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Abstract

Two-dimensional video-based pose estimation is a technique that can be used to estimate

human skeletal coordinates from video data alone. It is also being applied to gait analysis

and in particularly, due to its simplicity of measurement, it has the potential to be applied to

gait analysis of large populations. However, it is considered difficult to completely homoge-

nize the environment and settings during the measurement of large populations. Therefore,

it is necessary to appropriately deal with technical errors that are not related to the biological

factors of interest. In this study, by analyzing a large cohort database, we have identified

four major types of anomalies that occur during gait analysis using OpenPose in uncon-

trolled environments: anatomical, biomechanical, and physical anomalies and errors due to

estimation. We have also developed a workflow for identifying and correcting these anoma-

lies and confirmed that this workflow is reproducible through simulation experiments. Our

results will help obtain a comprehensive understanding of the anomalies to be addressed

during pre-processing for 2D video-based gait analysis of large populations.

Author summary

Gait is one of the important biomarkers of numerous health conditions. With developing

mobile health technologies, it is becoming easier to measure our health. However, estab-

lishing evidence is a critical issue to providing preventive medicine, we need to be able to

collect data from a large population. Two-dimensional video-based pose estimation can

be a solution for the gait analysis of such a population. However, the technical accuracy

and limitations of this analysis method have not yet been sufficiently discussed. In this

study, by analyzing the largest database currently available, we systematically identified

four types of technical anomalies that occur during gait measurement: anatomical, bio-

mechanical, and physical anomalies and errors dues to estimation. We have also shown

how to deal with these issues and made solutions available as software so that researchers
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can reproduce them. In the future, increasing numbers of studies will use 2D video-based

pose estimation to research health-related gait among large populations. We believe that

our work will provide a guideline for researchers and clinicians involved in these studies

to discuss design and algorithms.

This is a PLOS Computational Biology Methods paper.

Introduction

Gait is a simple biomarker of the human condition [1], and its effectiveness as a clinical or pre-

clinical marker for diseases such as nervous system abnormalities and skeletal muscle abnor-

malities has been revealed in various fields [2–6]. In recent years, with the advancement of

artificial intelligence applications, several gait analysis methods based on computer vision have

been proposed [7–10]. These methods are characterized by the extraction of parameters using

images or videos of walking as the input. Two such approaches have been proposed to date:

one approach is to extract features based on appearance, such as walking silhouette [11, 12],

and the other is to extract gait parameters, such as a series of joint positions and joint angles,

by fitting human joint models to the images using estimation [13].

One algorithm using the latter approach, OpenPose, can estimate joint coordinates at up to

135 key points, such as “body”, “feet”, “hands” and “face” for multiple subjects in an image by

learning a vector space called Part Affinity Fields (PAF) for associations between anatomical

joints based on a deep learning model. Previous research has suggested that this joint estima-

tion capability is sufficient to some extent even in videos with many dynamic factors [14].

Compared with conventional optical motion capture, approximately 80% of the estimated

joint coordinates are less than 30 mm with good accuracy [15].

These computer vision-based gait analysis methods can automatically analyze a large num-

ber of joint coordinates with only digital video as input and can be used in any environment,

including homes and clinics, requiring little time, cost, and effort compared with conventional

optical motion capture. Large-scale human gait analysis can be conducted more easily than

ever before. However, there are some issues to be solved in gait analysis applications, such as a

certain amount of unexpected noise and the false detection of multiple persons even though

only one person is walking [16]. In addition, a reproducible and standardized analysis work-

flow is still lacking. Stenum et al. proposed a comprehensive analysis for obtaining gait param-

eters based on OpenPose during gait in a controlled environment [16]. This workflow uses

video as input, preprocessing of joint coordinates obtained from OpenPose, and extraction of

gait parameters such as step length.

However, workflows for gait analysis in uncontrolled environments have not been studied

sufficiently. To capture gait futures in large populations in heterogenous environments, a

robust approach is needed. Various factors are assumed to potentially affect the accuracy of

joint estimation using OpenPose, including camera performance, the distance between the

camera and the subject, walking speed, clothing, and walking environment. Several existing

studies seem to provide a solution, although they assume a somewhat controlled data acquisi-

tion environment. Seethapathi et al. reviewed six categories of pose estimation problems that

can hinder the estimation of kinematic parameters in the application of OpenPose in motion

science, and suggested several possible solutions; for example, post-processing and elaboration

during data acquisition, e.g., size estimation incorporating reference objects [17]. The
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workflow reported by Stenum et al. [16] pointed out false person detection and left-right swap-

ping of lower limbs, but it is manual, with detection, correction, and exclusion being based on

visual inspection. In an environment that can be controlled to some extent or that includes few

subjects, it may be possible to devise data measurement methods or to deal with measurement

errors through manual labor. However, both approaches may be limited when measuring

large populations of thousands to tens of thousands of people in several different environ-

ments, such as in hospitals and other facilities.

