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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:It is a generally accepted model that environmental influences can exert their effects, at

least in part, by changing the molecular regulators of transcription that are described as epi-

genetic. As there is biochemical evidence that some epigenetic regulators of transcription

can maintain their states long term and through cell division, an epigenetic model encom-

passes the idea of maintenance of the effect of an exposure long after it is no longer present.

The evidence supporting this model is mostly from the observation of alterations of molecu-

lar regulators of transcription following exposures. With the understanding that the interpre-

tation of these associations is more complex than originally recognised, this model may be

oversimplistic; therefore, adopting novel perspectives and experimental approaches when

examining how environmental exposures are linked to phenotypes may prove worthwhile. In

this review, we have chosen to use the example of nonalcoholic fatty liver disease (NAFLD),

a common, complex human disease with strong environmental and genetic influences. We

describe how epigenomic approaches combined with emerging functional genetic and sin-

gle-cell genomic techniques are poised to generate new insights into the pathogenesis of

environmentally influenced human disease phenotypes exemplified by NAFLD.

Introduction

Many human diseases have a clear environmental contribution. For decades, it has been

assumed that the environment can influence the regulation of gene expression through “epige-

netic” mechanisms, which can be interpreted as meaning the molecular regulators of tran-

scription, such as DNA methylation and chromatin states. The extracellular environmental

cue acting to modify epigenetic states has even been given its own name, the “epigenator” [1].

Evidence supporting this model has mostly come from findings of altered epigenetic patterns

following environmental exposures. It is a widely accepted model that epigenetic alterations

are the primary mediators of environmental influences, potentially propagating these effects
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long after the cessation of exposure because of the assumed property that epigenetic regulation

can self-propagate through cell division.

We have, however, become more critical in our interpretation of genome-wide studies of

epigenetic mediators, described as epigenome-wide association studies (EWAS). We have

assumed that a change in a transcriptional regulator like DNA methylation, found when com-

paring pools of cells, reflects individual cells undergoing reprogramming. This interpretation

is now recognised to be too simplistic and ignores other ways the same outcome can occur.

Evidence linking environmental exposures with epigenetic modifications needs to be reas-

sessed as part of this updated perspective.

In this review, we take a fresh look at the evidence for epigenetic mediation of environmen-

tal influences. We use nonalcoholic fatty liver disease (NAFLD) including nonalcoholic steato-

hepatitis (NASH), as our disease focus. NAFLD is an excellent paradigm for a common disease

about which much is known in terms of environmental and genetic risk factors. We describe

how NAFLD has been studied to date with exploratory EWAS as an example of how the over-

simplified interpretation of results may be misleading.

The constructive way of thinking about the nonepigenetic effects influencing our interpre-

tation of EWAS is that they are not merely impediments to interpretation, but instead offer

alternative insights into disease pathophysiology. We will review how a systematic change in

either a cell subtype proportion or a genetic variant can lead to a DNA methylation, transcrip-

tional or other changes that we collectively refer to as “molecular genomic” processes, in pref-

erence to the ambiguous term “epigenetic.” Such systematic changes reflect cell subtype or

DNA variant associations with the exposure or disease and would be valuable to understand as

potential contributors to the phenotype. The study of the relationship between genetic and

molecular genomic variation is typically described as functional genomics and encompasses

the identification of sequence variants that influence molecular genomic processes, including

gene expression levels (expression quantitative trait loci (eQTLs)), DNA methylation

(meQTLs), and chromatin accessibility (caQTLs). Some functional variants are only revealed

following an environmental exposure, uncovering a potential way that individuals can differ in

their responses to the same environmental challenges [2]. Furthermore, now that we are in the

era of increasingly sophisticated single-cell genomic assays, we are finding unexpected hetero-

geneity within canonical cell types, and effects of functional sequence variants that are

restricted to subtypes of cells [3], representing unprecedented insights into how environmental

influences act within a tissue.

It is now timely to rethink how we use molecular genomic assays to understand how the

environment influences cells, and how this influence can vary because of differences in the

DNA sequence between individuals. NAFLD is a useful focus, representing a disease of major

public health importance with strong environmental influences, multiple extrahepatic mani-

festations, and variable interindividual susceptibility to disease development and progression.

For example, the fibrosis that is part of more advanced NAFLD is influenced by glucose as an

environmental agent and represents a major target for intervention to prevent the morbidity

and mortality of end-stage liver disease. The goal of this review is to prompt innovative ways

of thinking about how to gain therapeutic insights into environmentally driven diseases such

as NAFLD, using novel molecular genomic and cellular approaches.

The epigenome and the environment

Foundational studies

In this review, we define the environment as the influences extrinsic to and influential for the

cell, tissue, or organism. Epigenomic studies can be defined as genome-wide mapping of
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molecular mediators of transcriptional regulation, given that such mediators have been tradi-

tionally described to have “epigenetic” properties [4].

An inherent property of epigenetic regulation of transcription is its reversibility—if a gene

is activated, it can be subsequently switched off, or vice versa. Molecular regulators of tran-

scription such as chromatin states, DNA modifications, and transcription factor (TF) activity

alter as part of cellular differentiation, demonstrating this molecular malleability.

The ability of the same DNA to behave in different ways in different cell types appears to

indicate a layer of information residing on top of the DNA sequence, for which the back-trans-

lation of epi- (above, upon) -genetics (DNA sequence) seemed a useful descriptive term. It has

also become commonplace to use the word “epigenetic” to describe events that appear to

occur variably in cells and organisms in ways that are not mediated by DNA sequence variabil-

ity, making “epigenetic” synonymous with “nongenetic” in a further use of the term.

The idea of a regulatory layer of information, acting to influence cellular properties without

causing DNA changes, puts molecular epigenetic processes in the spotlight as potential media-

tors of differences between cells or organisms that share the same DNA sequence. The puzzle

of discordance of monozygotic twins for conditions that clearly had a genetic contribution

prompted speculation that the environment could be different (nonshared) for each twin and

that this difference in exposures caused only one to develop the disease [5]. Early studies of

DNA methylation showed what appeared to be a progressive difference with age between

monozygotic twins [6], an association that suggested a mechanism for this discordance.

Earlier work also supported DNA methylation responding to environmental influences. In

1984, rats were fed a methyl-deficient diet with the idea that it would promote neoplasia. The diet

was associated with the development of decreased DNA methylation in the livers of the animals [7].

An influential model was the “viable yellow” mouse, animals with a mutation with variable effects

on phenotype, ranging from no apparent phenotype at all (pseudoagouti) to a phenotype of yellow

fur, obesity, hyperinsulinaemia, and an increased rate of malignancies. In 1998, Wolff showed that

feeding pregnant dams a diet designed to increase DNA methylation increased the proportion of

pseudoagouti offspring [8], subsequently shown to be associated with increasing DNA methylation

at the mutation site, the insertion of an IAP retroelement upstream of the Nonagouti gene [9,10].

This was a fascinating paradigm, indicating that maternal diet during pregnancy could influence

the eventual adult phenotype of her offspring, and represents part of the foundation for the field of

the Developmental Origins of Health and Disease (DOHaD) [11]. The idea that the organism

retains a memory of a past exposure involved a different use of the term “epigenetic,” to describe

molecular regulatory processes that were heritable from parent to daughter cells [12]. Intrauterine

nutritional deprivation during the Dutch Famine of 1944–1945 was described to be associated with

obesity in male offspring in young adulthood, limited to those exposed during the first half of preg-

nancy, whereas exposure in the last trimester and the first months of life was found to have signifi-

cantly reduced rates of obesity [13]. While the epidemiologists performing these studies were

concerned that there could be some confounding effects on these findings, such as the greater fertil-

ity and fecundity of women from higher socioeconomic classes [14,15], the model emerged of a foe-

tus adapting to a stressful environment in utero and retaining this memory of exposure in a way

that is maladaptive postnatally. This finding became a model for epigenetic mediation of environ-

mental exposures long after the environmental exposure was no longer present.

It would be misleading to give the impression that the only discoveries in this field were

being made in mammals or in more economically developed countries. In 1966, Madeleine

Charnier, working at the University of Dakar, Senegal, found that sex determination in a rep-

tile species (the rainbow Agama lizard, Agama agama) depended on the temperature at which

the embryo develops [16]. Temperature-dependent sex determination occurs in many

amphibians and fish, another example of a phenotype dependent on environment and not
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determined by DNA differences. Plant biology was revealing numerous striking examples of

exposures apparently being “remembered” by the organism, such as vernalisation, the

response of plants to the prolonged cold exposure of winter, which was found to induce the

silencing of the FLC gene [17], thus maintaining a memory of the past exposure.

