their lifestyles.
There are two types of phages based on their lifestyles: virulent
phages and temperate phages. Virulent phages infect bacteria and
kill their hosts to release their offsprings. But they don’t integrate
their genomes into the hosts [10]. In contrast, temperate phages
integrate their genomes into the host chromosome and copy their
genomes together with the host [11]. They will maintain this living
state, which is also called prophage, until induced by appropriate
conditions and enter the lytic cycle to kill their hosts [12, 13].
The lifestyle of the phages can directly affect their usages. For
example, virulent phages are required in phage therapy to kill the
antibiotic-resistant bacteria [14, 15], whereas temperate phages

can engineer a host’s genome [16] and help regulate gene expres-
sion and change cell physiology by introducing novel functions
[17, 18]. However, culturing and isolating phages in lab for iden-
tifying the lifestyles are usually expensive and time-consuming
[19, 20], especially for phages infecting anaerobes, such as Clostrid-
ioides difficile and Mycobacterium tuberculosis [21–23]. Metagenomics
allows sequencing of uncultured dark matter of the microbial
biosphere, which can contain a large number of phages [24].
Being able to annotate the lifestyles of phages sequenced from
host-associated or natural environments is expected to extend
our knowledge about phage composition and their interactions
with other microbes. Thus, computational prediction of the phage
lifestyles has become an attractive alternative to experimental
methods.

There are two main challenges for computational prediction
of the lifestyle of phages. First, the number of reference phages
with known lifestyle annotations is very limited. According to
the latest lifestyle annotation dataset provided by [25], there are
1290 virulent phages and 577 temperate phages. However, the
number of released phages in the RefSeq database is 4517 in 2021,
indicating that over a half of phages have no annotations. An
even larger data source for phage is IMG/VR v3 database [26],
which contains nearly 2 million uncultivated phage-like genomes
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in 2021. Because of the limited number of annotated genomes,
most phages cannot be classified by sequence match-based meth-
ods. Second, as mobile genetic elements, phages usually mobilize
host genetic material and incorporate it into their own genomes
[27], leading to poor sequence assembly results and incomplete
fragments for phages [25]. Both the short length of the fragments
and the ambiguous regions increase the difficulty of the lifestyle
prediction task.

Related work
Given the importance of phages, numerous efforts have been
made to computationally predict phages’ taxonomic labels [28–
30], to identify their hosts [31–34] and to detect phages from
metagenomic data [35, 36]. Nami et al. reviewed some of these
tools recently [37]. A handful of these studies focus on phage
lifestyle prediction [19, 25, 38]. One type of method uses maker
genes to distinguish virulent and temperate phages. For example,
integrase and excisionase are two widely accepted marker genes
for identifying temperate phages [39]. However, only a few genes
can be used as marker genes, especially for virulent phages [19]. In
addition, the fragmented contigs from the metagenomic assembly
may not cover such genes, and thus, using a small set of marker
genes can lead to a low recall for lifestyle classification.

Instead of relying on handcrafted marker genes, learning-based
methods are proposed aiming to automatically learn features
from two types of phages’ DNA and protein sequences. For
example, PHACTS [19] trained a random forest model on protein
similarities for virulent and temperate phage classification.
BACPHLIP [38] trained another random forest classifier using a
set of lysogeny-associated protein domains identified by HMMER3
[40]. However, such strategies may not apply to metagenomic data.
According to the benchmark results shown in [25], the accuracy
of PHACTS decreases on short contigs. For example, PHACTS
only achieves an accuracy of ˜60% when the phage contigs are
below 2 kbp. Also, BACPHLIP is only designed for complete phage
genomes according to the provided guidelines; it returns errors
when short contigs are provided as inputs. Unlike these methods,
PhagePred [41] and DeePhage [25] can identify the lifestyle for
contigs assembled from metagenomic data. PhagePred calculated
the distance between a query and a reference using a learned
k-mer frequency-based Markov model. DeePhage [25], which
has the best reported performance on lifestyle prediction, can
predict contigs as short as 100 bp. DeePhage distinguishes the
lifestyle of phages by applying a convolutional neural network
to learn the motif-related information from DNA sequences.
Nevertheless, its best performance on the short contigs is
only ˜80%.

Overview
In this work, we present a method named PhaTYP to classify
the lifestyles of phages. Previous works have shown that the
marker genes and protein-protein associations are key features
in phage classification and identification [28–30, 34, 35, 42]. The
previous studies also showed that the protein composition and
their associations play important roles on phages’ lifestyle [39,
43]. Inspired by these studies, we represent phage contigs using
a contextualized embedding model from natural language pro-
cessing (NLP) for lifestyle classification. Specifically, we adopt
Bidirectional Encoder Representations from Transformer (BERT)
to learn the protein composition and associations from phage
genomes. We evaluated our final model PhaTYP on contigs of
different lengths and contigs assembled from real metagenomic
data. The benchmark results against the state-of-the-art methods

show that PhaTYP not only achieves the highest performance
on complete genomes but also improves the accuracy on short
contigs by over 10%.