When considering the efficient post-processing approach in such an environment, it is

useful to perform a statistical examination of the error structure based on large-scale data.

Fortunately, in recent years, a gait database consisting of 10,307 individuals has been made

public using OpenPose technology [18]. This database contains pose estimations for an

unspecified number of visitors to a certain facility during walking at 25 frames per second

(fps) using a multi-view camera in an uncontrolled manner, and 18 joints are estimated for

one gait cycle [18]. Although this database was originally intended for the biometrics field,

we thought technical anomalous errors in uncontrolled environments could be investigated

using this data.

The main purpose of this study was to classify the types of anomalies in pose estimation

using OpenPose during the gait cycle in an uncontrolled environment to obtain a roadmap for

analyzing large-scale gait data with OpenPose. Through our analysis, we identified four main

types of anomalies: anatomical, biomechanical, and physical anomalies and errors due to esti-

mation. In addition, we present a data processing workflow for dealing with the errors that we

have categorized and demonstrate its reproducibility through simulation experiments. The

code used in this study is online (URL: https://github.com/matsui-lab/PoseFixeR).

Results

Overview of anomaly types

This section provides an overview of the types of anomaly errors in OpenPose measure-

ments during gait that are presented in this paper. Individual anomaly types are discussed

in detail in the section below. We conducted a comprehensive analysis of the database (see

Materials and Methods), while partially referring to the existing literature [16, 17], and

identified four main types of anomalous errors that should be preprocessed when estimat-

ing joint coordinates during gait using OpenPose in an uncontrolled environment (Fig 1,

Table 1). For convenience, the four types are categorized as anatomical, biomechanical, and

physical, as well as errors due to the inherent estimation accuracy of OpenPose. Note that

the categories in this study were labeled based on the patterns observed in a data-driven

manner, and are used for the convenience of interpretation and to facilitate discussion.

Therefore, they are not based on strict anatomical, biomechanical, or physical definitions

and these types are not completely independent, as they overlap with each other and, in

some cases, are composite. We further subdivided these four categories in terms of detec-

tion and correction methods and finally classified them into ten types that we believe should

be considered during analysis (Fig 1).

Anatomical constraints

Anatomical constraints refer to a series of anomalous errors that could be considered devia-

tions with respect to standard human anatomical constraints (Fig 1A). The most common case

observed here was extreme lengthening at the joint located on the opposite side to the camera

direction (Table 1). This is thought to be caused by forcibly making predictions on unobserved

joints. We were unable to find any existing studies explicitly addressing and discussing this
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anomaly. However, in approximately 15% of the subjects, we also observed cases where the

shoulder width suddenly increased even though the video was taken from the side (Figs 1C

and S3) and cases where the skeletal length of the lower limbs became extremely short or long

before or after a certain point in time, regardless of the camera direction (Fig 1B).

Ideally, we would like to be able to compare the estimated values with the baseline skeletal

structure of each person; however, if this is difficult, it may be possible to estimate them by

assuming a standard human anatomical skeletal structure and detecting deviations from it.

We believe that the relative proportions of standard human skeletal length estimated by a

cohort study [19] could be used to predict the joint coordinate values in advance. Specifically,

if we consider a normalized coordinate with Neck (Ne) as the origin and apply the standard

skeletal length (see Materials and Methods), we can predict the range within which the joint

coordinate values should lie. We used this method to identify joint coordinates that were far

outside the normal range (see Materials and Methods).

Fig 1. Types of anomalies during gait using OpenPose. The left panel shows the OpenPose skeletal model and the name of each part. The right panel shows

the anomaly types corresponding to those in Table 1. Estimation accuracy in Table 1 is excluded from the figure for convenience of illustration. ROM, range of

motion; COG, center of gravity.

https://doi.org/10.1371/journal.pcbi.1009989.g001
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Biomechanical constraints

Anomalous errors deviating from the biomechanical constraints were also observed, mainly in

key parameters in the gait analysis, such as the range of motion of the joints (ROM), which is

the external angle of the axis connecting Ne and Right Hip (Rh) (or Left Hip [Lh]) and Right

Knee (Rk) (or Left Knee [Lk]) (Fig 1D); center of gravity of the trunk (COG) representing the

inclination of the trunk (Fig 1E); and stride length with ankle distances (Fig 1F). In particular,

the anomalies related to ROM were the highest, accounting for nearly 70% of all subjects

(Table 1), demonstrating the difficulty of biomechanical analysis in uncontrolled environ-

ments. It should also be noted that the skeletal model in OpenPose does not exactly match

actual anatomical skeletal structures (see Discussion).

