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Abstract

Rationale: Risk of asthma hospitalization and its disparities
associated with air pollutant exposures are less clear within
socioeconomically disadvantaged populations, particularly at low
degrees of exposure.

Objectives: To assess effects of short-term exposures to fine
particulate matter (particulate matter with an aerodynamic
diameter of <2.5 μm [PM2.5]), warm-season ozone (O3), and
nitrogen dioxide (NO2) on risk of asthma hospitalization among
national Medicaid beneficiaries, the most disadvantaged
population in the United States, and to test whether any
subpopulations were at higher risk.

Methods: We constructed a time-stratified case-crossover
dataset among 1,627,002 hospitalizations during 2000–2012 and
estimated risk of asthma hospitalization associated with short-
term PM2.5, O3, and NO2 exposures. We then restricted the
analysis to hospitalizations with degrees of exposure below
increasingly stringent thresholds. Furthermore, we tested effect
modifications by individual- and community-level characteristics.

Measurements and Main Results: Each 1-μg/m3 increase in
PM2.5, 1-ppb increase in O3, and 1-ppb increase in NO2 was
associated with 0.31% (95% confidence interval [CI],
0.24–0.37%), 0.10% (95% CI, 0.052 0.15%), and 0.28% (95% CI,
0.242 0.32%) increase in risk of asthma hospitalization,
respectively. Low-level PM2.5 and NO2 exposures were associated
with higher risk. Furthermore, beneficiaries with only one asthma

hospitalization during the study period or in communities with
lower population density, higher average body mass index, longer
distance to the nearest hospital, or greater neighborhood
deprivation experienced higher risk.

Conclusions: Short-term air pollutant exposures increased risk of
asthma hospitalization among Medicaid beneficiaries, even at
concentrations well below national standards. The subgroup differences
suggested individual and contextual factors contributed to asthma
disparities under effects of air pollutant exposures.
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Asthma is a prevalent, noncommunicable
respiratory disease characterized by airway
obstruction and lung function decrement (1).
In the United States, there are approximately

25 million patients diagnosed with asthma,
imposing a substantial burden of healthcare
utilization (2). Starting in the 1980s, the
prevalence and incidence of asthma have

increased in almost all age, sex, racial/ethnic,
and socioeconomic groups (3). The
prominence of environmental exposures
among asthma risk factors has long

At a Glance Commentary

Scientific Knowledge on the Subject: Evidence on the
effects of short-term exposures to air pollutants and asthma
is lacking among the disadvantaged population.

What This Study Adds to the Field: We assessed the
effects of short-term exposures to fine particulate matter,
warm-season ozone, and nitrogen dioxide on the risk of
asthma hospitalization among national Medicaid
beneficiaries, the most disadvantaged population in the
United States, and identified individual and contextual
factors that contributed to asthma disparities under the
effects of air pollutant exposures.

(Received in original form July 4, 2021; accepted in final form January 21, 2022)

Supported by NIH grant R01 ES032418, the United States Environmental Protection Agency (EPA) grant RD-8358720, and NIH National Institute of
Environmental Health Sciences grant ES-000002. This manuscript’s contents are solely the responsibility of the grantee and do not necessarily represent
the official views of the EPA. Furthermore, the EPA does not endorse the purchase of any commercial products or services mentioned in the publication.

Author Contributions: Y.W. contributed to study design, data preparation, data analysis, data interpretation, and drafting of the manuscript. X.Q.
contributed to data preparation, data analysis, and drafting of the manuscript. M.B.S., M.D.Y., and K.Y. contributed to data preparation and
data interpretation. L.L., A.A.P., C.W., P.K., A.Z., and F.D. contributed to formulation of the idea and review of the manuscript. J.D.S.
contributed to formulation of the idea, study design, and review of the manuscript.