Methods
Transformer has emerged as a powerful general-purpose model
architecture for representation learning. Because the multi-head
mechanism implemented in transformer can learn the associa-
tion between tokens, transformer can be used to generate the
semantic representation of the sentences. It outperforms recur-
rent and convolutional neural networks in several NLP tasks.
Inspired by the usage of transformer in NLP, we propose PhaTYP,
which is an eight-layer bidirectional transformer block based on
the original implementation described in [44]. In NLP problems,
words are the tokens in sentences. We make an analogy between
words in NLP and proteins in phage genomes so that we can
utilize transformer to learn protein composition and associations
from phage genomes. Although k-mers and motifs have been
used as tokens for protein prediction tasks [45, 46], using proteins
as tokens can integrate their biological functions into the sen-
tence representation. In addition, the converted sentence is much
shorter by using protein-based tokens, making the training much
faster with less parameters. Thus, we train PhaTYP on protein-
based tokens to separate virulent and temperate phages.

To address the difficulties of classifying incomplete genomes
with limited training data, we divide the lifestyle classification
into two tasks: a self-supervised learning task (Figure 1 A) and
a fine-tuning task (Figure 1 B). In the first task, to circumvent
the problem that only a limited number of phages have lifestyle
annotations, we applied self-supervised learning to learn protein
association features from all the phage genomes using Masked
Language Model (Masked LM), aiming to recover the original
protein from the masked protein sentences. This task allows us to
utilize all the phage genomes for training regardless of available
lifestyle annotations. In the second task, we will fine-tune the
Masked LM on phages with known lifestyle annotations for clas-
sification. To ensure that the model can handle short contigs, we
apply data augmentation by generating fragments ranging from
100 to 10 000bp for training.

In the following section, we will first describe how to convert
DNA sequences into protein-based sentences. Then, we will
briefly introduce the background of eight-layer bidirectional
transformer blocks. Because we adopt a very standard imple-
mentation of transformer, we refer readers to [44] for detailed
explanations of the model. Finally, we will show how we train
PhaTYP on two different tasks: self-supervised training for
Masked LM and the fine-tuning model for lifestyle classification.

Sequence embedding
In order to convert sequences into protein-based sentences, we
will first introduce how we construct the token vocabulary. Each
token in our model represents a protein cluster containing homol-
ogous protein sequences from phages. First, we downloaded all
the phages proteins from the RefSeq database. We run an all-
against-all similarity search using DIAMOND BLASTP [47] and
generate a protein-similarity graph, where the nodes in the graph
represent the protein, and the edges connect proteins with sig-
nificant sequence similarities. The edge weights are the e-values
returned from DIAMOND BLASTP. Then, we employ Markov clus-
tering algorithm [48] to group proteins into clusters based on their
similarity (e-value). This process resulted in 63 855 protein clus-
ters. Finally, we remove all clusters that contain only one protein
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Figure 1. Two training tasks for PhaTYP using BERT. (A) The self-supervised learning task. The input is the masked sentence, and the output is the
predicted token at the masked position.‘1 All phage genomes in RefSeq database to train a Mask LM model. (B) The fine-tuning task for lifestyle prediction.
The pretrained model is fine-tuned using phages with known lifestyle annotations. The inputs of the model are protein-based sentences, and the outputs
are the probabilities of two lifestyle classes: virulent and temperate.

and use the remaining 45 578 protein clusters for constructing the
token vocabulary.

We then use the generated vocabulary to convert contigs into
protein-based sentences. As shown in Figure 2, first, Prodigal [49]
is adopted for gene finding and translation. Then, DIAMOND
BLASTP is applied to measure the similarity between these query
proteins and the protein clusters. Each query protein is assigned
with the token with the best alignment. Finally, the contigs can
be converted into protein-based sentences as shown in Figure 2.
Because the length of the sentences can vary a lot, we follow the
design of BERT [50] and choose 300 as the maximum length of the
sentences. Thus, the sentence is a 300-dimensional vector, with
each dimension encoding a token ID. Two specialized tokens, [CLS]
and [SEP], representing the start of the sentences and separation
of the sentences, are the first and last tokens in each sentence.
If the contigs have more than 298 tokens, we only keep the first
298 tokens. On the contrary, if the contigs contain less than 298
tokens, we pad token [PAD] at the end of the sentences. In the
RefSeq database, most of the phages (95.9%) contain less than
298 tokens. For a small percentage of sequences containing more
than 298 tokens, using the first 298 or the last 298 tokens leads to
almost identical performance based on our empirical studies.