The result of these and other observations was a model of environmental influences acting

through “epigenetic” regulatory mechanisms, self-propagating their new patterns of organisa-

tion to maintain a memory of the past exposure.

How molecular regulators of transcription may respond to the

environment

DNA and histone modifications

“Epigenetic” molecular regulators of transcription are numerous. The pattern throughout

most of the mammalian genome is one of DNA wrapped around octamers of histones to form

a nucleic acid:protein complex called a nucleosome. Most of the cytosines located at CG dinu-

cleotides genome-wide are modified by the addition of a methyl group to form 5-methylcyto-

sine. Where the genome departs from these default patterns typically represents the locations

of regulatory elements, where sequence-specific proteins like TFs bind to the DNA. The his-

tones in the flanking nucleosomes acquire patterns of posttranslational modifications (PTMs)

that flag these sites as promoters, enhancers, or other regulatory elements. Further distinctive

patterns of DNA and histone modifications are found at loci undergoing transcription, while

repressive histone modifications or histone variants represent a more macro level of organisa-

tion, defining heterochromatic regions of the genome.

DNA methylation remains the paradigm for a transcriptional regulator that can maintain a

biochemical memory through cell division, as 5-methylcytosine can be propagated from a par-

ent chromatid to both daughter chromatids. There is also evidence for propagation of a repres-

sive histone modification (histone H3 lysine 27 trimethylation, H3K27me3) through a number

of generations of the nematode C. elegans [18]. TFs appear to remain bound to their DNA tar-

get sites through DNA replication, a phenomenon described as “mitotic bookmarking” [19],

representing a further way that memory of the molecular organisation of the chromatid in a

parent cell can be passed to replicated chromatids in daughter cells.

We assume that a cell is faithfully able to propagate its transcriptional regulatory organisation

to daughter cells as a way of transmitting the memory of a prior environmental exposure. How-

ever, there is another factor worth considering—it appears that some histone modifications and

histone variants can directly mediate responses to the environment. In Table 1, we summarise

some of these possible environmental influences and molecular regulatory responses.

Two molecular genomic problems to resolve: Cellular memory and

sequence specificity

These observations indicate that the environment may be able to act through regulators of

chromatin and modifiers of DNA to influence gene expression. While these are intriguing

findings and provide clear candidates for the mediation of environmental effects on transcrip-

tional regulation, there are two problems that remain to be overcome before invoking any as

primary mediators of long-term, stable cellular reprogramming.

The first is cellular memory. With the exception of DNA methylation, there are no clear bio-

chemical mechanisms for self-propagation of the specific molecular events in Table 1 to daugh-

ter chromatids following cell division. What needs to be invoked to support the idea that these

chromatin constituents have long-term consequences is a two-step model, one involving an

PLOS GENETICS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010567 January 19, 2023 4 / 33

https://doi.org/10.1371/journal.pgen.1010567


initial environmental perturbation, followed by the maintenance of a new equilibrium of tran-

scriptional regulators that have the capacity to maintain their patterns long term and through

cell division. For example, is it possible that a hyperglycaemic event that increases O-GlcNAcy-

lation acutely then induces EZH2 activity nearby in the genome, causing de novo patterns of

formation of H3K27me3 that are then maintained, even after the hyperglycaemia subsides?

The second problem is that these global regulators of transcription lack sequence specificity

and therefore do not have the ability to choose specific loci for selective activity. Once again, a

separate mediators has to be active initially, for example, when short chain fatty acid exposure

causes specific subgroups of promoters to be selected for increased histone crotonylation [28].

Later, we make the case that this is likely to be mediated by sequence-specific TFs establishing

regulatory patterns in response to environmental challenges, patterns that are passed on to the

global regulators of transcription, allowing TFs to have a primary role in the model of epige-

nomic responsiveness to environmental stimuli.

Epigenetic association studies

Epigenetic studies and NAFLD

When attempting to understand whether epigenetic changes occur associated with traits or

disease phenotypes, an EWAS has been the typical approach. As introduced in Box 1, an

Table 1. Examples of environmental exposures that directly affect molecular regulators of transcription.

Environmental exposure Molecular regulatory

changes

Effect Genomic location of effects Reference

Glucose (through hexosamine

biosynthetic pathway)

GlcNAcylation of histones Unclear Unclear (See

footnote�)

GlcNAcylation of EZH2 Enhances protein stability and enzymatic

activity

Heterochromatin

(H3K27me3)

[20]

GlcNAcylation of TET

enzymes

Enhances TET1 activity Loci with 5-hydroxymethylcytosine [21]

Lactic acid (anaerobic

metabolism)

Lactylation of histones Possibly gene activation Active gene promoters [22]

Serotonin Serotonylation of histones Possibly enhanced gene expression Gene promoters [23]

Ethanol Acetylation of histones Induction of expression of genes involved in

signal transduction and learning and memory

New loci of H3K9ac and H3K27ac

formed (promoters/enhancers)

[24]

NAD+ metabolism Enhanced SIRT1 activity Protein (histone) deacetylation Unclear (See

footnote��)

MacroH2A Reverse effect: macroH2A1 binds to PARP-1

and limits its availability in the cell

None expected [25]

Hypoxia G9A Increased protein stability Gene promoters [26]

KDM5A Inhibition of activity Loci with H3K4me3 and H3K36me3 [27]

Short chain fatty acids (e.g.,

produced by gut fermentation of

dietary fibre)

Inhibition of histone

deacetylases (HDACs)

Increased histone crotonylation Histone crotonylation is enriched at

gene promoters

[28]

Dietary folic acid, vitamins B6 and

B12

Increased production of S-

adenosyl methionine

(SAM)

Increased methylation of DNA and histones Genome-wide [29]

Vitamin C TET cofactor Increased 5-hydroxymethylcytosine,

decreased 5-methylcytosine

Genome-wide [30]

�While GlcNAcylation of histones is often described as an example of a metabolic sensor in chromatin, the concern has been raised that GlcNAcylation does not occur

on mammalian histones [31]. More information appears to be needed to resolve this issue.

��The relationship between NAD+ and SIRT1 activity has been debated for a long time, as described in this review [32].

https://doi.org/10.1371/journal.pgen.1010567.t001
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EWAS is generally performed on multiple individuals in a test group (with the phenotype) and

a control group that is matched for potentially influential variables like age, sex, and ancestry.

The same tissue type is sampled in all individuals, and an epigenome-wide assay is performed,

usually studying DNA methylation at numerous loci in the genome, ranging from tens of

thousands to millions of sites. For environmental studies, testing the same individuals in con-

ditions when exposed and not exposed is an alternative study design that eliminates the influ-

ence of genetic variability, as discussed later, and it may be possible to quantify the exposure so

that you do not have to compare two groups, but can instead correlate exposure as a continu-

ous variable with the DNA methylation changes. When there is a locus or set of loci that has a

difference of DNA methylation that appears statistically nonrandom, this represents a positive

outcome for the EWAS. Generally, the result of a positive EWAS is one of numerous loci

showing significant differences in DNA methylation, which generally leads to an attempt to

interpret why this group of genomic regions underwent regulatory changes, involving linking

each site with a gene, and then looking for a coherence of properties of these genes, using gene

ontology or pathway information.

We are using NAFLD as the focal point for the discussions to follow. NAFLD represents a

major complication of the obesity epidemic, with NAFLD now the most common form of

liver disease worldwide [33,34], estimated to affect 6 to 30 million people in the United States,

including 600,000 who have advanced to developing cirrhosis [35]. A spectrum of histological

stages characterizes the disease, ranging from simple fat accumulation (or steatosis) to an

inflammatory phenotype, NASH, which can progress to involve fibrosis and cirrhosis [36].

Clinical outcomes with cirrhosis include decompensation, portal hypertension, liver trans-

plantation, hepatocellular carcinoma, and death. Long-term follow-up of NAFLD patients

confirms that NASH patients have a higher risk of liver-related mortality than non-NASH

patients [37]. The economic burden of NASH is significant—the lifetime costs in the USA for

NASH patients alone in 2017 was estimated to exceed US$200 billion [38].