Furthermore, there are biases in the estimates depending on the distance between the cam-

era and the subject, as well as errors in the pose estimation itself. In fact, when compared with

the ROM estimated using a gyro sensor [20], a shift of approximately 10˚ to 20˚ was observed,

and the variance tended to be large (Fig 2, Table 2). Therefore, instead of directly applying cri-

teria based on other measurement methods, such as gyroscope sensors, OpenPose’s baseline

should be estimated to separate the signal from the noise. We detected unnatural errors biome-

chanically, by calculating thresholds based on statistical confidence intervals derived from the

database (see Materials and Methods).

Although COG and stride length anomalies were relatively infrequent, they were distinctly differ-

ent from the COG and stride length of natural gait and, thus, had to be detected and corrected. In a

healthy person, COG is unlikely to fluctuate significantly throughout the gait cycle. We used cluster-

ing to identify the positions of the hip (Rh or Lh), knee (Rk or Lk), and ankle (Right Ankle [Ra] or

Left Ankle [La]), which were considered to be off-center (see Materials and Methods, S1 Fig).

For stride length, we observed cases where the distance of the ankle joint (Ra and La) was

underestimated or overestimated for a particular frame or for the entire frame. For the other

cases, we focused on the maximum stride length in the gait cycle and derived a threshold

based on statistical confidence intervals to identify the error (S2 Fig).

Physical constraints

Gait is a continuous motion in time that depends on the frame rate of the video recording in

OpenPose, but it is difficult to imagine instantaneous motion beyond the physical constraints

Table 1. Percentage of each anomaly type.

ID Anomaly types Whole body (18 points) Only lower limbs (6 points)

Anatomical constraints a Undetected parts 97.7 20.5

b Leg length 14.8

c Shoulder joint distance 16.1 -

Biomechanical constraints d Ankle joint distance 11.6

e Range of motion 69.4

f Center of gravity 6.3

Physical constraints g Side of legs 29.0

h Time transition 99.7 93.4

i Grounding 2.1

Estimation accuracy j Reliability 100 43.2

Anomalies for the whole body are reported as a percentage of the 18 whole body parts, and anomalies for the lower limbs are reported as a percentage of the six lower

limbs parts. IDs correspond to the right panel in Fig 1.

https://doi.org/10.1371/journal.pcbi.1009989.t001
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Fig 2. Histograms of ROM of hip and knee joints (left direction: red, right direction: blue). The ranges in red and blue shading are 95% confidence

intervals. The black shaded area indicates the maximum and minimum ROM during gait using inertial sensors as reported by Park et al. ROM, range of motion

[20].

https://doi.org/10.1371/journal.pcbi.1009989.g002

Table 2. Mean shift and variability of ROM at the hip and knee joints, comparing published gyro-sensor-based statistics for ROM with those obtained in the present

database analysis.

(Unit:deg) Variable System Mean±SD (before anomaly exclusion) Mean±SD (after anomaly exclusion)

Hip-joint angle (+ flexion/—extension) Max OpenPose (R) 27.00±12.40 23.88±8.08

OpenPose (L) 22.28±9.81 17.27±6.12

MocapNET 25.70±3.85 25.70±3.85

Min OpenPose (R) -33.07±10.50 -28.35±6.08

OpenPose (L) -36.37±11.17 -32.14±5.94

MocapNET -14.41±2.23 -14.41±2.23

ROM Open Pose(R) 60.06±14.86 52.23±8.96

Open Pose(L) 58.65±14.60 49.41±7.74

MocapNET 39.88±3.22 39.88±3.22

Knee-joint angle (+ flexion/—extension) Max Open Pose(R) 64.20±21.83 58.17±9.63

Open Pose(L) 71.29±20.88 64.43±10.87

MocapNET 64.58 ± 5.21 64.58 ± 5.21

Min OpenPose (R) -4.88±8.29 -1.54±6.24

OpenPose (L) -1.10±7.05 0.28±6.26

MocapNET -3.18±3.11 -3.18±3.11

ROM OpenPose (R) 68.34±19.74 59.71±11.08

OpenPose (L) 72.39±18.99 64.15±11.98

MocapNET 67.20±4.66 67.20±4.66

ROM, range of motion; SD, standard deviation

https://doi.org/10.1371/journal.pcbi.1009989.t002
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in the normal range. Therefore, motion with extremely discontinuous changes is considered to

be due to errors. We considered two types of errors: reversals of the left and right legs (Fig 1G)

and discontinuous frame transitions (Fig 1H). In the latter case, it was sufficient to detect the

change point in the time series. However, it was not sufficient to detect the point at which the

legs switched; thus, the deviated state was detected using the direction vector in periodic

motion (see Materials and Methods). Another physically unnatural case was floating above

ground surface (Fig 1I). In this case, the normal range from the head to the ankle was esti-

mated in advance based on the standard human skeletal model [19], and deviations from this

range were detected (see Materials and Methods).