After converting the DNA sequences into protein-based
sentences, we will project the 300-dimensional vector into a
dense embedding matrix. We employ a learnable embedding
layer, which is a neural network, to embed the sentence. There are
two main purposes of using the learnable embedding layer. First,
the learnable embedding layer will generate a low-dimensional
embedding vector than using one-hot encoding as input, which
can result in resulting in aR

300×45,578 matrix for each sentence. The
deep learning model will suffer from the curse of dimensionality
using such a sparse matrix as input [51]. Second, as proven in
[51], the embedding layer can learn to map associated tokens

Figure 2. Sequence embedding method in PhaTYP. The block in ‘Protein
Sentence’ represents the ID of the protein-based token. PCx: a protein
cluster x. [CLS]: start token. [SEP]: separation token. E[PCx]: the embedded
vector for protein cluster PCx. ‘+’: vector addition.

into similar embedding vectors, and thus assisting the learning
process. In addition, as shown in Figure 2, we embed the position
information to represent the position of the token in the sentence,
helping the model utilize the sequential information of the
sentence. The equations of the embedding layers are listed in
Equation 1.

⎧⎪⎨
⎪⎩

Ẽt = Embed(Et, WEt )

Ẽp = Embed(Ep, WEp )

X = Ẽt + Ẽp

(1)

Et ∈ R
300×1 represents the token ID sentence and Ep ∈ R

300×1

represents the position index vector. WEt ∈ R
45,578×512 and WEp ∈

R
300×512 are the learnable projection matrices. 512 is the default

embedding dimension suggested by [44]. The function of Embed
is a look-up table. Given an ID, it returns the corresponding
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Figure 3. The transformer block in PhaTYP. There are three main units in
the transformer block: feed-forward network, residual connections and
multi-head attention mechanism.

embedding vector. Thus, the dimension of Ẽt and Ẽp are R
300×512,

which is much smaller than using the one-hot encoding matrix
(R300×45,578). We follow the design of BERT [50] and train the
embedding layer with the whole model via the end-to-end mode
to enlarge the receptive field. Finally, we will apply matrix addition
on the two embedded matrices (defined as X in Equation 1) and
feed them into the eight-layer transformer structure.

Model structure
The detailed architecture of the transformer model is shown in
Figure 3. The main function is the multi-head attention mecha-
nism, which can extract association features between tokens [44].
The feed-forward network consists of two fully connected layers
with a ReLU activation, which is applied to each position sepa-
rately and identically. To prevent overfitting, residual connections
[52], and layer normalization [53] are employed before and after
the feed-forward network. The input of the transformer block is
the embedding X in Equation 1. The self-attention mechanism
and feed-forward network of the transformer grant access to all
protein tokens in the embedded sentence and leverage the associ-
ation information between tokens to generate latent feature out-
put Y. Because of the hyper-parameter setting in the transformer
model, Y has the same dimension as the embedding X. In PhaTYP,
we stack eight transformers in serial. In each transformer, we
employ eight-head attention to focus on different representation
sub-spaces.

After introducing the model structure, we will show how to
train PhaTYP on Masked LM and fine-tuning tasks. These two
tasks have different but related objective functions. In the follow-
ing sections, we will first describe the datasets used in each task
and then present a detailed explanation of the loss function.

Self-supervised training for Masked LM
Self-supervised learning is a kind of unsupervised learning aiming
to learn a general feature expression for downstream tasks. In our

design, the downstream task is the lifestyle classification, and the
general feature is the protein organizations in phage genomes.
Because the number of known lifestyle annotation of phages is
far less than the number of known phages in the database, we
employ a self-supervised learning method to learn as much prior
knowledge as possible. Specifically, we use all the available phage
genomes in RefSeq to train the Masked LM task.

Dataset. We download all the phage genomes released before
2022 from the NCBI RefSeq database. In total, we have 3474 phage
genomes. To generate more data for training, we cut the complete
genomes into fragments with different lengths, including 5, 10, 15
and 20kbp. We randomly sample 10 sub-strings from the genomes
for each length. Thus, we have 142 434 phage contigs in our
dataset. Finally, we will use the method introduced in section
sequence embedding to generate protein sentences and embedding
as inputs to transformer.

Masked LM loss. The inputs to our self-supervised model
are masked sentences, and the aim is to predict the original
sentences. For example, as shown in Figure 1A, we replace the
embedding at the position of protein C with the [MASK] token.
Then, we will feed the masked sentence into PhaTYP to predict
the marked token.