Box 1. The epigenome-wide association study (EWAS).

The epigenome-wide association study (EWAS) refers to the testing of samples from

individuals with a phenotype or exposure of interest using an assay testing the molecular

regulators of gene transcription. This broad picture narrows significantly in practice, as

most EWAS involve testing human blood leukocytes and the use of DNA methylation

microarrays to survey across the entire genome. “Epigenome-wide” should not be taken

to indicate comprehensive coverage of the genome, as microarrays typically represent no

more than a few percent of the CG dinucleotides at which DNA methylation occurs. The

groups are compared for consistent differences in DNA methylation levels between

them, a positive outcome reflected by loci showing changes that are statistically signifi-

cant. The underlying hypothesis driving these studies is the assumption that the pheno-

type being studied involves a reprogramming of the transcriptional regulation of the cell,

not DNA sequence changes. By identifying DNA methylation differences between the

groups, we not only gain evidence for this model, we also find the genes involved in

changing the properties of the cell as part of the development of the phenotype. As will

be discussed in the main text, it is not straightforward to interpret the results of these

studies, for a number of reasons. The positive view is that the factors that make EWAS

difficult to interpret, if understood, allow insights into the development of the pheno-

type, but at the expense of the hypothesis of cellular reprogramming.
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The pathogenesis of NAFLD involves both environmental exposures and genetic predispo-

sition [39,40]. The causative environmental exposures are generally involved in causing obe-

sity, such as the Western diet, but distinct gut microbiome complements in NAFLD patients

are also invoked as possible contributory exposures [41]. It comes as no surprise that DOHaD

models that are linked to obesity are also linked to NAFLD, with exposures during foetal and

early neonatal life to maternal under- and overnutrition, excess glucocorticoids, and environ-

mental pollutants linked to offspring NAFLD [42]. Whether these exposures act primarily to

cause offspring obesity, with NAFLD as a secondary consequence, or whether early develop-

mental programming predisposes to liver damage independently remains unclear.

Genetic susceptibility is a factor of importance in the development of NAFLD, which has a

strong heritable component and involves several known loci [43]. NASH can develop in lean

individuals, especially when carrying genetic risk alleles [44]. DNA sequence changes identi-

fied through genome-wide association studies (GWAS) have been causally associated with

NAFLD [45–48], discussed in more detail below.

NAFLD helps to illustrate an important point—the environmental exposure extrinsic to the

organism may not be the same exposure experienced by the cells in the affected tissue (Fig 1).

In the case of NAFLD, the exposure extrinsic to the cell are the lipotoxic lipid species that

influence hepatocytes in a poorly understood stress model. More relevant is the extrinsic expo-

sure that causes NAFLD to progress to significant fibrosis, exemplified by high-fructose corn

syrup [49,50], while the equivalent cellular exposure inducing fibrosis is the inflammatory

cytokine TGFß [51].

We describe below several studies demonstrating tissue- and genomic region-dependent

variation in DNA methylation in NAFLD, the foundation for proposals that DNA methylation

has a role in the pathogenesis of NAFLD [52]. There have been several human EWAS per-

formed on cohorts of patients with NAFLD that are worth examining as examples of a broader

field of use of epigenomic assays to study environmental effects. Studies involving DNA meth-

ylation assays were chosen as this is at present by far the most commonly used epigenomic

assay in EWAS. In Table 2, we list eight studies involving DNA methylation studies of hepatic

External exposures

Activity/sedentarism
Caloric intake
Gut/microbiome
Hepatotoxic medications

Cellular exposures

Inflammatory cytokines
Metabolic reprogramming 
Vasoregulation
Extracellular matrix homeostasis
Retinoid metabolism

Bile ductule

Portal venule

Hepatic
arteriole

Kupffer cell

Stellate cell

Hepatocytes

Endothelial cells

Central vein

Fig 1. Environmental exposures associated with disease are not necessarily the same when considering those extrinsic to the organism, and those directly

acting on the cellular microenvironment, depicted with examples relevant to NAFLD.

https://doi.org/10.1371/journal.pgen.1010567.g001
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steatosis. None of these include extrahepatic phenotyping and are instead focused solely on

liver disease.

EWAS design issues

These studies can be used to help illustrate some of the strengths and weaknesses of epigenetic

association studies, as have been extensively reviewed in prior publications [62–65]. We break

down some of the major issues in the following five categories.

Surrogate tissue sampling. Some human tissues are very accessible (e.g., peripheral blood

leukocytes, buccal epithelium, hair follicles), but many common diseases are mediated by

organs that would require sampling using invasive and risky procedures (e.g., liver, lungs,

brain). A frequent question is whether an accessible tissue like peripheral blood leukocytes can

report the epigenetic events occurring in an inaccessible tissue in the same individual [66,67].

What tends to be missing in EWAS projects using surrogate tissues is a clear rationale at the

outset for the choice of the tissue used. If all that is required from the study is the development

of a robust biomarker, in which DNA methylation changes reflect or predict a disease but

without the need to understand why the DNA methylation change occurred, the use of surro-

gate, easily accessible tissues is highly desirable. If the question is whether the mechanism of

the disease can be revealed through studies of a tissue like peripheral blood, that is when the

rationale should be explicit—is the assumption that all cells in the body are changing their

transcriptional regulatory patterns in the same way, both in the accessible and inaccessible tis-

sues? Three of the NAFLD studies in Table 2 use peripheral blood leukocyte DNA for DNA

Table 2. Examples of prior EWAS performed in NAFLD and NASH.

Phenotype(s) Number of individuals studied Tissue type(s) Epigenomic assay(s) Citation

NAFLD: mild 33 Liver DNA methylation [53]

NAFLD: severe 23 Gene expression

Normal controls 18 Liver DNA methylation [54]

Healthy obese 18 Gene expression

NAFLD 12

NASH 15

Serum GGT, AST, and ALT levels 731 (discovery) Peripheral DNA methylation [55]

Hepatic steatosis (ultrasound of replication cohort) 719 (replication) blood

Healthy obese 35 Liver DNA methylation [56]

NAFLD 34 Gene expression

NASH 26

Normal controls 30 Peripheral DNA methylation [57]

NAFLD 35 blood

NAFLD: mild 35 Liver DNA methylation [58]

NAFLD: advanced 25

Normal controls 15 Liver DNA methylation [59]

NAFLD and fibrosis 15 Gene expression

Healthy controls 30 Peripheral DNA methylation [60]

NAFLD 18 blood

NASH 17

NAFLD: severe fibrosis 119 Liver DNA methylation [61]

NAFLD: no fibrosis 206

EWASAU : AnabbreviationlisthasbeencompiledforthoseusedinTable2:Pleaseverifythatallentriesarecorrect:, epigenome-wide association studies; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis.

https://doi.org/10.1371/journal.pgen.1010567.t002
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methylation assays [55,57,60], making these studies examples of the use of surrogate reporter

tissues. For their results in peripheral blood leukocytes to be informative about the physiology

of cells in the liver, the genes and pathways would have to be active in both of these very dis-

tinctive tissue types and dysregulated in the same manner in response to an environmental

exposure that may or may not be comparable in these distinct tissues. At present, such an

explicit description of the rationale for the study or any discussion about whether this model is

realistic is typically absent from reports of epigenetic studies of surrogate tissues.

Cohort sizes. The median number of individuals in each cohort in Table 2 is 65, falling to

61.5 in the studies using liver samples. Obtaining well-characterised, high-quality liver samples

for molecular studies is very challenging, reflected by these limited numbers. The question

about how many samples are needed to power an epigenetic association study is frequently

raised [68,69]. There are three major interacting variables that can be considered—the degree

of change of DNA methylation, the number of sites tested, and the number of samples com-

pared. When you use fewer samples, you can only confidently attribute changes of DNA meth-

ylation that are of greater magnitude and at fewer sites. It is a reasonable conclusion that these

studies in Table 2 detected only a limited subset of the total likely number of DNA methylation

changes occurring in these individuals.