Am J Respir Crit Care Med Vol 205, Iss 9, pp 1075–1083, May 1, 2022

Copyright © 2022 by the American Thoracic Society

Originally Published in Press as DOI: 10.1164/rccm.202107-1596OC on January 24, 2022

Internet address: www:atsjournals:org

Wei, Qiu, Sabath, et al.: Air Pollutants and Asthma among Medicaid 1075

http://crossmark.crossref.org/dialog/?doi=10.1164/rccm.202107-1596OC&domain=pdf&date_stamp=2022-04-19
https://doi.org/10.1164/rccm.202107-1596OC
http://www.atsjournals.org


suggested important roles for ambient air
pollutants, particularly fine particulate
matter (particulate matter with an
aerodynamic diameter of<2.5 μm
[PM2.5]), ozone (O3), and nitrogen
dioxide (NO2) (4). Evidence suggests that
short-term exposures to such pollutants
can trigger asthma attacks and worsen the
symptoms, leading to rescue medication
use, emergency department visit,
hospitalization, or even death (5–11).

Under the Clean Air Act, the U.S.
Environmental Protection Agency
(EPA) is required to update the
National Ambient Air Quality Standards
(NAAQS) every 5 years for the
protection of public health, particularly
for vulnerable populations and
communities (12). However, few studies
have investigated the role of air
pollutant exposures on asthma among
populations in low socioeconomic
positions, who have poor access and
quality of healthcare and usually face
greater health consequences (13). It is
also unclear whether within the
disadvantaged population certain
individual and community
characteristics may increase the
susceptibility of asthma attack to the
effect of air pollutants (14, 15).
Furthermore, evidence for the effect of
air pollutants on asthma at degrees of
exposure below the NAAQS is lacking.

We analyzed 1,627,002 inpatient
claims with asthma among Medicaid fee-
for-service beneficiaries,65 years of age
during the years 2000–2012 to assess the
risk of asthma hospitalization and its
disparities associated with short-term
exposures to PM2.5, O3, and NO2, three
major air pollutants regulated by the EPA.
Medicaid is the single largest federal–state
jointly funded insurance program that
provided health coverage to an annual
average of 47 million Americans during
the study period, including low-income
adults and children and individuals with
disabilities (16); the characteristics and
size of this cohort allow for investigating
the susceptibility in the impact of air
pollution within a socioeconomically
disadvantaged population.

Methods

This study was approved by the institutional
review board at Harvard T. H. Chan School
of Public Health.

Inpatient Data
From the Center for Medicare andMedicaid
Services, we obtainedMedicaid fee-for-
service inpatient claims among all the
beneficiaries residing in the contiguous
United States during 2000–2012. For each
claim, we extracted 1) a unique identification
code for every beneficiary; 2) inpatient
admission date; 3) International
Classification of Diseases, Ninth Revision
(ICD-9) principal diagnosis code at discharge
(17); 4) patient demographic characteristics
including sex, race/ethnicity, and age; and 5)
ZIP Code of residence. The ZIP Code of
residence was used to spatially link each
claim with exposures and covariates. We
restricted the analysis to urgent and
emergent hospital admissions for asthma,
defined as having a principal diagnosis of
International Classification of Diseases,
Ninth Revision, code 493, and excluded
scheduled admissions. To avoid potential
selection bias, we also excluded admissions
for patients aged>65 years who enrolled in
bothMedicare andMedicaid because the
Medicare was always the primary payer for
those admissions, and therefore the Medicaid
file may not contain complete records for all
admissions for patients aged>65 years (18).
The Medicaid inpatient claims were not
available for Maine during 2005–2010 nor
for Kansas in 2010. In total, we analyzed
1,627,002 asthma hospitalizations.

Exposure Assessment
We implemented ensemble predictions of
three machine learning models (random
forest, gradient boosting, and neural
network) to estimate the daily 24-hour
average PM2.5, 8-hour maximumO3, and
1-hour maximumNO2 (in accordance with
averaging times in NAAQS [19]) at the
centroids of 1-km2 grid cells across the
contiguous United States. As predictors we
considered air monitoring data, satellite
aerosol optical depth, meteorological
conditions, chemical transport model

simulations, and land-use variables. The
ensemble models were calibrated using
monitoring data, with 10-fold cross-validated
r2 on held out monitors of 0.86 for PM2.5,
0.86 for O3, and 0.79 for NO2. More details
were published elsewhere (20–22).