As described in Section Model structure, the shape of output
Y will be the same as the input X, which is R

300×512. Thus, each
row i in Y can be interpreted as the latent features of the input
token at position i in the sentence, which is a R

1×512 vector. Then,
in order to predict the ID of the masked token, Yi is fed into an
output layer with SoftMax function over the vocabulary. The loss
function is presented in Equation 2.

loss(SoftMax(YiWd), Tokeni) (2)

Wd ∈ R
512×45,578 is the learnable projections. The value in

SoftMax(YiWd) ∈ R
1×45,578 represents the prediction probability of

each token in the vocabulary. In the training process, 5% of words
of each sentence will be masked randomly, and we will calculate
the cross-entropy loss to update the parameters through back-
propagation.

Fine-tuning the model for lifestyle classification
After pretraining the model via the self-supervised learning task,
we will then fine-tune PhaTYP to the downstream task: lifestyle
classification.

Dataset. There are two widely used datasets supplied by the
previous studies [19, 25]. In total, we have 1290 virulent phages
and 577 temperate phages. In order to balance the dataset and
improve the robustness on short contigs, data augmentation is
applied by randomly generating short DNA fragments, ranging
from 100bp to 20kbp, from the complete genomes. For each length,
we generate 10 000 contigs for temperate and virulent phages,
resulting in 160 000 phage contigs in the dataset. Then, all the
fragments will be converted into protein sentences and fed into
PhaTYP.

Fine-tuning loss. Unlike the self-supervised learning task, we
use the first row Y0 ∈ R

1×512 from output Y as latent feature for
the lifestyle classification. As shown in Figure 1B, we concatenate
a fully connected layer to calculate the probability of the input
being virulent or temperate. The loss function of the fine-tuning
can be found in Equation 3

loss(SoftMax(Y0Wp + bp), label) (3)
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Table 1. Detailed information of the dataset used in the experiments

Name Description

RefSeq All the phage genomes released before 2022 from the NCBI RefSeq database. Totally, we have 3474 phage genomes.
This dataset is only used to train the Masked LM task.

Lifestyle dataset 1 Lifestyle annotations from the dataset of [19], including 77 virulent phages and 148 temperate phages.
Lifestyle dataset 2 Lifestyle annotations from the dataset of [25], including 1211 virulent phages and 429 temperate phages.
Phage contigs from
human neonates’ guts

2291 phage contigs assembled from metagenomic data. The metagenomic data is sampled from 20 human neonates’
guts [54].

Wd ∈ R
512×2 and bp ∈ R

1×2 are the learnable parameters. Then, we
will calculate the loss between the real labels and the predictions
and update the parameters in the model accordingly.

Model training
In the training process, we employ 10-fold cross-validation for
both tasks. The model is trained with 4 GTX 2080Ti GPU units
using the Adam optimizer, and we apply a learning rate of 0.001 to
update the parameters. Because PhaTYP needs to be trained step-
by-step on the two tasks, we first choose the model with the lowest
cross-validation loss on self-supervised learning tasks. Then, we
fine-tune this pretrained model on the lifestyle classification
task. Finally, we store the parameters of the model that achieve
the best performance (AUCROC) in the cross-validation. Both the
parameters and the model are available via http://github.com/
KennthShang/PhaTYP/.

Results
In this section, we validate PhaTYPE on both simulated and real
sequencing data. We compared PhaTYP against the state-of-the-
art methods, including PHACTS [19], DeePhage [25], BACPHLIP [38]
and PhagePred [41]. Because the authors of BACPHLIP stated that
incomplete/partially assembled genomes should not be used as
input, we will only evaluate BACPHLIP on complete genomes. It
is worth noting that PhagePred and DeePhage allow re-training
using customized training data. Thus, we re-trained these models
with the same training set as PhaTYP for all experiments. PHACTS
and BACPHLIP did not provide this function, and thus, we used the
provided model in all experiments.

Metrics
To ensure consistency and a fair comparison, we use the same
metrics as the previous works: sensitivity [TP/(TP+FN)), specificity
[TN/(TN + FP)] and accuracy [(TP + TN)/(TP + FN + TN + FP)]. TP
represents the number of correctly classified temperate phages,
whereas TN represents the number of correctly classified virulent
phages. Thus, sensitivity and specificity can be interpreted as the
recall of classifying temperate and virulent viruses, respectively.
In addition, we will present the ROC curve to evaluate the trade-
offs between sensitivity and specificity.

Datasets
As described in Section Self-supervised training for Masked LM
and Fine-tuning the model for lifestyle classification, totally we have
three datasets for training and validation. In addition, we applied
PhaTYP to predict the lifestyle for phage contigs assembled from
human neonates’ guts. The detailed information of the datasets
is listed in Table 1.

Figure 4. The ROC curve comparison on the complete phage genomes.
The value shown in the legend is the AUCROC score. ‘Without SSL task’:
training PhaTYP without the self-supervised learning task.