Reverse causation. A further issue is whether the DNA methylation changes can be

assumed to cause the phenotype, or whether they are caused by the phenotype, the latter being

an example of “reverse causation.” This is a limitation inherent to cross-sectional study designs

in which one group compared already has the phenotype [64]. Examples of reverse causation

include obesity-related phenotypes that have been found to change DNA methylation of

peripheral blood leukocytes (studying body mass index (BMI) [70,71] or blood lipid profiles

[72]). Reverse causation represents another way that we can overinterpret epigenetic associa-

tion studies, by making the incorrect assumption that the DNA methylation changes are caus-

ing the phenotype.

It has been proposed that a good way of addressing this issue of confounded interpretation

of reverse causation is through the use of a more difficult study design: longitudinal sampling

of the same patients over time [73]. The Ahrens study in Table 2 accomplished this in a clever

manner, sampling liver before and after bariatric surgery [53]. They found DNA methylation

changes to be partially reversible at a subset of loci when liver biopsies were compared after

bariatric surgery and associated dramatic weight loss (averaging 40 kg per person). By includ-

ing a “healthy obese” group in their study, the possibility that the environmental exposure of

obesity represents an independent and confounding influence on DNA methylation in the

liver is addressed, allowing a focus on a subset of loci that is more likely to be involved in dis-

ease pathogenesis [54].

Cell subtype proportional composition. It is possible for cell subtype proportions to vary

within the tissue studied and between the groups tested and lead to a result showing changes

of DNA methylation without any cells in the samples having undergone molecular reprogram-

ming. For a DNA methylation change to be attributable to this influence, the cell subtype pro-

portional change has to be consistently differing between the groups—in other words, the

different proportion of a specific cell subtype needs to be nonrandomly present across the indi-

viduals in the test group compared with the controls.

Of the studies in Table 2, the Nano group [55] applied the minfi software package [74] to

account for six leukocyte subtypes in analysing their results of peripheral blood studies, a

mainstream approach in EWAS at present. Had cell subtypes been studies in liver itself, multi-

ple changes would be expected, confirmed by the Johnson study that used the EpiDISH cell

subtype deconvolution approach [75], revealing a decrease in epithelial cells and increases in

immune cells, in particular natural killer (NK) T lymphocytes, with the progression of fibrosis
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in their liver samples. In the earlier stages of NAFLD, reprogramming of cellular properties

should be reflected by the accumulation of large amounts of lipids in the cytoplasm of hepato-

cytes, manifested histologically by the displacement of the nucleus to a peripheral intracellular

location. Cell subtype compositional changes would be likely to include the influx of inflam-

matory cells into the liver parenchyma with disease progression, and the transdifferentiation

of hepatic stellate cells to the myofibroblasts that produce the extracellular matrix proteins that

cause fibrotic scarring of the organ. The cells composing the liver affected by NAFLD or

NASH are therefore substantially different to those in normal, healthy livers, both in terms of

their innate properties and the representations of different subtypes. The development of sin-

gle-cell transcription profiles from these kinds of tissues is likely to generate new ways of test-

ing for both reprogramming and cell subtype proportional changes in disease like NAFLD

[76].

Genetic effects on DNA methylation. Finally, the influence of genetic sequence variation

between the individuals studied needs to be considered. It is now widely recognised that DNA

sequence variability can be associated with DNA methylation differences between individuals,

defining functional variants referred to as meQTLs [77]. These are usually revealed when both

genotyping and DNA methylation studies are performed on cohorts of individuals, testing

whether differences in DNA methylation (the quantitative trait) are associated with the pres-

ence of different alleles for a variant at a locus within the flanking 1 Mb. In Fig 2, we illustrate

the example of a locus with a C/C genotype on both alleles in 81% of people in the population,

a heterozygous C/A in 18% and a homozygous A/A in 1%. DNA methylation at a nearby site

averages 40% in the C/C individuals, 30% in the C/A, and 20% in the A/A people, revealing a

trend in DNA methylation associated with genotype. It may not be the variant itself with the

C:A polymorphism that mediates the effect on the DNA methylation, as that locus is transmit-

ted with a substantial amount of flanking DNA, representing a haplotype in which a separate

functional variant could also be carried.

When the proportion of DNA methylation variation attributable to DNA sequence varia-

tion has been estimated, using different assays, tissue types, and ways of making these esti-

mates, very substantial effects have been found, estimated to vary between 14% and 80% [78–

85]. Of the studies in Table 2, that by Nano and colleagues was distinctive for identifying

which DNA methylation changes were attributable to DNA sequence variation. They found

four sites of distinctive DNA methylation that survived their other rigorous filtering criteria, of

which three were attributable to DNA sequence variation, leaving them with a single locus

near the SLC7A11 gene where DNA methylation appeared to be associated with hepatic steato-

sis on its own and not genetic variability between the groups tested [55].

In performing these kinds of EWAS, the ancestries of the patients studied should be

described. Two of the Table 2 studies were on Han Chinese [57,60]; one was on “Caucasian

women” [59], and one on Japanese patients [58]. The effect of DNA sequence variability on

DNA methylation variability is so strong that ancestry has been shown to be predictable from

DNA methylation assays [86]. Furthermore, with clear differences in susceptibility to NAFLD

and NASH as complications of obesity between Hispanic and Black American patients [87,88],

not accounting for ancestry in study design could be a strong influence on the results obtained

if the affected individuals are disproportionately of one ancestral category. The meQTLs in a

specific tissue type can differ between individuals of different genetic ancestries [89,90], which

could cause the appearance of DNA methylation differences associated with a disease if the

individuals studied in the disease group are disproportionately from distinct ancestral origins

to the controls. The variability in DNA methylation and gene expression can even occur at

fine-scale geographic levels, as demonstrated in a study identifying within-island DNA methyl-

ation and gene expression differences in individuals of diverse ancestry in Indonesia [91].
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Finally, as mentioned above, if we know something about the genetic susceptibility affecting

individuals within the cohort affected by the disease, that information is probably worth

including. NAFLD has been found to be associated with protein-coding sequence variation,

including the I148M missense variant in PNPLA3 that compromises the individual’s ability to

hydrolyse triglycerides [92]. It would be unwise to assume that this subgroup of patients with

NAFLD or NASH is experiencing the same environmental exposures at the tissue and cellular

level as individuals with different or no recognisable pathogenic variants. Including protein-

coding pathogenic variant information as a likely source of variability in EWAS is prudent as a

major influence on phenotypic outcomes. It is likely that the pathogenic burden in the genome

(genetic variation contributing to disease) is concentrated in loci of open chromatin in dis-

ease-relevant tissues [93]. In this “omnigenic model” of complex traits, genes with modest

effects throughout the genome are influencing disease etiology through cell- and tissue-specific

effects. This model supports the findings with NAFLD that genetic and epigenetic mechanisms

interact with environment in a variable, tissue- and cell-dependent manner that introduces

variability to EWAS outcomes.
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Fig 2. An illustration of a methylation quantitative trait locus (meQTL). These are identified by finding a difference in DNA methylation between

individuals that correlates with having one or other allele for a DNA sequence variant, in this case showing a variant on the same chromosome (a cis-meQTL).

A significant change in DNA methylation associated with these differing allelic states defines the meQTL. Whether the meQTL causes the DNA methylation

change is less certain—within the haplotype containing the meQTL and the locus where DNA methylation was tested will include other DNA sequence

variants, one or more of which could be directly influencing the DNA methylation as a functional variant.

https://doi.org/10.1371/journal.pgen.1010567.g002
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The nine studies of Table 2 are used to represent the broader field of EWAS. Like most

EWAS, each study has its own strengths, as defined above, but equally no individual study can

be said to have addressed all of the problems inherent to how EWAS are currently performed.

The potential outcome that results from failing to account for these problems is that changes

in DNA methylation could be overinterpreted, assumed to represent cellular reprogramming

responding to an environmental provocation, and causative of the phenotype, whereas the

DNA methylation change could instead be due to changes in cell subtype composition within

the tissue, genetic differences between individuals, or the consequence of the hepatic

phenotype.