With these high-resolution predictions
at 1-km2 grid cells, we estimated degrees of
air pollution in each ZIP Code by averaging
the predictions at grid cells whose centroids
were inside the polygonal area for general
ZIP Codes, or assigning the prediction at the
nearest grid cell for other ZIP Codes that do
not have polygon representations, for
example, an apartment building, a military
base, or a post office. More details are
provided in SECTION 1 in the online
supplement. The ZIP Code–level air
pollution estimations were then linked to
each hospitalization according to the ZIP
Code of residence and admission date and
were considered as proxy measurements of
pollutant exposures.

For each pollutant, we examined the
7-day moving average exposure more than a
week before each hospitalization (lag 0–6 d)
and exposures at single lag days (from lag 0
to 6 d). For O3, following the previous
literature (23, 24), we restricted the analysis
to hospitalizations occurred in warmer
months between April and September.

Meteorological Variables
Daily surface air temperature and specific
humidity data were obtained fromNational
Aeronautics and Space Administration’s
Phase 2 of the North American Land Data
Assimilation System with a 12-km2 spatial
resolution (25), which were linked to each
hospitalization according to the ZIP Code of
residence and admission date.

Community-Level Variables
Annual averaged population density at ZIP
Code Tabulation Areas (ZCTA) was linearly
interpolated and extrapolated by year using
U.S. Census 2000 and 2010 Summary Files
(26–28). Annual averaged body mass index
(BMI) and percentage of ever-smokers at
counties were obtained from the Behavioral
Risk Factor Surveillance System (29). The
distance from the centroid of each ZCTA to
the nearest hospital for each year was
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calculated using the Dartmouth Atlas of
Health Care data (30), which were
considered as a proxy for the average
distance to the nearest hospital. These
variables were linked to each hospitalization
according to the ZIP Code of residence and
the year of admission. To evaluate whether
beneficiaries living in socioeconomically
disadvantaged communities experienced
disproportionately higher risk associated
with air pollution exposures, we obtained the
national area deprivation index (ADI) from
the Neighborhood Atlas website, which was
considered as a composite metric of
neighborhood disadvantage level. The ADI
incorporated ZCTA-level education,
employment, housing quality, and poverty
originally drawn from the U.S. Census and
American Community Survey (31). Because
only 2015 and 2019 ADI were available, the
2015 ADI was linked to each hospitalization
according to the ZIP Code of residence (32).

Statistical Analysis
We used a time-stratified case-crossover
design to estimate the percent change in the
risk of asthma hospitalization associated with
each 1-μg/m3 increase of PM2.5, 1-ppb
increase of O3, and 1-ppb increase of NO2.
The case-crossover design has been widely
used in environmental epidemiology for
studying health outcomes with abrupt onset,
such as asthma andmyocardial infarction
(5, 8, 9, 23, 33).

We constructed a time-stratified case-
crossover dataset as follows. A case day was
defined as the date of admission. For each
case day, we identified control days as days
with the same day of the week (before and
after the case day), month, and year as the
case day. Wematched each patient’s degree
of exposure on the case day with that
patient’s degrees of exposure on control days.
This self-matching eliminated any potential
confounding by individual variables that
were unlikely to vary within a month, such as
individual-level sex, race/ethnicity, age,
socioeconomic status, smoking status, lipid
concentrations, diet, education, and BMI, as
well as community-level factors, such as
population density, greenness, access to
pharmacy and grocery store, proximity to
highways, and so on; matching on day of the
week eliminated potential confounding that
varied within a week, such as weekday/
weekend differences in amounts of air
pollution and admission rate, with
bidirectional selection for controls before and
after the case to eliminate long-term time

trends (34); andmatching on month and
year eliminated potential confounding by
seasonal variation and long-term time trend,
respectively (35). The resulting case-to-
control ratio for the current study was
1.0:3.4.