Classification performance comparison using
10-fold cross-validation
Performance on the complete genomes. We applied ten-fold
cross-validation on the combined lifestyle datasets listed in
Table 1. When training, we apply the data augmentation method
mentioned in section Fine-tuning the model for lifestyle classification
on the training set. The phage sequences in the validation set
remain complete.

The ROC curves derived from the averaged ten folds evaluation
from all the methods are shown in Figure 4. We also show how
the self-supervised learning task affects the learning performance
by recording the results of training PhaTYP without the self-
supervised learning task (without SSL task in Figure 4). Predicting
the lifestyle for complete phages genomes is a relatively easy
task. PhaTYP, DeePhage and BACPHLIP all achieved high accuracy.
Nevertheless, the ROC curves in Figure 4 show that PhaTYP has
the best performance.

In addition, we listed more detailed information about the per-
formance of predicting virulent and temperate phages in Table 2.
The results reveal that PhaTYP can identify temperate phages
with higher specificity than other tools. The ablation study also
shows that training with the self-supervised learning task can
improve classification accuracy.

We also recorded the running time of the five methods on the
10-fold cross-validation in Figure 5. PhaTYP is not the fastest tool
because ∼85% of running time is used to run DIAMOND BLASTP
as described in Section Sequence embedding. DeePhage requires
less running time because it only uses k-mer features, whereas
other methods also incorporate alignment features for lifestyle
prediction.

Performance on the test set with low similairty. Cross-
validation cannot control the similarity between the training and

http://github.com/KennthShang/PhaTYP/
http://github.com/KennthShang/PhaTYP/
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Table 2. Detailed results on the complete genomes under each
tools’ default score cutoffs (0.5)

Metrics Sensitivity Specificity Acc

PhaTYP 0.99 0.97 0.98
Without SSL task 0.97 0.91 0.95
DeePhage 0.94 0.93 0.94
BACPHLIP 0.97 0.87 0.93
PHACTS 0.91 0.75 0.85
PhagePred 0.69 0.88 0.81

Figure 5. The running time comparison of five tools in the experiment of
ten-fold cross validation. All the methods are run on Intel

®
Xeon

®
Gold

6258R CPU and 2080Ti GPU.

Table 3. The performance comparison on the low similarity test
set under the tools’ default score cutoff (0.5)

Metrics Sensitivity Specificity Acc

PhaTYP 0.99 0.89 0.94
Without SSL task 0.98 0.86 0.92
DeePhage 0.96 0.86 0.91
BACPHLIP 0.98 0.84 0.90
PHACTS 0.90 0.69 0.74
PhagePred 0.57 0.83 0.67

test set. To evaluate whether the learning models can perform
well on a harder test set, we constructed a test set containing
phage genomes with low similarity with the training set. First, we
applied Dashing [55] to estimate the similarity between phages in
the lifestyle dataset. Then, we generated a test set by selecting 50
phages with the lowest similarities with their peers from virulent
and temperate phages, respectively. In total, there are 100 phages
in the test set. The maximum similarity of the virulent phages
and temperate phages in the test set with all other phages are
0.049 and 0.052, respectively.

The classification results are shown in Table 3 and Figure 6.
Compared with the cross-validation results in Table 2, the simi-
larity of the test genomes affects specificity more than sensitivity,
indicating that some virulent phages are misclassified as temper-
ate. This could be caused by lower average similarity for the test
virulent phages. In Figure 6, the value of AUCROC decreases for
all methods except BACPHLIP. This is likely caused by the overlap
between the test phages and the data used for training BACPHLIP
in its provided version. Nevertheless, PhaTYP still has the best
results.

Performance on the short contigs. Considering that metage-
nomic assembly can produce incomplete phage sequences, it is
important to evaluate PhaTYP on phage contigs. Toward this goal,

Figure 6. The ROC curve comparison on low similarity test set. The value
shown in the legend is AUCROC score. ‘without SSL task’: training PhaTYP
without self-supervised learning task.

we apply the same method used in [25] to construct the short frag-
ment dataset. Specifically, we generate four groups of fragments
with different length ranges, including 100–400, 400–800, 800–1200
and 1200–1800 bp. These four sets of fragments can cover the
length of raw reads and the short contigs from the metagenomic
data. We generated 80 000 fragments for each group by random
sampling a sub-string from the complete genomes, with 40 000
for temperate and virulent phages, respectively. To remove the
potential redundant fragments, we used Dashing [55] to estimate
the similarity between fragments. Then, we removed fragments
with similarities above 0.8 from the dataset. We applied ten-fold
cross-validation to train and validate the performance. Because
DeePhage trained four separate models on different length ranges,
we followed the same design and trained four PhaTYP models
separately.