The long road from EWAS to individual disease prediction

Both GWAS and EWAS have been touted as having great promise for precision medicine, par-

ticularly for polygenic disorders such as NAFLD and NASH [94]. For polygenic traits, risk pre-

diction through a risk score offers one such avenue. Typically, genetic risk scores (GRS; also

described as polygenic risk scores (PRS)) are constructed to identify high-risk individuals

based on GWAS results. The GRS is calculated as the weighted sum of the risk alleles for a trait

in an individual, using weights determined by the best statistically powered GWA study for the

trait. GRS have shown mixed utility in the ability to identify high-risk groups of individuals

[95], and limited translation across ethnicities [96]. Recent NAFLD GWAS from the UK Bio-

bank have identified>90 associated genomic loci, allowing the development of a GRS that suc-

cessfully identified high-risk cases as having an odds ratio of 2.1 compared to individuals with

the lowest NAFLD GRS score [94]. This difference is more modest than GRS for other dis-

eases, such as the 3-fold higher risk for coronary artery disease [97].

DNA methylation risk scores (MRS) are proposed to capture the effects of the environment

in generating a risk score for a phenotype [98]. Like a GRS, the MRS summarises information

across multiple informative loci in the genome to generate a single score, but based on risks

associated with DNA methylation values, not with genetic variants. There are numerous fac-

tors that limit the utility and widespread calculation of MRS. The first is that there are too few

large-scale EWAS with concurrent genotyping to provide adequate external datasets to calcu-

late MRS [98]. The DNA methylation arrays may also introduce bias that skews interpretability

due to the microarray design. For traits such as NAFLD that involve strong environmental

effects, the hope would be that MRS would capture these influences and would offer predictive

power beyond sequence variation alone.

It is encouraging that the few genome-wide DNA methylation studies published in recent

years suggest that blood DNA methylation measurements provide a stable and accurate assess-

ment of risk when calculating MRS, for a range of phenotypes [99–102]. One recent study

including the largest reported MRS cohort (n = 831) indicated that DNA methylation scores

outperform baseline risk and GRS, improving imputation of 139 outcomes, compared with

just 22 improved through GRS [103]. Many of these MRS replicated in external cohorts of dif-

ferent ethnicities and showed variable but robust replication across kidney-related traits in

diverse populations. This remains an emerging area of research but looks to have room to

improve when the accuracy of MRS is enhanced with increased sample sizes.

Embracing the sources of variation

Spurious associations reveal systematic changes

If it sounds daunting to consider the possibility that we need to go beyond the DNA methyla-

tion change and understand its cause in terms of cell subtype or DNA sequence variants, there

is an important point to consider. For one of these influences to influence the results, sending
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the DNA methylation in a specific direction so that it differs between groups, the spurious

influence needs to be nonrandomly distributed between the groups. For example, if you are

testing liver samples and there are more Kupffer cells in samples from one group compared

with the other, this will cause the appearance of a DNA methylation change related to the loci

that are distinctively methylated in that cell type. Likewise, in the situation of the meQTL

above, where the C allele is associated with increased and the A allele with decreased DNA

methylation, you will only see a resulting difference in DNA methylation between groups if

the C allele is overrepresented in one group and not the other. These typically unrecognized

influences, if studied, reveal cellular changes and genetic associations with the disease being

studied, which represent potentially valuable insights into its pathogenesis.

Examples of cell subtype changes following environmental exposures

It should be no surprise that environmental cues prompt responses that involve the composi-

tion of a tissue changing in terms of cell subtypes. Endocrine disrupting chemicals are charac-

terised by altering sexual differentiation during development, a stark example where entire

organs form differently in response to an environmental exposure.

We have previously highlighted [65] an interesting model of a cell subtype response to vita-

min A deficiency during intrauterine development. In this mouse model, the associated tissue

phenotype was quite subtle, involving hyperplasia of smooth muscle surrounding distal air-

ways, established during lung development and persisting into adulthood, causing broncho-

constriction in response to a methylcholine challenge [104]. A very similar phenotype that

recapitulates a component of the human asthma phenotype was found following prenatal defi-

ciency of vitamin D [105]. While relatively subtle from a histological point of view, the change

in cell subtype composition and organisation in the lung tissue was enough to cause a measur-

able phenotype.

EWAS of environmental exposures have also revealed cell subtype changes in peripheral

blood. In a study of low-level intrauterine exposure to arsenic, DNA methylation of umbilical

cord blood leukocytes was tested and analysed using an approach comparable to that described

to be used by Nano group [55] earlier. These researchers found that arsenic exposure was asso-

ciated with a higher proportion of CD8+ T lymphocytes [106]. The authors noted that the

deconvolution approach based on DNA methylation profiles of adult reference cell types does

not work as expected in cord blood, as was later systematically reviewed [107], and could

therefore call their results into question. However, a separate study of arsenic exposure to

adult mice showed an increase in CD8+ T cell proportions in bronchoalveolar lavage samples

[108], suggesting that the exposure has consistent effects to increase this proportion of lym-

phocytes in different tissues.

A consistently robust association from blood leukocyte DNA methylation studies is with a

history of cigarette smoking [109]. One of the loci at which DNA methylation is distinctive

in smokers is at the gene for the GPR15 surface marker. When this specific marker was stud-

ied further, a complex picture emerged. Initially, it appeared that GPR15 defined a specific T

lymphocyte subtype in blood that increased in proportion following smoking [110]. How-

ever, the same researchers followed up with a study that showed GPR15 to be present on

many T lymphocyte subtypes following smoking, indicating that the protein is induced by

cigarette smoke exposure in many cell subtypes and does not necessarily reflect a change in

cell subtype proportions, as they had originally proposed [111]. It should be noted that DNA

methylation studies of peripheral blood generate a robust biomarker of smoking, a very use-

ful indicator of a relevant environmental exposure when studying a phenotype like lung can-

cer [112].
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When performing studies on human liver tissue, given the increasing availability of single-

cell RNA-seq data from both healthy [116] and diseased [117] livers, it should be possible to go

back to the results of those studies from Table 2 that included gene expression analyses of liver

tissue [53,54,56,59] and get an indication of what proportion of the observed DNA methyla-

tion differences are due to cell subtype changes (Box 2). Rather than regarding this as under-

mining the results of an EWAS, such an additional layer of information potentially enhances

insights into disease pathogenesis, by revealing cell subtype proportion changes occurring as

part of the development or progression of the disease. Furthermore, if this kind of approach

permits removal of DNA methylation changes that are due to cell subtype changes, the remain-

ing signal is much more likely to represent the kind of cellular reprogramming events typically

sought in an EWAS.

If the vitamin A or vitamin D deficiency studies of the mouse lung described above were

performed by a currently typical EWAS approach, sampling the bulk lung tissue from animals

in each exposure group, testing DNA methylation patterns, and removing those changes

attributable to cell subtype changes, we would be eliminating from further consideration the

smooth muscle changes that mediate the bronchoconstriction phenotype in these animals.

Likewise, the finding from DNA methylation studies of an increased proportion of CD8+ T

lymphocytes following arsenic exposure is consistent with what has been found through

immunological studies of the effects of toxicity of this heavy metal [118]. These cell subtype

proportion changes occurring nonrandomly in patients with a disease are not, therefore, an

artefact to discard, but instead represent an insight into disease pathogenesis, and should be

harvested as useful information.

Box 2. How can cell subtype proportions be measured?

The complete blood count and differential white cell measurement provides quantifica-

tion of lymphocytes, granulocytes (neutrophils, eosinophils, and basophils), and mono-

cytes. This represents a restricted group of major subtypes of white blood cells,

recognising that there are many subtypes of lymphocytes in particular, and monocytes

are also inherently heterogeneous [113]. If DNA methylation microarray data are avail-

able from a tissue and if subtypes of cells have been tested to identify loci within the

microarray with distinctive DNA methylation patterns in the different cell subtypes, the

data can be analysed in a way that allows estimation of the proportions of each cell type

present. This technique has been developed primarily for white blood cells, testing a dif-

ferent set of cell subtypes than is reported by the clinical differential white cell count:

granulocytes, monocytes, and four subtypes of lymphocytes, B cells, natural killer cells,

and CD4 and CD8 T cells [114]. If gene expression data are available, a comparable

approach to allow estimation of cell subtypes can be performed, a salient example being

CIBERSORT, which allows 22 different white blood cell subtype proportions to be esti-

mated [115]. When reference gene expression data have not been generated from iso-

lated cell subtypes in a tissue, the results of single-cell transcription studies can instead

be used [76], allowing cell subtype estimations to be broadened beyond blood to other

organs and tissues.