For each pollutant, we used conditional
logistic regressions to estimate associations
between short-term exposures at the moving
average of lag 0–6 days or at single lag days
and the risk of hospitalization for asthma,
adjusting for potential confounding of air
temperature and specific humidity during lag
0–6 days (23, 24), as well as the exposure the
day after admission (lead 1 d). The lead 1
exposure served as a negative exposure
control, i.e., a proxy for potential time-
varying confounders, such as other air
pollutants, meteorological patterns, physical
activity, etc., which may be correlated with
the admission and the exposures before
admission and, thus, confound the
associations, but also likely to be correlated
with exposure the day after the admission
(lead 1 exposure) as well (36). Bonferroni
correction was used to adjust for multiple
comparisons for the three concurrent
exposures. To capture the potential
nonlinearity of the confounding effects,
covariates were modeled using penalized
cubic splines each with up to nine degrees of
freedom (37). Computational details are
provided in SECTION 2 in the online
supplement.

To assess the risk of asthma
hospitalization associated with lag 0–6
exposure at low degrees of exposure, for each

pollutant, we restricted the analysis to days
(both cases and controls) within the case-
crossover dataset in which the lag 0–6
exposures were below increasingly stringent
thresholds, including those well below the
NAAQS (35 μg/m3 for PM2.5, 70 ppb for O3,
and 100 ppb for NO2) (19).

To assess whether certain
subpopulations among Medicaid
beneficiaries faced higher risk, for each
pollutant, we fitted separate regressions for
each subgroup divided by age group
(0–4, 5–12, 13–18, 19–34, or 35–64 yr),
sex (female or male), race/ethnicity (White,
Black, Hispanic/Latino, or other), or the
total number of asthma hospitalizations of
a patient during the study period (single
or multiple). In addition, to assess
differential effects of air pollutants between
communities, for each pollutant, we fitted
separate regressions for each subgroup
divided by the upper or lower quartile of
community-level population density,
average BMI, percentage of ever-smokers,
distance to the nearest hospital, or degree
of neighborhood disadvantage (ADI). We
used independent sample t tests to
compare subgroup differences. Moreover,
because major mechanisms of asthma
progression and severity vary considerably
across the life course (1), for each
pollutant, we performed further separate
analysis by age group for each subgroup
of sex, race/ethnicity, the total number of
asthma hospitalizations during the study
period, and community-level
characteristics.

Table 1. Demographic Characteristics of Medicaid Beneficiaries Admitted to Hospital
for Asthma during 2000–2012

Characteristics n %

Population 852,395 100
Admissions 1,627,002
Age at first admission, yr
0–4 314,042 37
5–12 173,786 20
13–18 42,673 5
19–34 75,117 9
35–64 246,777 29

Sex
Female 449,043 53
Male 403,148 47
Unknown 204 0

Race/Ethnicity
White 298,453 35
Black 298,886 35
Hispanic/Latino 160,891 19
Other 94,165 11

Individuals with >2 admissions 293,884 34
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Sensitivity Analyses
We assessed the robustness of the main
results by fitting a three-pollutant model with
three negative exposure controls and
conducting sensitivity analyses with respect
to the exposure time window for air
temperature and specific humidity (at lag
0–1 or lag 0–4). We also conducted analysis
for full-year O3 exposure at lag 0–6 days
without restricting to warmer months. For
the subgroup who had only one asthma
hospitalization during the study period, we
refitted the model after excluding
beneficiaries with the hospitalization
occurred in the first 3 years of the study
period (i.e., washout period), whomay have
unstable asthma and hence have had
hospitalizations before entering the study.

Results

We analyzed 1,627,002 asthma
hospitalizations of 852,395Medicaid fee-for-
service beneficiaries,65 years of age

residing in the contiguous United States
during 2000–2012. The population was
composed of more children aged<18 years
(62%), more females (53%), and mostly
White (35%) and Black (35%) individuals,
and 34% of the population had at least two
asthma hospitalizations during the study
period (Table 1). SECTION 3 of the online
supplement shows the admission count for
each state and the cumulative number of
admissions in each year. Table 2 summarized
descriptive statistics for PM2.5, O3, and NO2

concentrations and community-level
characteristics. The average daily
concentrations of PM2.5, warm-season O3,
and NO2 were 10.4 μg/m

3, 45.9 ppb, and 17.1
ppb, respectively. The daily concentrations
were mostly below the NAAQS. SECTION 4 in
the online supplement shows spatial and
temporal patterns of the pollutant
concentrations during the study period.