We generate the ROC curve on short contigs to show the
tradeoff between FP rate and sensitivity. In each fold, we combine
the validation results from the 4-length ranges. The results are
shown in Figure 7, which reveals that our model outperforms
the other tools. More detailed results are shown in Table 4 and
Figure S1 in the Supplementary File. In general, with the increase
of the length, the performance of all methods increases. This
is expected because longer fragments generally provide more
information for prediction. In addition, compared with the results
on complete genomes, the self-supervised learning task can help
the model achieve higher accuracy on short contigs. A plausible
explanation is that pre-training on the self-supervised learning
task can help the model learn more generalized embeddings for
phage proteins and prevent overfitting. Then, these embeddings
with prior knowledge can be leveraged when information for
classification is lacking. We also calculated the P-value of the ROC
curve between PhaTYP and the state-of-the-art methods. Table
S1 in the Supplementary File shows that all the differences are
statistically significant, indicating that PhaTYP can achieve better
performance in classifying phages’ lifestyles.

In addition, we tested whether training contigs with differ-
ent lengths at the same time influences the performance of
PhaTYP. Specifically, we employed the data augmentation meth-
ods, which combines the training set of the contigs and their
complete genomes to train one PhaTYP model. The comparison
between training PhaTYP separately and training with all data at
once (PhaTYP augmentation) in Table 4 reveals that training with
data augmentation will not affect the classification performance.
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Table 4. Detailed results on the short contigs under the tools’
default score cutoff (0.5)

Tool Criterion 100–400 400–800 800–1200 1200–1800

PhaTYP Sensitivity 0.86 0.91 0.93 0.93
Specificity 0.92 0.92 0.93 0.94
Accuracy 0.89 0.91 0.93 0.94
Sensitivity 0.83 0.85 0.87 0.92

without Specificity 0.92 0.93 0.92 0.93
SLL task Accuracy 0.87 0.89 0.90 0.92
DeePhage Sensitivity 0.74 0.84 0.86 0.89

Specificity 0.77 0.82 0.86 0.87
Accuracy 0.76 0.83 0.86 0.88

PhagePred Sensitivity 0.56 0.60 0.62 0.64
Specificity 0.75 0.80 0.84 0.87
Accuracy 0.65 0.70 0.72 0.75

PHACTS Sensitivity 0.26 0.36 0.39 0.42
Specificity 0.73 0.64 0.65 0.69
Accuracy 0.48 0.49 0.51 0.54

PhaTYP Sensitivity 0.86 0.92 0.92 0.94
(augmentation) Specificity 0.90 0.92 0.93 0.94

Accuracy 0.88 0.92 0.93 0.94

Figure 7. The ROC curve comparison on the short contigs. The value
shown in the legend is AUCROC score. ‘without SSL task’: training PhaTYP
without self-supervised learning task. PhaTYP has the best performance.

Thus, PhaTYP can predict lifestyles for contigs across different
length ranges with one model, which helps save computational
resources for users.

Predicting the lifestyle of crAssphages
CrAssphages are an extensive family of tailed bacteriophages dis-
covered through the cross-assembly of human fecal metagenomes
[56]. Most of them infect bacteroides and do not integrate into
their hosts during replication. Thus, these crAssphages are widely
regarded as virulent phages. Despite its ubiquity in human
gut, over 80% of the predicted proteins in crAssphage genomes
showed no significant similarity to annotated crAssphage protein
sequences, hampering their identifications in newly sequenced
metagenomic data [57]. The low similarity also poses a hard case
for current lifestyle classification tools.

In this experiment, we downloaded 33 crAssphages from
[54], which are all annotated as virulent phages, and evaluated
whether PhaTYP can correctly classify them. First, we remove all
the training sequences with high sequence similarity (alignment
identity > 50%) from our dataset using BLASTN [58]. Then, we

Figure 8. The classification results on the 33 virulent crAssphages.
PhaTYP can correctly predict all the crAssphages as being virulent.

retrained PhaTYP, DeePhage and PhagePred on the ‘cleaned’
dataset.

The results of this experiment are presented in Figure 7. All
the 33 crAssphages can be classified correctly by PhaTYP, fur-
ther demonstrating its utility. PhagePred ranked second, showing
much improved performance than in the previous experiments.
One possible reason is that the k-mer frequency feature adopted
by PhagePred is an important feature for crAssphages.

Case study: phage lifestyle analysis for infants
In this section, we apply PhaTYP to investigate early-life viral
colonization using the metagenomic data sampled from infant
meconium or early stools [54]. In the original study, the authors
used reference genomes and PHACTS to analyze the phages’
lifestyles. Although the similarity search against the reference
genomes can be used to annotate the lifestyles, the number of
aligned phages is only a small subset of all assembled phage
contigs. Then, the authors used PHACTS to predict lifestyle of
all the phage contigs. However, according to the previous exper-
iments, the performance of PHACTS is not ideal on short contigs.
Thus, we employed PhaTYP to re-investigate this dataset.