PLOS GENETICS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010567 January 19, 2023 14 / 33

https://doi.org/10.1371/journal.pgen.1010567


Genetic variation modifying the response to an environmental exposure

Some of the earliest documentation that different people respond to the same environmental

exposure in different ways may go back over 2,500 years to the apocryphal story of Pythagoras

(570–495 BCE) apparently recognising that only some people developed a fatal reaction to fava

beans. The acute haemolytic anaemia causing these deaths is now recognised to be due to the

vicine and convicine in the bean inducing reactive oxygen species within cells. While this

induction occurs in anyone eating fava beans, in the erythrocytes of individuals with the X-

linked glucose-6-phosphate dehydrogenase (G6PD) deficiency, this exposure causes profound

haemolysis, anemia, and death.

With the introduction of the 8-aminoquinoline antimalarial drugs in the 20th century, it

was noted as early as 1926 that some individuals had fatal responses following their adminis-

tration [119]. A 1952 study described pamaquine to be associated with haemolytic anaemia in

a subset of patients tested: “It may be noted that all six acute hemolytic anemias occurred

among 76 pigmented individuals, while only one subacute anemia was observed among 81

white subjects,” with the six “pigmented” individuals separately described: “Five acute hemo-

lytic anemias occurred in negroes and one in a Chinese” [120]. While their terminology is rac-

ist, a couple of important lessons emerged from this study, that a subset of people can have

severe adverse drug reactions and that this risk can differ in frequency depending on your

ancestry (Box 3). The susceptibility to haemolytic anaemia following exposure to these antima-

larial drugs was subsequently found to be due to G6PD deficiency [121], which is more com-

mon in populations originating from regions of the world where malaria is endemic and

heterozygosity for the deficiency is protective [122]. In case the repeated mention of malaria

causes confusion, the evolutionary selection for G6PD deficiency has nothing to do with the

availability of 8-aminoquinoline drugs in the last half century, but instead should have to do

with conferring resistance to Plasmodium falciparum infection over thousands of years, possi-

bly through the increased phagocytosis of infected erythrocytes that are G6PD deficient [123].

Box 3. The value of including diverse populations in genetic studies
of disease.

It was emphasised that the example of G6PD deficiency reveals population-specific risks,

due to the higher prevalence in populations with a long duration of exposure to malaria.

Interestingly, using the Geography of Genetic Variants (GGV) browser [131], we see

that the PNPLA3 I148M pathogenic variant is also very heterogeneous in its frequency

in different world populations (Fig 5). Because the original Dallas Heart Study cohort

was diverse, they recognised the increased frequency of the PNPLA3 I148M pathogenic

variant in the Hispanic subset of their patients [129] who are at higher risk for NAFLD

than other ethnic groups. This finding highlights the increasingly appreciated value in

studying diverse populations to reveal loci mediating susceptibility to genetic diseases

[132]. Increasing the genetic variability of the individuals studied can influence not only

how genome-wide association studies (GWAS) perform but also how transcriptomic

and epigenomic assays are interpreted. Fortunately, this challenge has been turned into a

positive, allowing genetic diversity to inform us about specific loci mediating phenotypes

and environmental responses.
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The study of how genetic sequence variation between individuals influences the response to

drug exposure was founded upon observations like this antimalarial drug association with hae-

molytic anaemia in G6PD deficiency. The field became known as pharmacogenetics, in which

the functions of individual genes could be linked with drug responses, the most straightfor-

ward means currently for the delivery of personalised medicine, the tailoring of treatment that

takes into account the individuality of the patient.

As our ability to explore the DNA sequence polymorphism throughout the genome became

facilitated through microarray technologies, studies could be performed that did not need to

be anchored by a specific candidate gene but could instead test the entire genome for loci

where the response to an environmental exposure was significantly associated with variability

at a specific locus. In Fig 3 (adapted from Dempfle and colleagues [124]), we show examples of

the kinds of results that could occur at such a locus. The more common sequence in the popu-

lation is shown as an A, the less common (minor, alternative) allele as a B. The degree of phe-

notypic change is plotted on the y axis, comparing people with the A allele on both

chromosomes (AA), or the minor allele on one (AB) or both (BB) chromosomes. A change in

phenotype associated with genotype at this locus should cause the lines to deviate from the

horizontal, while an effect of the environment on the phenotype should cause the exposed

(red) and unexposed (blue) lines to separate. When the locus itself is helping to mediate the

susceptibility to the environmental exposure, you would expect to see both occurring, as well

as evidence for interaction (Fig 3F). If the phenotypic measure was haemolysis, and we studied
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Fig 3. Relating phenotypic change (y axis) to genotype (x axis, major allele A and minor allele B) in three situations (green), genetic effects, environmental

effects, and interactions.

https://doi.org/10.1371/journal.pgen.1010567.g003
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a loss of function variant within the G6PD gene, and considered only females (who have two

copies of this X chromosome gene), we should find the blue line to slope gently upwards, as

there is a chronic, low-level hemolysis in individuals with G6PD deficiency. Following expo-

sure to fava beans or an 8-aminoquinoline antimalarial drug, the red line should separate

strongly upwards in the AB and BB individuals, demonstrating the interaction at this locus.

Due to the interaction of genotype and phenotype via environmental interactions, studying

them together could be a more powerful method to study the contribution of DNA methyla-

tion to disease outcomes. Indeed, DNA methylation at variably methylated regions in neonatal

cord blood could be explained by both genetic and environmental effects studied in an inte-

grated model [125].

Gene-environment-wide interaction studies (GEWIS) typically emerged from GWAS,

which by themselves attempt to link phenotype only with genotype (as would be exemplified

in Fig 3B). When the environmental exposure information is available for the people studied,

the extra dimension of GEWIS can be added and allows exposures beyond medications to be

studied. The exposure does not need to be pharmacological. The field of gene–environment

(GxE) interaction research involves major methodological and statistical challenges [126],

including the ability to detect these interactions with confidence [127] and suffers from impre-

cision of the use of terms describing the field [124], but has been successful in many associa-

tions, in particular when involving genes with metabolic functions [128,129]. While

subsequent GWAS have identified further risk loci [47], a further analysis of the Dallas Heart

Study participants revealed the striking results shown in Fig 4A (reproduced from [130]). This

figure was used to demonstrate vividly how the PNPLA3 genotype interacts with BMI. Fig 4B

illustrates how BMI, when taken as a proxy for its causative environmental exposures, gener-

ates a plot comparable with the models in Fig 3, as a way of illustrating the effects of both

genetic and environmental factors
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Fig 4. (a) The interaction of genotype and body mass index to cause MAFLD (quantified by hepatic triglyceride content, y axis) is vividly revealed using

data from the Dallas Heart Study [116]. (b) Replotting the same data using the format of Fig 2 to show the combined genetic and environmental
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published work [115], in the disease.

https://doi.org/10.1371/journal.pgen.1010567.g004
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How to test for influences by DNA sequence variants

An issue with any GWAS, or its extension to study environmental effects through GEWIS and

GxE approaches, is that it does not point us to a specific locus at nucleotide resolution when it

finds a phenotypic association. Instead, it implicates a haplotype, usually at least tens of kilo-

bases in size and containing potentially thousands of variants [133]. To refine the search for

the causative locus within the haplotype, one strategy has been to exploit the differences in

phenotypic susceptibility between individuals of different ancestries to fine-map the region

[134]. Another strategy uses the effects described earlier for DNA sequence variability influ-

encing transcription and its regulatory mechanisms, identifying the subset of functional vari-

ants in these regions, allowing them to be prioritised as potentially mediating the phenotype.

The most studied effect of functional variants is on gene expression. By treating the level of

expression of a gene as a quantitative phenotype and correlating it with genetic variation, a

locus where variation of the DNA sequence is associated with a change in gene expression can

be defined. The sequences tested can be on the same chromosome and relatively close (typi-

cally<1 Mb) to the gene whose expression level is measured, a cis relationship, or further

away or on another chromosome, a trans relationship. The outcome sought is a change similar

to that in Fig 2, with the variant described as an eQTL and the target gene an eGene. By identi-

fying the eQTLs in a haplotype implicated by an EWAS, the number of variants can be reduced

from hundreds to a very limited number [133]. An even more powerful way of refining the

search for causal variants is through studies that look for effects of a variant present on one but

not the other allele, leading to an imbalance of expression of a linked gene, referred to as

“allele-specific expression” [135]. This helps to safeguard against attributing function to a

chr22:44,324,727 G/C

Frequency Scale = Proportion out of 1 
The pie below represents a minor allele frequency of 0.25

Sample sizes below 30 become increasingly transparent to
represent uncertain frequencies, i.e.