We found statistically significantly
positive associations between exposures to
PM2.5, warm-season O3, and NO2 at lag
0–6 days and risk of asthma hospitalization:

for each 1-μg/m3 increase in PM2.5, 1-ppb
increase in warm-season O3, and 1-ppb
increase in NO2, the percentage increase in
risk of asthma admission was 0.31% (95%
confidence interval [CI], 0.24–0.37%), 0.10%
(95% CI, 0.05–0.15%), and 0.28% (95% CI,
0.24–0.32%), respectively. The single-lagged
association remained positive over lag
0–6 days for PM2.5 and NO2 and was
significantly positive during lag 1–3 days for
warm-season O3 (Figure 1). At
concentrations below the NAAQS, we found
higher risk of admission associated with lag
0–6 exposures to PM2.5 and NO2. The
association was mixed at low concentrations
for warm-season O3 (Figure 2).

Among subgroups of individual-level
characteristics, we found consistently and
significantly higher risk of asthma
hospitalization for beneficiaries who had
only one asthma admission during the
study period for the three exposures at lag
0–6 days (Figure 3). For warm-season O3,
the risks for the 02 4-year and 52 12-
year age groups were not statistically

Lag 0 day

Lag time
Percent increase in risk of asthma hospitalization

for each 1-µg/m3 increase in PM2.5

Percent increase in risk of asthma hospitalization
for each 1-ppb increase in O3

Percent increase in risk of asthma hospitalization
for each 1-ppb increase in NO2

0.15% (0.11%–0.19%)

0.15% (0.11%–0.19%)

0.13% (0.10%–0.17%)

0.12% (0.09%–0.16%)

0.10% (0.06%–0.13%)

0.06% (0.03%–0.10%)

0.03% (–0.01%–0.06%)

Lag 1 day

Lag 2 day

Lag 3 day

Lag 4 day

Lag 5 day

Lag 6 day

0.31% (0.24%–0.37%)Main analysis:
lag 0–6 day

0.00% (–0.03%–0.04%)

0.09% (0.06%–0.12%)

0.09% (0.06%–0.12%)

0.08% (0.05%–0.11%)

0.03% (0.00%–0.06%)

–0.03% (–0.06%–0.00%)

0.10% (0.05%–0.15%)

–0.02% (–0.05%–0.01%)

0.04% (0.01%–0.06%)

0.09% (0.06%–0.11%)

0.10% (0.08%–0.12%)

0.12% (0.09%–0.14%)

0.11% (0.08%–0.13%)

0.05% (0.03%–0.07%)

0.28% (0.24%–0.32%)

0.07% (0.05%–0.09%)

0 0.1 0.2 0.3 0.4 −0.1 0 0.1 0.2 0 0.1 0.2 0.3 0.4

Figure 1. Percent increases (and Bonferroni-corrected 95% confidence intervals) in risk of asthma hospitalization associated with 1-mg/m3

increase in PM2.5, 1-ppb increase in warm-season ozone (O3), and 1-ppb increase in nitrogen dioxide (NO2) at single lag days and at the
moving average of lag 0–6 days. PM2.5 = particulate matter with an aerodynamic diameter of <2.5 mm.

Table 2. Summary Statistics for Daily Concentrations of Fine Particulate Matter, Warm-Season Ozone, and Nitrogen Dioxide
and Annual Community Characteristics across All ZIP Codes in the Contiguous United States, 2000–2012

Mean6SD
5th

Percentile
25th

Percentile Median
75th

Percentile
95th

Percentile

PM2.5, μg/m
3 10.466.7 2.8 5.8 9.0 13.4 22.8

O3, ppb 45.9612.2 26.1 37.6 45.8 53.8 66.3
NO2, ppb 17.1612.0 3.9 8.3 13.9 22.8 40.8
Population density, persons/mile2 96.76456.5 0.1 1.1 4.7 50.2 319.2
Average BMI, kg/m2 28.563.0 26.0 27.0 27.8 28.9 33.6
Percent of ever-smokers, % 46.267.2 36.5 41.7 45.0 50.4 58.8
Distance to the nearest hospital, km 13.9612.2 1.0 4.1 11.9 20.0 35.2
Neighborhood disadvantage level, percentile rank* 58.5625.1 11.0 39.0 61.1 78.0 92.8