Estimation accuracy

The reliability score in OpenPose is calculated based on the distance from the correct location

to each pixel in the image [21]. The pixels that are the shortest distance from the correct location

are considered to have the highest reliability, whereas a low reliability score suggests that the

estimated joint may not exist in the image or that it cannot be estimated. The variability of the

actual reliability score tended to be lower for certain joints (Fig 3B). It was not easy to identify

the cause of the error based on the reliability score, which is an inherent problem in the deep

learning algorithm of OpenPose. However, it is possible to determine the reliability score from

a statistical perspective. The overall distribution of the reliability scores was bimodal (Fig 3A),

suggesting the existence of two potential groups of low and high reliability. We estimated these

two groups based on k-means clustering and detected the group with low accuracy.

Accuracy of pose estimation during gait in an uncontrolled environment

We used a largescale database of OpenPose gait data to examine the reliability of OpenPose

estimates of joint coordinates. However, the database used in this study only contained Open-

Pose data, so it was not possible to evaluate the data using external criteria. Instead, using our

workflow, we calculated percentages by defining joint coordinates that did not contain the

anomalies shown in Table 1 as negative examples of the anomalies. The percentages of each

joint determined to be normal and the percentage after correction using our workflow are

summarized in Fig 4. The workflow will be described in the next section.

The accuracy for the joints on the opposite side to the camera direction was low, but on the

same side, the accuracy varied, ranging from 53.8% to 93.5%. In particular, the knee (Rk or Lk)

and ankle (Ra or La) contained some anomalous errors in nearly half of the subjects, strongly

suggesting that they need to be addressed for downstream analysis to be performed properly.

Workflow for anomaly detection and correction

To perform gait analysis using OpenPose in an uncontrolled environment, many anomalous

errors must be addressed during preprocessing. However, it is unclear which strategies should

be used for detection and correction. Here, we present a workflow for detecting and correcting

10 types of anomalies (Fig 5).

Normalization step

The first normalization step transforms the coordinate system and skeletal length into a form

that is comparable for all samples. Ne was set as the origin and transformed into joint coordi-

nates corresponding to the ratio of the neck to the trunk length (see Materials and Methods).

This allows for a general discussion of statistical properties and the setting of thresholds to deal

with anomalous errors, which allows for efficient preprocessing.
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Anomaly detection step

Following normalization, the anomalous error of switching the left and right legs was first

detected and corrected. This is because leg swapping is a serious error in gait analysis and may

affect the detection of other anomaly types. Subsequently, the other nine types were detected.

Fig 3. Reliability score. (a) Distribution of reliability scores for all subjects. Two groups, low confidence (blue) and high confidence (red), were assumed and

classified by clustering. (b) Reliability score per part. The upper panel shows the left direction, and the lower panel shows the right direction.

https://doi.org/10.1371/journal.pcbi.1009989.g003

Fig 4. Estimated accuracy for each part with OpenPose. The accuracy based on the anomaly types (i.e., the percentage not containing any of the anomalies

listed in Table 1) is shown. The numbers in parentheses represent the accuracy after correcting the proposed workflow.

https://doi.org/10.1371/journal.pcbi.1009989.g004
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Correction of anomalous error step

The detected parts with anomalous errors could be considered missing values because they

cannot be used in the downstream analysis. To some extent, they can be imputed using infor-

mation from the previous and subsequent frames via averaging. However, if the overall num-

ber of missing values is extremely high in one gait cycle or if there are many continuous

missing values, the reliability of the missing-value imputation is itself questionable, and such

subjects should be excluded. Two filtering criteria were used: (1) the error percentage of each

part of the total number of frames was greater than 40%, and (2) the percentage of consecutive

missing frames within a gait cycle was more than 20% of the total number of frames (see Mate-

rials and Methods). Finally, we were able to impute the missing values of 66.8% of the

participants.

Other adjustments

In addition, because it has been reported that video-based pose estimation causes distortions

in the estimated coordinate values depending on the distance from the camera (Fig 6), and

because the skeletal length within the same subject is not constant [16], we also corrected the

skeletal length (see Materials and Methods).

Reproducibility of workflow

Simulation model. In order to validate the reliability of the proposed workflow, it is com-

mon to compare the results of it with ground-truth data such as BICON. However, since there

is no ground-truth data used in result section; thus, we conducted a simulation experiment

based on actual data (S1 Text) to validate the reproducibility of the workflow in this study.

First, we extracted some samples from a real dataset. Second, we generated a pseudo dataset by

adding various errors to these samples. The probability of occurrence of each anomalous error

was calculated using relative frequencies (Table 1). We generated 10,000 subjects with 25

frames per gait cycle and evaluated the detection accuracy for each anomaly type and the

reproducibility of the true joint coordinates.

Simulation results. First, we confirmed the reproducibility of the detection accuracy for

individual anomalous errors each parts; the sensitivity and specificity were 82.6% and 95.1%,

respectively. However, the accuracy for each type of anomaly varied from 71.1% to 95.4%,

Fig 5. Proposed workflow.

https://doi.org/10.1371/journal.pcbi.1009989.g005
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which indicates that the difficulty of anomaly detection varies from joint to joint (Table 3).