The data are sequenced from 20 infants. The stool samples
were collected longitudinally at 0–4 days after birth (meconium
samples, month 0), month 1 and month 4. Therefore, we have a total
of 60 metagenomic samples. In addition, the authors recorded
detailed information, including the feeding and delivery type
of these infants. Thus, we are able to investigate whether the
ages, feeding and delivery type can affect the composition of
phages with different lifestyles. The 60 samples containing the
raw reads are public and available via https://www.ncbi.nlm.nih.
gov/sra/?term=PRJNA524703; the assembled contigs are available
via https://github.com/guanxiangliang/liang2019.

Following the guidelines of [54], we first applied Bowtie2 [59]
for reads mapping and then ran BBmap [60] to calculate the reads
per million total reads (RPM) for each contig. According to the
description in [54], the species were called present if at least 10
RPM from one sample aligned to that contig. Therefore, we have
19 943 contigs remained. Second, to ensure consistency, we used
the same rules to define phage contigs as in [60]: (1) at least one

https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA524703
https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA524703
https://github.com/guanxiangliang/liang2019
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Figure 9. The classification results on the contigs that have homologous
regions with integrase proteins. Both PhaTYP and DeePhage can correctly
predict all the contigs as being temperate.

phage protein per 10 kb of the contig and (2) 50% of the predicted
open-reading frames (ORFs) are phage ORFs. We used the Prodigal
[49] in meta mode to predict the ORFs and aligned them to the
phage protein database downloaded from RefSeq. Finally, 2291
high-confidence phage-like contigs were identified and we ran
PhaTYP for lifestyle prediction.

Identifying temperate phages containing integrase. Because
there are no labels for the contigs from the metagenomic data, we
rely on the marker genes for labeling the contigs. As we discussed
in section Introduction, using marker genes usually has high speci-
ficity but low recall. Thus, the contigs labeled using this method
have high confidence. One of the most widely accepted markers,
named integrase, is commonly used to identify temperate phages
[61, 62]. Thus, we built an integrase protein database by searching
the proteins with the keyword ‘integrase’ from the phage protein
database. Then, we search all 2291 phage contigs against the inte-
grase database using BLASTX [58]. 23 contigs having homologous
regions (identity > 90%, coverage > 90% and e-value < 1e-10) were
identified out of 2291 contigs. All these 23 contigs were labeled as
temperate phages, and we used them to evaluate PhaTYP and the
state-of-the-art tools.

As shown in Figure 9, both PhaTYP and DeePhage can predict
correctly on all 23 contigs. On the other hand, the results show
that using the integrase as a marker can only classify ˜1% of the
metagenomic phages, which remains a low recall for lifestyle pre-
diction. Thus, methods that do not just rely on integrase proteins
are in great need of comprehensive prediction.

Comprehensive lifestyle analysis. Then, we analyzed all 2291
phages’ lifestyles using PhaTYP. There are three main variables
that might affect the dominant lifestyle: the age of the infant, the
delivery type and the feeding type.

Ages. First, we group the samples by age and draw violin
plots to show the lifestyle distribution in Figure 10A. Y-axis rep-
resents the percentage of temperate phages in each sample:
temperate/(temperate+virulent). We also record the P-value to show
whether the two groups differ significantly. Figure 10A shows that
as the baby grows, the percentage of temperate phages decreases,
suggesting that more virulent phages colonize in the infants’ gut

Figure 10. Violin plot at different months. (A) Predictions on all 2291
phages. (B) Predictions on newly colonized phages. Y-axis: the percentage
of temperate phages in each sample.

with the infant’s growth. Thus, we further investigate the lifestyle
of newly colonized phages for each infant. Specifically, because we
have three data samples representing month 0, month 1 and month
4, we can first identify new phage contigs in month 1 by aligning
reads of month 0 to the contigs in month 1 via Bowtie2 [59]. If
a contig in month 1 has no read mapping outputs, this contig is
regarded as a newly colonized phage after month 0. Finally, the
lifestyle prediction results on these newly colonized phages are
shown in Figure 10B. The trend and conclusion are the same as
Figure 10A and the P-value became smaller, indicating that the
newly colonized viruses are more likely to be virulent phages.

Our results are consistent with the main conclusions of the
original study [54]. During the early stage after birth, pioneer
bacteria colonize the infant’s gut. The prophages induced from
these bacteria provide the predominant population. Then, as the
infant grows, more phages and bacteria from the environment
might reside within human guts too, leading to the change of the
lifestyle composition.