Definition of abbreviations: BMI=body mass index; NO2=nitrogen dioxide; O3=ozone; PM2.5 =particulate matter with an aerodynamic diameter
of <2.5 mm.
*The degree of neighborhood disadvantage was measured as national percentile rankings at ZIP code level from 1 to 100. A ranking of 100
indicated the highest degree of disadvantage.
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significant. For NO2, the 02 4-year and
52 12-year age groups were at higher
risk than the overall population. No
consistent differences were found
between subgroups of sex or race/
ethnicity.

Among subgroups of community-level
characteristics, we found consistently and
significantly higher risk of asthma
hospitalization for beneficiaries living in ZIP
Codes with lower population density (<25th
percentile), higher average BMI (>75th
percentile), or longer distance to the nearest
hospital (>75th percentile) for the three
exposures at lag 0–6 days (Figure 4). We also
found consistently higher risk for
beneficiaries in more disadvantaged
communities with higher ADI (>75th
percentile), although the subgroup difference
was statistically significant for PM2.5 and O3

and was marginally significant for NO2

(P=0.06). Further separate analysis by age
showed that within those communities that
experienced higher risk from the exposures,
the associations were consistently higher for
all age groups than the overall population
(Figure E6).

In the three-pollutant model, the effect
estimates for PM2.5 and NO2 attenuated but
remained significant; for O3, the point
estimate went beyond the null, and the
direction of point estimate was reversed. The
results remained robust after adjustment for

lag 0–1 or lag 0–4 of air temperature and
specific humidity (Figure E7). The effect
estimate for full-year O3 attenuated to the
null but remained statistically significant
(0.07%; 95% CI, 0.03–0.11%). After
excluding beneficiaries with asthma
admissions in the first 3 years of the study
period, the effect estimates for the three
exposures remained consistently higher for
those with only one admission during the
study period than those with multiple
admissions (Figure E8).

Discussion

In December 2020, the EPA decided to retain
the current NAAQS for PM2.5 and O3

without revision (38, 39). In September 2021,
conversely, theWHO sharply tightened its
global air quality guidelines to
concentrations that are well below the
NAAQS. In accordance with the Clean Air
Act, the EPA is responsible for improving the
nation’s air quality and setting standards that
provide public health protection for all,
including at-risk groups (12). Our study
linked PM2.5, warm-season O3, and NO2

with 1.6 million asthma hospitalizations of
Medicaid fee-for-service beneficiaries. Using
a time-stratified case-crossover design, we
found that short-term exposures to PM2.5,
warm-season O3, and NO2 were all

associated with increased risk of asthma
hospitalization, even at degrees of exposure
well below current NAAQS. In particular, the
effect size estimates were larger when PM2.5

was,25 μg/m3 and when NO2 was below
40 ppb than above the current NAAQS. The
single-lagged associations suggest that the
adverse effects remain a week after
exposures, consistent with results from
Rosenquist and colleagues (5) and O’Connor
and colleagues (6). Overall, by focusing on
one of the most socioeconomically
disadvantaged populations in the United
States, our findings indicate that improving
air quality will not only better protect the
most vulnerable population but also
decrease healthcare use by preventing
hospitalizations.

Our findings suggest that asthma
susceptibility to the pollutants differed by
severity. The consistently higher risk of
asthma hospitalization associated with three
exposures for beneficiaries with only one
asthma admission during the study period
than those with multiple admissions suggests
that for people with severe asthma with
frequent hospitalizations, outdoor air
pollution played a less important role than
other factors such as aeroallergens,
environmental tobacco smoke, or
nonadherence to controller medications, etc.
(17). The findings of no consistent
differences between subgroups of sex or race/

< 35 (NAAQS)

< 30

< 25

< 20

< 15

Main analysis

0.32% (0.25%–0.39%)

0.34% (0.28%–0.41%)

0.38% (0.31%–0.46%)

0.42% (0.34%–0.51%)

0.56% (0.44%–0.68%)