Pearson’s correlation coefficients of the xy-coordinate values before and after the correction

were calculated to determine the accuracy for missing imputation, suggesting that there was a

significant reproducibility for the joints overall (0.770 for the x-coordinate; p-value<2.2e-16,

0.961 for the y-coordinate; p-value <2.2e-16). In addition, the reproducibility of the individual

joints was evaluated. Regarding the accuracy at the level of individual joints, there was a ten-

dency for the accuracy to be relatively low for undetected joints, leg length, COG, and ankle

distance, which is thought to represent the variability due to the relatively low accuracy of

anomaly detection (Table 4).

Fig 6. Skeletal length of legs. The left and right panels show the skeletal lengths of the thigh and lower leg, respectively, which depend on the distance between

the camera (from the right side) and the subjects. The red and blue represent the right and left sides of the body, respectively.

https://doi.org/10.1371/journal.pcbi.1009989.g006

Table 3. Sensitivity of detection of each type of anomaly by workflow.

Anomaly types Sensitivity (%)

Undetected parts 73.0

Leg length 71.1

Shoulder joint distance 85.2

ROM 82.4

COG 79.3

Ankle joint distance 93.0

Time transition 95.4

Side of legs 88.1

Grounding 89.4

ROM, range of motion; COG, center of gravity

https://doi.org/10.1371/journal.pcbi.1009989.t003
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Implementation

The workflow presented in this paper has been deposited in R code (Github URL: https://

github.com/matsui-lab/PoseFixeR). A series of preprocessing steps were performed using the

coordinate values obtained from the posture estimation using OpenPose as the input data.

Detailed parameter settings are described in a vignette.

Discussion

We used a large database analysis to comprehensively classify technical anomalies using Open-

Pose gait pose estimation and identified four main types: anatomical, biomechanical, and

physical anomalies and errors dues to estimation. We have also presented a method of detect-

ing these anomalies and suggested a workflow for their correction. According to our criteria,

all of the 18 parts estimated by OpenPose contained some anomalies, suggesting that proper

pre-processing is required before extracting gait features. Moreover, simulation experiments

showed that the accuracy of anomaly detection and correction varied depending on anomaly

type, implying the need to develop appropriate preprocessing methods for each type.

In particular, the nature of the two-dimensional video-based representations makes skeletal

length distortions dependent on the distance between the camera and the subject, and pro-

duces anomalous joint coordinate estimates owing to unobserved joints on the opposite side

to the camera. The latter anomalous measurement error could be rescued with up to 73% accu-

racy by our workflow, as shown in the numerical experiments, and it was difficult to capture

the complete characteristics of one gait cycle by video recording only on one side. Therefore, it

may be effective to develop an experimental design that focuses on specific parameters, such as

the motions of specific joints on the video recording side.

The anatomical skeletal models should also be evaluated. In the comparison of inertial sen-

sors and OpenPose in terms of ROMs, we observed a shift of approximately 10˚–20˚. One of

the main reasons for this is the difference in the skeletal model. Taking the hip joint as an

example, in the field of orthopedics and rehabilitation, ROM is generally measured by measur-

ing the external angle composed of the axis between the trunk and femur. However, because

the hip joint area is simplified in OpenPose, the ROM is calculated from the external angle

composed of the axis directly connecting Ne and Rh/Lh, Rh/Lh, and Rk/Lk, which results in

different criteria and generates a bias. Therefore, when analyzing gait using OpenPose,

Table 4. Reproducibility of values by workflow.

Correlation (x-coordinate) Correlation (y-coordinate)

Undetected parts 0.691 0.935

Leg length 0.767 0.929

Shoulder joint distance 0.768 0.946

Ankle joint distance 0.734 0.922

ROM 0.946 0.943

COG 0.814 0.988

Ankle joint distance 0.734 0.922

Time transition 0.888 0.952

Side of legs 0.657 0.967

Grounding 0.937 0.871

Pearson’s correlation coefficient between the true value and the estimated value with correction after performing all

the steps of the workflow. ROM, range of motion; COG, center of gravity

https://doi.org/10.1371/journal.pcbi.1009989.t004
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especially when interpreting biomechanical features, we should not simply compare the results

with standard sensors, such as gyroscopes and goniometers, but should make comparisons

based on OpenPose’s baseline.