Delivery type. Because the phage lifestyle on different age
groups shows significant differences, we further investigate
whether the phage lifestyle composition is influenced by the
delivery type. We first group the data by age. Then, we draw the
violin plots for three delivery types in each group. The results are
shown in Figure 11.

There are three types of delivery: C-Section with labor (CS(w/)L),
C-Section without labor (CS(w/o)L) and spontaneous vaginal delivery
(SVD). In group month 0, there is a significant difference between
the delivery type and phage lifestyle composition. With the
increase of the age, the difference gradually becomes smaller,
suggesting that delivery type can influence the initial phage
colonization of the infants. According to the explanation in [54],
the environmental contamination of different delivery types can
affect the gut microbiome at month 0, which might also lead to
the difference.

Feeding type. Because we only have feeding types for infants
at month 1 and month 4, we show the two groups’ violin plots
in Figure 12. An interesting finding is that the feeding type does
not show much difference at month 1. But with the growth of
infants, the proportion of temperate phages in the infants with
formula milk decreases more rapidly than those with the mixed
feeding type. One possible reason is that breastfeeding can reduce
the chance of infection by microbes [63–65] and thus, leading
to relatively stable environments for the infants with access to
breast milk.
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Figure 11. Violin plot in different delivery type: C-Section with labor (CS(w/)L), C-Section without labor (CS(w/o)L), and SVD. To control variables, we group
the samples according to the ages. The Y-axis represents the percentage of temperate phages in each sample.

Figure 12. Violin plot in different feeding types. Formula: the infants were
fed with formula milk. Mixed: infants were fed with both formula and
breast milk. To control variables, we group the samples according to the
ages. The Y-axis represents the percentage of temperate phages in each
sample.

Discussion
In this work, we propose a method named PhaTYP for phages’
lifestyle prediction. As shown in the experiments, PhaTYP outper-
forms the available lifestyle prediction methods. We design two
different tasks, a self-supervised learning task for learning protein
association and a fine-tuning task for lifestyle prediction, to train
the model so that PhaTYP achieves more stable performance on
short contigs than other methods. In addition, we show an appli-
cation of using PhaTYP to investigate the early viral colonization
in human neonates. The prediction results of PhaTYP yielded
several insights, most of which are consistent with recently
published studies, suggesting that PhaTYP is practically useful
for studying and analyzing phage composition in metagenomic
data.

Machine learning has become a powerful means for study-
ing phages. A recent review [37] summarized a number of tools
that exploit machine learning models to study various problems
about phages, including phage host prediction, phage discovery,
taxonomic classification, virion protein identification and life
cycle prediction. To our best knowledge, this work is the first
to use BERT for phage life style prediction. Because BERT is a

powerful LM, it may be extended and customized for other phage-
related research problems. For example, the self-supervised learn-
ing task can be applied before phage classification and host
prediction.

Although PhaTYP has greatly improved phages’ lifestyle predic-
tion, we have several aims to optimize PhaTYP in our future work.
One possible extension is to employ the knowledge distillation
to reduce the parameter size of PhaTYP. Because of the stacking
of transformer blocks in PhaTYP, it requires large computational
resources (four 24Gb GPU units) to accelerate the training process.
Distilling the knowledge in a neural network can provide a light-
version model with the same performance for users who wish
to re-train the model. Another extension is to integrate other
phage analysis programs with PhaTYP. Despite multiple programs
for analyzing phages, there lacks a comprehensive pipeline for
conducting end-to-end phage characterization for metagenomic
data. In our future work, we will incorporate PhaTYP with our
previously published tools on phage classification and host pre-
diction [30, 34] and establish a web server for analyzing phage
contigs in metagenomic data.

In conclusion, based on our tests on both simulated and real
sequencing data, PhaTYP achieves the most accurate lifestyle pre-
diction among available tools. PhaTYP can be applied to various
metagenomic data for analyzing virus compositions.

Key Points

• Predicting phages’ lifestyles is a key step for understand-
ing the phage population and phage–host interactions in
metagenomic data. We developed a lifestyle prediction
tool named PhaTYP that employs the BERT model and
protein-based tokens to learn the protein composition
and their associations in phage sequences.

• To overcome the challenges of classifying short contigs
with limited training data, we designed self-supervised
and fine-tuning tasks to help the model achieve stable
performance on fragmented inputs.

• The experimental results on both simulated and real
datasets show that PhaTYP can render better perfor-
mance than the state-of-the-art methods. In addition,
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we applied PhaTYP to predict lifestyles for phage con-
tigs assembled from human neonates’ gut data, demon-
strating that PhaTYP can help researchers obtain new
knowledge on phage composition in microbiome.

Data availability
All data and codes used for this study are available online.
The source code of PhaTYP is available via https://github.com/
KennthShang/PhaTYP. The dataset information can be found via
https://github.com/KennthShang/PhaTYP/tree/main/train.
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