0.31% (0.24%–0.37%)

0 0.2 0.4 0.6 0.8

Exposure level
Percent increase in risk of asthma hospitalization
for each 1-µg/m3 increase in PM2.5 at lag 0–6 day

0 0.2 0.4 0.6 0.8

< 100 (NAAQS)

< 80

< 60

< 40

< 30

Main analysis

0.28% (0.24%–0.33%)

0.29% (0.25%–0.34%)

0.32% (0.27%–0.36%)

0.50% (0.43%–0.57%)

0.54% (0.44%–0.65%)

0.28% (0.24%–0.32%)

Exposure level
Percent increase in risk of asthma hospitalization

for each 1-ppb increase in NO2 at lag 0–6 day

–0.2 0 0.2 0.4 0.6 0.8 1

< 70 (NAAQS)

< 60

< 50

< 40

< 30

Main analysis

0.12% (0.07%–0.17%)

0.10% (0.04%–0.16%)

0.00% (–0.08%–0.08%)

–0.12% (–0.28%–0.04%)

0.54% (–0.07%–1.16%)

0.10% (0.05%–0.15%)

Exposure level
Percent increase in risk of asthma hospitalization

for each 1-ppb increase in O3 at lag 0–6 day

Figure 2. Percent increases (and Bonferroni-corrected 95% confidence intervals) in risk of asthma hospitalization associated with 1-mg/m3

increase in PM2.5, 1-ppb increase in warm-season ozone (O3), and 1-ppb increase in nitrogen dioxide (NO2) at the moving average of lag 0–6
days, when restricting the analysis to hospitalizations with lag 0–6 exposures below increasingly stringent thresholds, including those well below
the National Ambient Air Quality Standards (NAAQS). PM2.5 = particulate matter with an aerodynamic diameter of <2.5 mm.
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ethnicity suggest that the burdens of air
pollution were equally distributed across
these subgroups within the
socioeconomically disadvantaged population,
consistent with findings by Liu and

colleagues (8), Garcia and colleagues (10),
and Nardone and colleagues (14).

At the community level, we found
consistently higher risk of asthma
hospitalization associated with the three

exposures for ZIP Codes with lower
population density, higher average BMI,
longer distance to the nearest hospital, or
greater neighborhood deprivation. These
identified differences in susceptibility
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Figure 3. Percent increases (and Bonferroni-corrected 95% confidence intervals) in risk of asthma hospitalization associated with 1-mg/m3 increase in
PM2.5, 1-ppb increase in warm-season ozone (O3), and 1-ppb increase in nitrogen dioxide (NO2) at the moving average of lag 0–6 days for each
subgroup of individual-level characteristics. P values for the independent sample t tests were used to compare subgroup differences. Further separate
analysis by age group was performed with results provided in Figure E5 in the online supplement. PM2.5 = particulate matter with an aerodynamic
diameter of<2.5 mm.
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were consistent with results of Guarnieri
and colleagues (4), Schikowski and
colleagues (7), and Delfino and colleagues
(11), suggesting certain contextual factors
contributed to asthma disparities in the
impact of air pollution. First, lower
population density typically characterizes

rural areas where air pollution sources
(e.g., agriculture, industry, and natural
processes), building characteristics, and
activity patterns are different, resulting in
inequitable burden from air pollutant
exposures on acute exacerbation of
asthma (40). Second, the higher risk for

communities with higher BMI indicates
that unhealthy diets and physical
inactivity may increase the susceptibility
to adverse effects of air pollution (4). As
shown in literature (41), diets high in
antioxidants such as fruits and vegetables
are likely to prevent oxidative stress in
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Figure 4. Percent increases (and Bonferroni-corrected 95% confidence intervals) in risk of asthma hospitalization associated with 1-mg/m3