We showed the anomalies in an uncontrolled environment as comprehensively as possible

along with the workflow. However, there are several limitations. First, we did not necessarily

cover all anomalies since the results are based on the analysis of a single database. Second, we

didn’t compare our results to ground-truth data (e.g., motion capture) because only the Open-

Pose data was available in the public database. Our proposed workflow should be evaluated in

further studies. Third, we determined threshold values (e.g., using in Eq(4)) based on a stan-

dard skeletal model [19], so gender and age groups were not considered. For more sophisti-

cated algorithms, appropriate skeletal models should be used. Fourth, there is a problem with

OpenPose itself. As Seethapathi et al. [17] pointed out, current pose tracking algorithms do

not prioritize measurement of the quantities that are important in movement science, such as

three-dimensional position, velocity, and acceleration. Therefore, a new algorithm should be

developed that considers important factors in kinematics, so that a more suitable system can

be constructed.

In order to increase the clinical applications of video-based 2D pose estimation technology,

it will be necessary to find situations where it can be used most effectively from a clinical point

of view, and to develop an appropriate analysis algorithm in the future [22]. From a practical

standpoint, a reproducible and robust analysis method will be crucial. For example, the devel-

opment of an algorithm that effectively exploits the latent time-series structure of tracking

errors for skeletal coordinates is an important issue for future research. On the other hand,

this study also employed some threshold-based methods, such as standard skeletal length

ratios derived from existing anatomical knowledge and confidence score thresholds based on

statistical distributions. Since the OpenPose skeletal estimates do not take into account ana-

tomical or clinical knowledge, methods that combine existing knowledge may be useful. For

example, in the category of “side of legs” (g in Fig 1), which occurs when the left and right legs

cross each other, self-evaluation of OpenPose such as frame by frame analysis or coordinate

distance between frames cannot detect this anomaly, although it can affect joint angle

estimation.

It is also important to study analysis methods for disease signals through clinical research

designs, such as comparisons between healthy and diseased groups. For example, there may be

an affinity between developing research designs that focus on specific parts of the body and

researching algorithms dedicated to the early detection of disease-related signatures. Addition-

ally, the development of open-source software and public databases is also considered to be an

important research gap that must be filled to allow further clinical applications and the devel-

opment of our method as a reproducible research method.

The OpenPose in uncontrolled gait analysis revealed various measurement anomalies in

all samples due to technical limitations. However, preprocessing using a combination of

anatomical, physical, and biomechanical knowledge and statistical algorithms suggested

that nearly 70% of the samples could be rescued, although the accuracy varied for each

anomaly type. With the development of appropriate study designs and more sophisticated

analysis algorithms in the future, it is expected that accuracy can be improved, even in

uncontrolled environments. Since our suggested category (Fig 1) will likely include anoma-

lous errors in the controlled environment, it is considered to be widely applicable, and not

limited to pose estimation in unconstrained environments. We hope that our study will be

helpful when further studies on large populations have been conducted to accumulate

evidence.
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Materials and methods

Dataset

In this study, we used the Osaka University-Institute of Scientific and Industrial Research

(OU-ISIR) Gait Database [18], a multi-view large population dataset with pose sequences [18]

deposited in the OU-ISIR Biometric Database. By capturing the subjects walking approxi-

mately 10 m back and forth, we can observe the gait cycle at a normal speed for each sample.

The images had a frame rate of 25 fps and an image size of 1280 × 980 pixels. OpenPose shows

the x and y coordinates and confidence levels for 18 joints in each frame: nose, neck, right

shoulder, right elbow, right wrist, left shoulder, left elbow, left wrist, right groin, right knee,

right foot, left groin, left knee, left foot, right eye, left eye, right ear, and left ear.

Workflow details

The details of the workflow are described below. First, we define the mathematical notation.

Let (Xit[S], Yit[S]) be the two-dimensional coordinate value of the joint S of subject i: i = 1,2,. . .

N, at time t: t = 1,2,. . .,T. To represent an arbitrary joint, the name of the joint is written with a

dot symbol, as in (Xit[�], Yit[�]).

Normalization

In video-based pose estimation, normalization is necessary because the skeletal length varies

depending on the height of the subject, the distance from the subject, and the position of the

camera. In this study, we followed the method described by An W et al. [18] and normalized

the skeletal coordinate values in three steps: (1) centering with the Ne coordinates as the ori-

gin, (2) estimating the scale factor of the skeletal length, and (3) normalizing the skeletal coor-

dinates. Specifically, centering was performed using Eq (1).

ðX�it½��;Y
�

it½��Þ ¼ ðXit½��;Yit½��Þ � ðXit½Ne�;Yit½Ne�Þ ð1Þ

Next, to calculate the “relative scale” for each individual frame, the distance from the mid-

point of the post-transformed coordinates of the left hip ðX�it½LH�;Y
�
it½LH�Þ and the right hip

ðX�it½RH�;Y�it½RH�Þ to the neck (0, 0) was calculated as scaleit.

scaleit ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðX�it½LH� þ X�it½RH�Þ2 þ ðY�it½LH� þ Y�it½RH�Þ2
q

ð2Þ

Finally, we normalized all the joint coordinates such that the relative scaleit became 1. That

is, each joint coordinate was divided by the relative scale to obtain the normalized coordinates

ðXyit½��;Y
y
it½��Þ.