0 n=9 n=18 n=27

Fig 5. The distribution of the PNPLA3 I148M variant (blue) worldwide shows the greatest enrichment in

populations from Central and South America, while being a common variant in all populations.

https://doi.org/10.1371/journal.pgen.1010567.g005
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variant in a region of the genome in high linkage disequilibrium with neighbouring variants,

one of which may instead be mediating the functional effect.

Something interesting happens when you look for eQTLs after challenging the cell with an

exposure. The groundbreaking study that revealed “response” eQTLs used an exposure of den-

dritic cells to infection by Mycobacterium tuberculosis. The authors found that while most

eQTLs remained the same before and after exposure, a subset was present only in the unin-

fected or in the infected cells, and were described as response eQTLs. Within the panel of

eQTLs genome wide, the response eQTLs were enriched at loci identified by GWAS as being

involved in susceptibility to tuberculosis [136].

Response eQTLs have now been identified for multiple different exposures and cell types.

Human monocytes have been tested following Toll-like receptor 4 (TLR4) stimulation [137],

human dendritic cells were exposed to E. coli lipopolysaccharide, influenza, or interferon-β
(IFN-β) [138], human monocytes were treated with interferon-γ (IFN-γ) or lipopolysaccharide

[139], monocyte-derived macrophages were infected with Listeria monocytogenes or Salmo-
nella typhimurium [140], while primary monocytes were exposed to ligands activating Toll-

like receptor pathways (TLR1/2, TLR4, and TLR7/8) and to influenza virus, in samples from

Africans and Europeans [141]. A study that exposed human macrophages to IFNγ, Salmonella
enterica serovar Typhimurium, or a combination of the two exposures implicated certain TFs

in mediating the response to infection, with a primary effect on PU.1 and secondary effects on

stimulus-specific TFs, such as NF-κB and STAT2 [142]. A study of whole blood from 1,000

individuals, using exposures to three bacteria, a fungus, a live virus, and a superantigen, dem-

onstrated that variability in responses between individuals was less influenced by age and sex

and more by genetic factors, identifying response eQTLs enriched at loci implicated in autoim-

mune and inflammatory disorders [143]. Allele-specific expression has also proven valuable

for discovering response eQTLs to factors such as BMI and exercise in large observational

cohorts [144].

As well as these studies of infection and the immune system, we performed a study identify-

ing response eQTLs following exposure of cardiomyocytes to anthracycline [2]. These

response eQTLs were more enriched than preexposure eQTLs for loci implicated by GWAS

for anthracycline-induced cardiotoxicity. The approach to study allele-specific expression has

also been successfully scaled to a high number (50) of environmental exposures in five differ-

ent cell types, revealing a large number of genes with GxE effects [145]. What all of these stud-

ies have in common is that they represent in vitro exposures by agents known to induce

responses by the cells used. An obvious question that arises is how to apply these approaches

to other diseases. Maintaining our focus on NAFLD, earlier, we described the environmental

exposures to the individual may end up translating into exposures to the cells of the liver,

including the effects of lipotoxicity on mixed cells types within the liver. We need to ask

whether we can study one cell type in isolation, or whether effects of an exposure require the

physical relationship between the cells that compose the normal liver. Rather than sampling

primary liver cells from human subjects, which has substantially more risk than a blood draw

to sample immune cells, we can use the approach of the anthracycline/cardiomyocytes study,

which generated cardiomyocytes from induced pluripotent stem cells (iPSCs) from multiple

individuals [2]. iPSCs can also be used to generate organoids that contain many of the cell sub-

types of an organ, including liver organoids [146], which may be another avenue worth pursu-

ing in studies of responses to exposures, although we highlight the caution that the field of

organoid research is still in its early stages [147].

Once we have our exposure and cell system in place, we can move to molecular studies. The

genotyping of samples is a foundation for understanding how genetic variability influences

environmental responses and the transcriptional and epigenomic data generated.
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Furthermore, as mentioned above, the genotypic contribution to disease outcome is likely

expressed in a tissue- and cell-specific manner [93]. Genotype information can be inferred

from DNA methylation microarrays [148], while it has also been found that Gap Hunter can

reveal ancestry information [86]. However, these approaches generates much less genotyping

information than more mainstream approaches such as the use of microarrays that represent

common variants in the genome, ideally designed to be as informative as possible across

diverse populations [149]. An alternative is low-coverage whole genome sequencing, at a

depth that is insufficient to identify every variant in the genome but allows the identification of

many common variants through imputation methods that leverage large reference panels, and

the additional revelation of some lower frequency variants that would not be detected by

microarrays [150].

The next molecular assay is typically gene expression analysis, allowing eQTL identification,

as described already. However, there are other molecular assays that reveal the effects of func-

tional variants. While we have described meQTLs earlier as loci responding to functional vari-

ants by changing their DNA methylation, in practice, these have not been used to test for

environmentally responsive loci in a way comparable with eQTL studies. Chromatin accessi-

bility QTLs (caQTLs) represent an intriguing alternative that is understudied at present. An

ingenious pooling approach was used to reveal caQTLs in lymphoblastoid cell lines from 1,000

individuals from 10 populations, revealing population-specific caQTLs [151], although this

study did not involve any in vitro exposure. A recent, groundbreaking study combined the

comparison of cells before and after exposure, testing multiple immune cell types, and identi-

fying both response eQTLs and response caQTLs. The authors found evidence for function of

candidate causal variants that would have been undetectable using more mainstream

approaches studying resting cells [152]. A problem with eQTLs is that the expression of a gene

is generally influenced by multiple cis regulators [153], making it difficult to link local

sequence variation with the quantitative trait of gene expression. Chromatin accessibility, on

the other hand, is likely to vary at the locus containing the functional variant, lending itself to

allele-specific studies [151,154]. A shift in focus from eQTLs to caQTLs may be fruitful for

functional variant analyses.

Finally, it should be borne in mind that the relatively common variants that we can identify

through microarray or low-coverage whole genome sequencing with imputation may only

contribute a small proportion of variability of gene expression. Even with detailed haplotype

information (in mostly European populations), the imputation can only predict variants down

to a frequency of 1/1,000 (10−3) [155]. A study of 360 LCLs derived from European individuals

combined deep whole genome sequencing and RNA sequencing to identify which variants

influenced the heritability of levels of gene expression. Approximately 90% of the heritability

was found to be associated with sequence variants that occurred only once in the cohort (sin-

gletons) and at a minor allele frequency of<0.01% in the gnomAD database [156]. If we

assume that the variants identified in this study represent those with effects on DNA methyla-

tion (meQTLs) and chromatin accessibility (caQTLs), we can expect that only a small propor-

tion of variants causing changes in expression, DNA methylation and chromatin accessibility

will be revealed by current approaches, that deep whole genome sequencing will reveal many

more variants affecting these molecular phenotypes, and that most functional variants will be

present in the genome in a heterozygous state because of their population rarity.

Insights from the epigenome into cell signalling

To close the circle, we return to the use of epigenomic assays but now dissociated from their

ability to reveal information about DNA sequence variants in mediating differences between
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individuals in their responses to environmental influences. A question that is often left unad-

dressed in epigenomic studies is why specific loci undergo changes, whether of DNA methyla-

tion or chromatin accessibility. We have made the point previously that such targeting implies

a primary role for TFs [65]. The reason that functional variants have their properties appears

often to be due to the effect of the DNA sequence to change local TF binding [154]. In a recent

study of oestradiol’s effects on the ventral hippocampus of female mice, we showed that the

hormone acts on a cell surface receptor to initiate a cytoplasmic cell signalling cascade that cul-

minates in the activity of the Egr1 TF to change chromatin structure and gene expression

[157]. The Alasoo and colleagues’ study described earlier implicated specific TFs in mediating

the response eQTLs they identified [142]. Of the environmental influences with potential

effects on epigenetic regulators listed in Table 1, hypoxia [158], hyperglycaemia [159], ethanol

[160], and lactic acid [161] are good examples of environmental cellular stresses known to

influence cell signalling pathways, with potential consequences on TF activity and nuclear

localisation. With this TF-centred perspective, we can return to some of the foundational stud-

ies in the field of environmental epigenomics and ask whether they could be viewed alterna-

tively with a TF-centric perspective.