increase in PM2.5, 1-ppb increase in warm-season ozone (O3), and 1-ppb increase in nitrogen dioxide (NO2) at the moving average of lag 0–6
days for each subgroup of community-level characteristics. “Low” represents subgroups within the bottom 25% of the characteristics, and
“High” represents subgroups within the top 25% of the characteristics. P values for the independent sample t tests were used to compare
subgroup differences. Further separate analysis by age group was performed with results provided in Figure E6. BMI=body mass index;
PM2.5 =particulate matter with an aerodynamic diameter of <2.5 mm.
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pathways through which particulate
matters and gases affect the severity of
asthma. Third, longer distance to the
nearest hospital indicates less access to
healthcare services, which increases the
risk of hospitalization. Indeed, timely and
effective outpatient care of asthma is the
key of preventing adverse outcomes and
reducing the risk of hospitalization (1).
Finally, greater neighborhood deprivation
combined broad factors that may make
the residents more susceptible to asthma
attacks, such as the lack of pharmacy
access, poor job opportunities, increased
occupational hazards, poor housing
quality, unhealthy lifestyle, etc. (42), the
overall effects of which exacerbated
inequality and vulnerability within the
Medicaid. All these community-level
factors are relatively independent and
were weakly correlated with the exposures
(see SECTION 5 in the online supplement),
suggesting that they play different roles
differentiating the susceptibility to air
pollutants. The consistently higher risk for
all age groups within each at-risk
community suggest that these contextual
factors modify the susceptibility
throughout the life course.

In the three-pollutant model,
including the three pollutant exposures
and their negative exposure controls likely
introduced overcontrol bias, which pulled
the effect estimates toward the null and
even reversed the direction of the O3

estimate (43). In a single-pollutant model,
because the negative exposure control
served as a proxy for all residual time-
varying confounders, the two other
pollutants had been indirectly adjusted
for. Therefore, in the main analysis, we
fitted single-pollutant models and selected

the negative exposure control as
appropriate variable for which to control
to provide more reliable estimates (44).
However, the PM2.5 and NO2 effects
remained in the three-pollutant model
with three negative controls.

Our study has several strengths. First,
the analysis of more than 1.6 million
asthma hospitalizations among the national
Medicaid population allowed for an
unprecedented degree of generalizability of
the effects of major air pollutants within a
vulnerable population. Second, subgroup
analyses by individual- and community-
level characteristics captured both
individual and contextual factors that
contributed to asthma disparities within
this population in the impact of air
pollutant exposures, providing better
mechanistic understanding and evidence
base for strategies targeting the specific
subpopulations and communities. Third,
the adjustment for negative exposure
control reduced the bias owing to
unmeasured confounding.

Our study showed that the effect of
warm-season ozone on children aged 0–12
years was not statistically significant. The
age-dependent associations of ozone
exposure and asthma hospitalization have
been observed in other studies, in which
short-term ozone exposure has less
significant or even protective effects in young
children (45). One explanation is that in
addition to introducing a proinflammatory
response, ozone has antiviral effects,
reducing or controlling respiratory viral
infection, a major cause of asthma
exacerbation in young children (46). Age
could also influence the inhalation intake of
air pollution and its effect on the respiratory
tract (47), which was further complicated by

the different physicochemical properties of
the three pollutants (12). However, limited
by available data sources and current
understanding of ozone-induced respiratory
pathology in childhood, this result should be
interpreted cautiously. Clearly, further
investigations into the potential underlying
mechanisms are warranted.

This study also has limitations. First, we
could not fully capture all disadvantaged
Americans because Medicaid did not cover
low-income single individuals without
children and its eligibility varies by state.
Second, although the analysis for the total
population had high enough statistical
power, some of the subgroup analysis may be
underpowered, which may be the reason
why we did not find an effect or a difference
between subgroups. Third, the use of
community-based measurements to gauge
the characteristics was subject to
measurement error. Further validity
assessments by comparing with other surveys
or using self-reported data would be
valuable.

In sum, we found increased risk of
asthma hospitalization associated with
short-term exposures to PM2.5, warm-
season O3, and NO2 among national
Medicaid beneficiaries,65 years of age,
even at amounts well below the national
standards. In subgroup analyses, we found
that asthma susceptibility to the effects of
air pollutant exposures differed by severity
and certain community-level
characteristics, suggesting the importance
of addressing both individual and
contextual influences in protecting
disadvantaged populations.�

Author disclosures are available with the
text of this article at www.atsjournals.org.
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