Xyit½��;Y
y

it½��
� �

¼ X�it½��;Y
�

it½��
� �

�
1

scaleit

� �

ð3Þ

Henceforth, we will use ðXyit½��;Y
y
it½��Þ in the following description.

Anatomical constraints

According to the skeletal length in the standard skeletal model, if the length of the trunk,

which is the distance from the neck to the hip joint, is 1,then the distance from the neck to the

top of the head is 0.362, and the distance from the neck to the ankle joint is 2.283 [19]. If the x-

coordinates of the top of the head and ankle joint, which are the two ends on the y-axis, are the

same as the x-coordinates of the neck, then the neck coordinates are (0, 0), the head
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coordinates are (0, -0.362), and the ankle coordinates are (0, 2.283). Therefore, the y-coordi-

nates of all joints were considered to be in the range [-0.362, 2.283]. If we introduce an error

ratio (ER) to account for individual differences, we can consider that the coordinates of any

joint Yyit½�� lie within the following range:

� 0:362� ER � Yyit½�� � 2:283� ER ð4Þ

Coordinates that do not satisfy this condition deviate from the expected range.

Biomechanical feature

Here we describe anomaly detection for range of motion (ROM), which is the external angle

of the axis connecting Ne and Rh (or Lh) and Rk (or Lk). To identify the joint coordinates

deviating from the standard ROM, 95% confidence intervals were constructed based on the

empirical distributions derived from the maximum flexion angles of each joint of the lower

extremities (both hip and knee joints) obtained by the following calculations, and those outside

the confidence intervals were considered anomalies. First, the Rh flexion angle (calculated in

the same way as the Lh flexion angle) was calculated as follows:

cosit½Rh� ¼
ðXyit½Ne� � Xyit½Rh�ÞðXyit½Rk� � Xyit½Rh�Þ þ ðYyit½Ne� � Yyit½Rh�ÞðYyit½Rk� � Yyit½Rh�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXyit½Rk� � Xyit½Rh�Þ2 þ ðXyit½Ne� � Xyit½Rh�Þ2
q

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðYyit½Rk� � Yyit½Rh�Þ2 þ ðYyit½Ne� � Yyit½Rh�Þ2
q ð5Þ

The Rk joint flexion angle (calculated in the same way as the Lk joint flexion angle) was

obtained as follows:

cosit½Rk� ¼
ðXyit½Rh� � Xyit½Rk�ÞðXyit½Ra� � Xyit½Rk�Þ þ ðYyit½Rh� � Yyit½Rk�ÞðYyit½Ra� � Yyit½Rk�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXyit½Rh� � Xyit½Rk�Þ2 þ ðXyit½Ra� � Xyit½Rk�Þ2
q

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðYyit½Ra� � Yyit½Rk�Þ2 þ ðYyit½Rh� � Yyit½Rk�Þ2
q ð6Þ

From these joint angles, the empirical distribution F was constructed. The joint angles were

set as Rit, which is defined as arccos(cosit[�])×180˚/π, and

FðrÞ ¼
1

NT

XN

i¼1

XT

t¼1
IðRit � rÞ: ð7Þ

The empirical distribution F for each joint was considered to represent the range of motion

distribution in one gait cycle at the population level, including all subjects. Based on this, we

constructed a 95% confidence interval CI95% for each joint and obtained

CI95% ¼ ½F
� 1ð0:025Þ; F� 1ð0:975Þ�:

Observed values outside the confidence interval were considered errors.

For the center of gravity (COG), we considered a point in three-dimensional space consist-

ing of the midpoints of the x-coordinates of the hip (Rh or Lh), knee (Rk or Lk), and ankle (Ra

or La) with respect to the perpendicular line from Ne to the ground and identified the group

whose distance from the origin deviated using the k-means method. The number of clusters

was determined using the gap statistic [23]. The distance dist from the origin Ne to a point can

be described as follows:

dist ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xyit½Rh� þ Xyit½Lh�
2

� �2

þ
Xyit½Rk� þ Xyit½Lk�

2

� �2

þ
Xyit½Ra� þ Xyit½La�

2

� �2
s

ð8Þ
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For anomalous errors related to ankle joint distance, we used

Lengthankle ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXyit½Ra� � Xyit½La�Þ
2

q

ð9Þ

to construct empirical distributions, derive 95% confidence intervals, and detect values those

outside the intervals as deviating errors. However, because some anomalies in undetected

joints may result in extremely large leg lengths, confidence intervals were derived after exclud-

ing those errors in advance.