One very understudied area of potential importance is the PTM of TFs. It is known that

some TFs can be acetylated or deacetylated by the same enzymes that act on histones [162],

with methylation and demethylation likewise mediated by histone-modifying enzymes [163].

The effects of environmental exposures that disrupt histone acetylation, methylation, or other

PTMs could also therefore be acting on TFs. The paradigm of dietary folic acid having effects

on transcriptional regulation may not be solely due to its effects to augment DNA methylation

but could be mediated through the property of the folic acid receptor to act as a TF [164]. The

phenomenon of temperature-dependent sex determination took over 50 years to find that the

transcription factor Dmrt1 (doublesex and mab3-related transcription factor 1) is likely to be a

primary mediator of the temperature response in another amphibian, the red-eared slider tur-

tle Trachemys scripta [165]. Considering the effects of the environment as being mediated

through TFs helps to explain the sequence specificity of environmental responses by the

epigenome.

If TFs are central in directing the response by the cell to an environmental exposure, the

next question is what controls the TFs? Some are directly bound in the nucleus by ligands, the

nuclear receptors [166], but many TFs act in response to cell signalling pathways [167]. This

suggests that transcriptomic and epigenomic assays are defining two sets of information fol-

lowing an environmental exposure. Typically, we look for a coherence in the loci where

changes are occurring in the genome, whether genes changing expression, or the genes linked

to loci where DNA methylation or chromatin states are changing. The coherence is expressed

in terms of the gene properties (through overrepresentation of specific gene ontology terms)

or through known interactions between the protein products of genes.

If, however, this represents downstream of TF activity selecting these loci in the genome, it

could be said that this represents a secondary response to the environmental stimulus. By iden-

tifying the TF(s) mediating the response and working upstream, we can define the primary

response to the environmental influence. This logic was used to develop SPAGI (Signalling

Pathway Analysis for putative Gene regulatory network Identification), a tool that infers from

TFs implicated in a transcriptional response the pathways that activated those TFs in the first

place [168]. We illustrate these ideas of secondary and primary pathway responses in Fig 6,

representing a further way of exploiting epigenomic and transcriptomic information when

studying environmental responses by the cell. With a goal of defining targets for therapeutic

intervention, defining cell signalling pathways involved in environmental responses offers

clear opportunities, but it should be noted that the TFs themselves are no longer considered
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“undruggable” [169–171] and that, in the case of NAFLD and NASH, there are some nuclear

receptor TFs that have been targeted for therapy (Peroxisome proliferator-activated receptor

(PPAR) proteins and the Farnesoid X receptor (FXR) [172]). Epigenomic assays, used with the

idea that they reveal cell signalling and TFs mediating environmental responses, could be valu-

able in defining targets for therapeutic intervention.

With a TF-centric perspective that leads us to consider the role of cell signalling, we can

return to a fundamental question about epigenetics and heritability—does the cell signalling

state of the parent cell influence that of daughter cells? This would represent a further

Fig 6. (a) When testing the response to an extrinsic influence using genomic approaches, we typically identify the loci at which changes are most pronounced

and attempt to understand how they have biological coherence by studying the genes implicated for their biological properties, including protein–protein

interactions. While this is part of the cellular response to the extrinsic perturbation, an alternative perspective is shown in (b), considering the role of TFs to

select loci for altered function and, in turn, the cell signalling pathways that regulate the TFs. The activation of TFs in this model would be the primary response

to the extrinsic influence, with the transcriptional regulatory changes a secondary event.

https://doi.org/10.1371/journal.pgen.1010567.g006
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mechanism for inheriting cellular properties through cell division. There is evidence for such a

mechanism. Alterations of parental cell stress or mitogenic activity in parent cells has been

found to influence cell cycle commitment in the daughter cells, mediated by transmission of

the p53 protein and the cyclin D1 (CCND1) mRNA through mitosis [173]. It is probably rea-

sonable to consider this as an example of a broader phenomenon of nongenetic heritability

through cell division, although probably an uncomfortable fit for those who would describe

epigenetic heritability purely in terms of nuclear information.

Conclusions and future directions

The study of the epigenome and its response to environmental exposures can be much more

encompassing than current models would indicate, making these studies more complex but

also more promising and exciting in terms of the potential insights to be gained. As a field, our

initial hope was that focusing studies on the regulators of the genome would be enough to give

direct clues to the mechanisms and outcomes of environmental exposures. While this remains

possible, in many cases, these studies are more likely to be revealing the effects of variation of

DNA sequence, or of cell subtype proportions, and the effects of TFs. The mainstream inter-

pretation of EWAS that defines these influences as sources of error is excessively restrictive. By

embracing these “spurious” influences instead as sources of insights into the physiological or

pathological effects of environmental exposures, we expand the opportunity to discover more

mechanisms underlying the associated phenotype. Epigenomics assays can become a greater

part of the repertoire of approaches being used to follow up GWAS to identify the genetic loci

involved. To gain new insights into human cell and tissue types that are normally inaccessible,

we can leverage advances in iPSC differentiation to create many different cell types or even

organoids, permitting the detailed dissection of molecular events responding to in vitro expo-

sures in these highly controlled systems. Additionally, we have the opportunity to use epige-

nomic approaches to not only reveal the TFs central to mediating environmental responses,

but also to infer their upstream cell signalling regulators, revealing possible targets for thera-

peutic interventions.

This more expansive approach to the use of epigenomics to understand environmental

influences in disease comes with clear challenges. The issue of very rare genetic variants influ-

encing environmental responses, and the resulting phenotypes of the individual, their cells and

the molecular regulators is a significant problem. The identification of the ultrarare variants

that may mediate a significant proportion of these interindividual differences requires deep

whole genome sequencing. However, this creates another opportunity for epigenomic

approaches—while the individual DNA sequence variants will be rarely observed more than

once even in large cohorts, many different rare variants at a locus can have the convergent out-

come of a change in a functional property of the locus, whether chromatin accessibility, DNA

methylation, or an effect on nearby gene expression. Multiple different rare variants at a locus

are likely to converge functionally as the same kind of change in a functional genomic prop-

erty. The most productive strategy is therefore to associate the polymorphism of molecular

genomic phenotypes with exposures or cellular/organismal phenotypes as the primary associa-

tion, which should be relatively more easily detected. The more typical approach that links

DNA sequence variability with the molecular genomic phenotype thus becomes the secondary

association. This convergence of multiple rare variant effects on a molecular genomic outcome

in effect “collapses” the multiple DNA sequence variants into a common outcome to increase

association power.

There are deficiencies in our insights into the repertoire of DNA motifs bound by TFs, the

upstream regulatory influences upon TFs by cell signalling pathways, and the related issue of
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the types, mediators, and effects of PTMs of TFs. Any in vitro studies will need to be designed

in a way that represents the best guess about the exposures at the cellular level in vivo and the

one or more cell types responding to mediate the disease or other phenotype. Animal models

will continue to have major value as a parallel to these direct studies of human cells. Broaden-

ing the repertoire of pluripotent stem cell resources to represent more diverse racial and ethnic

groups with distinctive risks of environmentally responsive phenotypes will be another press-

ing need.

Finally, it should be borne in mind that just because GWAS or the extended GEWIS and

GxE studies do not explain all susceptibility to a disease, this is not by itself a justification for

performing epigenomic studies of disease. The gap between what GWAS findings can explain

and the heritability estimated from twin and other studies has been described as “missing heri-

tability.” To fill this gap, environmental interactions are invoked, and epigenetic dysregulation

as a consequence of the environmental influences or as a separate source of variability is also

considered. Missing heritability may be due to many factors, including the inflation of the esti-

mate of heritability from twin studies, limited sample size, the polygenicity of phenotypes

[174], and the rarity of the genetic variants causing the conditions [175]. What we tend to

overlook is that chance is likely to be an additional factor in phenotypes [176], but that should

be easily embraced by those interested in epigenetics, as the ball rolling down Waddington’s

epigenetic landscape was not predestined to end up in a specific creode following a series of

bifurcations; the future lineage commitment of the cell being represented was probabilistic

and, therefore, subject to random variability. Nondeterminism is therefore at the core of the

original idea of an epigenetic model for phenotypic variability.
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