Physical constraints

Regarding the method used to detect when the left and right legs are reversed, the inversion of

the leg joint coordinates at frame t was detected by comparing the leg joint coordinates of the

two frames before and after. For this purpose, we detected whether inversion occurs at 3�t�T
−2 frames. As we could use time-series information, we removed the effects of missing values

and outliers in advance. We linearly interpolated the knee joint coordinates of the vectors

Xyi�½La�;X
y
i�½Ra� at each frame and then applied spline smoothing to obtain Zi�[La], Zi�[Ra]. If

the skeletal coordinates measured in one gait cycle are reversed for the left and right legs, the

coordinates should not move like a pendulum but should be biased to either the left or right.

Thus, one of the following should be true for the inversion of the left and right legs:

1

T

XT

t¼1
IðZit½La� � Zit½Ra� > 0Þ < 0:3 ð10Þ

or

1

T

XT

t¼1
IðZit½La� � Zit½Ra� > 0Þ > 0:7 ð11Þ

Here, I(A) is an indicator function that gives 1 if the condition A is satisfied, and 0 if not. In

addition, since it was considered that there is a limit to the movement of the legs during gait,

jZit½La�j < 0:4 ð12Þ

was assumed to be satisfied. After satisfying these conditions, the direction of the leg joint

movement changes after frame t, that is,

signðZit� 2½La� � Zit� 1½La�Þ ¼ signðZit� 1½La� � Zit½La�Þ ¼ signðZit� 2½La� � Zit½La�Þ ð13Þ

and

signðZit½La� � Zit� 1½La�Þ

¼ signðZitþ1½La� � Zitþ2½La�Þ

¼ signðZit½La� � Zitþ2½La�Þ

6¼ signðZit� 2½La� � Zit� 1½La�Þ ð14Þ

are satisfied, and the joint coordinates of the left and right legs are considered to be reversed,

where sign(�) is a sign function.

To detect errors in ground contact, the reference value of the y-axis coordinates of the legs

was set to 2.283. When the y-axis coordinates of both legs deviated sufficiently from the refer-

ence value, either upward or downward, it was determined that the person was not grounded.
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That is

Yit½Lh� > 1:2� 2:283 and Yit½Rh� > 1:2� 2:283 ð15Þ

or

Yit½Lh� < 0:8� 2:283 and Yit½Rh� < 0:8� 2:283: ð16Þ

The error of the frame transition was defined a value as more than a certain distance from the

coordinate of frame t-1 or frame t+1. In other words,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXyit½�� � Xyit� 1½��Þ
2
þ ðYyit½�� � Yyit� 1½��Þ

2

q

� JUMP

or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXyit½�� � Xyitþ1½��Þ
2
þ ðYyit½�� � Yyitþ1½��Þ

2

q

� JUMP ð17Þ

When one or more of the following conditions were satisfied, the joint coordinate was treated

as an anomalous error. In this case, JUMP = 0.5 (1/25 s comparison) and 0.7 (2/25 s comparison).

Selecting subjects for imputation

We excluded subjects with many anomalous error frames that we defined because it would be

difficult to extract gait features in the downstream analysis. Exclusion criteria were as follows:

(1) the error rate of each region was more than 40% of the total number of frames and (2) the

missing values were greater than 20% of the total number of frames in one gait cycle (S5 Fig).

The first criterion was set considering that errors could be detected in at least 20% of samples,

even in controlled environments. In addition, technical errors caused by other factors may

occur in uncontrolled environments. For the second criterion, we considered that the maxi-

mum percentage of each phase per gait cycle was approximately 20% [24].

Supporting information

S1 Text. Details of the simulation.

(DOCX)

S1 Fig. Detection of a COG anomaly. The left panel shows the coordinate values of (X,Y,Z) =

(Ankle, Knee, Hip). The best cluster based on the k-means method using the gap static (right

panel) is shown by color coding. Clusters very close to the origin were used as normal mea-

surement samples.

(TIFF)

S2 Fig. Maximum ankle joint distance. Maximum ankle joint distance within one gait cycle

for each subject. To illustrate the distribution clearly, skeletal length errors due to undetected

sites are excluded.

(TIFF)

S3 Fig. Distribution of shoulder joint distance. Based on clustering, the four groups were fur-

ther subdivided into four group each. The group with slightly larger shoulder joint distance

(blue, the third group from the left in the histogram) and the group with extremely large shoul-

der joint distance (red, the fourth group from the left in the histogram) were considered to

have abnormal errors.

(TIFF)
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S4 Fig. Accuracy of anomaly correction. The rate of recovery before and after anomaly cor-

rection for each part, with workflow. The top and bottom rows show the accuracy for all joints

during walking in the right and left directions, respectively, and the left and right rows show

the accuracy before and after correction, respectively.

(TIFF)

S5 Fig. Number of consecutive anomalous frames. Histogram of the number of consecutive

anomaly frames for all samples is shown. The samples with a number of consecutive anoma-

lous frames over 20% of the total number of frames were excluded.

(TIFF)
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