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Abstract

Resting state fMRI (rsfMRI) is frequently used to study brain function, including in clinical 

populations. Similarity of blood-oxygen-level-dependent (BOLD) fluctuations during rsfMRI 

between brain regions is thought to reflect intrinsic functional connectivity (FC), potentially due 

to history of coactivation. To quantify similarity, studies have almost exclusively relied on Pearson 

correlation, which assumes linearity and can therefore underestimate FC if the hemodynamic 

response function differs regionally or there is BOLD signal lag between timeseries. Here we 

show in three cohorts of children, adolescents and adults, with and without autism spectrum 

disorders (ASDs), that measuring the similarity of BOLD signal fluctuations using non-linear 

dynamic time warping (DTW) is more robust to global signal regression (GSR), has higher test-

retest reliability and is more sensitive to task-related changes in FC. Additionally, when comparing 

FC between individuals with ASDs and typical controls, more group differences are detected using 

DTW. DTW estimates are also more related to ASD symptom severity and executive function, 

while Pearson correlation estimates of FC are more strongly associated with respiration during 

rsfMRI. Together these findings suggest that non-linear methods such as DTW improve estimation 

of resting state FC, particularly when studying clinical populations whose hemodynamics or 

neurovascular coupling may be altered compared to typical controls.
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1. Introduction

The use of resting state functional magnetic resonance imaging (rsfMRI) has been growing 

exponentially since it was first introduced by Biswal et al. (1995). Numerous studies have 

implemented rsfMRI to assess brain function in clinical populations, and in the search for 

biomarkers of neurodevelopmental and neuropsychiatric disorders (Birn, 2012; Fox and 

Greicius, 2010; Lee et al., 2013; Leuthardt et al., 2018). Yet, its reliability has been relatively 

low and findings have been inconsistent (Badhwar et al., 2019; Hull et al., 2017; King et 

al., 2019; Noble et al., 2019). The rsfMRI method is founded on the observation that similar 

blood-oxygen-level-dependent (BOLD) signal fluctuations in two or more brain regions 

measured by fMRI during the resting state reflect a common functional process, i.e. that 

they are “functionally connected” (Guye et al., 2008; Lee et al., 2013). Coordinated BOLD 

activity across the brain may reflect a history of co-activation (Dosenbach et al., 2008; 

Guerra-Carrillo et al., 2014; Lewis et al., 2009). However, the degree to which similarity 

of BOLD fluctuations is detected largely depends on the method used to quantify this 

relationship.

As in the milestone study by Biswal et al. (1995), resting state functional connectivity 

(FC) has almost exclusively been estimated using Pearson correlation. Pearson correlation 

(PC) is a linear method and assumes that for two regions to be deemed functionally 

connected, BOLD synchronicity is essential. PC does not take into account the temporal 

structure of the signal (such as temporal autocorrelation or possible lag between time 

series). High synchronicity (and consequently a high Pearson correlation) between two 

time series suggests that the two regions may be involved in the same process or that the 

signals share a common source. However, the inverse is incorrect: Low BOLD synchronicity 

(or even a negative Pearson correlation) does not necessarily imply unrelated functional 

processing and absence of FC. A number of factors can contribute to low or negative FC 

as estimated using Pearson correlation. The fMRI BOLD signal is a hemodynamic response 

that arises from neurovascular coupling and is related to vascular anatomy, as well as 

metabolic, physiological and neurochemical activity. Not surprisingly, hemodynamics have 

been shown to change with development and aging (Arichi et al., 2012; Asemani et al., 

2017; D’Esposito et al., 2003; Huettel et al., 2001; West et al., 2019), and to differ in clinical 

populations (Ford et al., 2005; Gao et al., 2016; Mark et al., 2015; Mayer et al., 2014; 

Reynell and Harris, 2013; Yan et al., 2018). The shape and timing of the hemodynamic 

response also varies across the brain (Chen et al., 2015a; Lindquist et al., 2009), with a lag 

of approximately −5 s to + 4 s relative to the signal in the superior sagittal sinus (one of 

the blood vessels clearly visible on MRI, and in which blood flow can be reliably tracked 

in; Tong and Frederick, 2010). This variability of the hemodynamic response can bias FC 

estimates derived with Pearson correlations (Rangaprakash et al., 2018). For example, even 

a small lag between two otherwise identical time series leads to low Pearson correlation and 

consequently to drastically underestimated time series similarity (Fig. 1A). A large enough 

lag can even result in negative Pearson correlations (Fig. 1B). If perfect synchronicity is 

the only requirement to deem BOLD activity in two regions functionally related, Pearson 

correlation adequately quantifies the degree of similarity or “functional connectivity”. Given 

known spatial differences in timing and shape of the hemodynamic response, however, it 
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seems unlikely that this would capture the true relationship between neural activity changes 

in different brain regions.

The insensitivity to time series structure and lag is particularly problematic when studies 

assign biological meaning to the magnitude of Pearson correlations, as in comparisons of FC 

across the lifespan, or between clinical populations and healthy controls. A long-standing 

debate in the rsfMRI autism literature, for example, revolves around whether individuals 

with autism spectrum disorders (ASDs) show functional over- or underconnectivity (for a 

review see Hull et al., 2017), with underconnectivity between networks often interpreted 

as a lack of integration between regions (e.g. Rudie et al., 2012). The impression of lower 

connectivity sometimes reflects negative FC estimates; however, as illustrated in Fig. 1, 

even strongly negative Pearson correlations do not necessarily imply reduced similarity 

between time series. Negative correlations pose an even greater challenge in comparisons 

with behavioral measures. Such brain-behavior relationships are usually interpreted in purely 

linear terms. For example, a positive correlation between FC and ASD symptom severity 

would be summarized as lower FC – often interpreted as reduced integration between 

regions – being associated with low symptom severity, even if driven by negative Pearson 

correlations.

Previous studies have shown that methodological differences in rsfMRI preprocessing and 

denoising alter the distribution of FC estimates and account for some inconsistencies in the 

literature (He et al., 2019; Nair et al., 2014). Most prominently, global signal regression 

(GSR) removes the mean BOLD time series across the brain during denoising of rsfMRI 

data in order to control for global noise (e.g., from respiration, Power et al., 2017a). This 

shifts the distribution of observed Pearson correlations, rendering estimated FC between 

some regions negative (Murphy et al., 2009), and exemplifies the challenges of interpreting 

Pearson correlation magnitude with respect to the presence or absence of “functional 

connectivity”. Quantifying the similarity of time series and making inferences about the 

degree to which they reflect a common neural process, requires methods that are sensitive 

to time series structure and robust to relatively minor changes in data pre-processing and 

denoising. Thus, functional connectivity estimates might be improved by methods other than 

Pearson correlation that do not assume linearity, account for time series structure (i.e., are 

robust to lag and HRF differences), and result in a more easily interpretable measure of time 

series similarity.

Many alternatives to Pearson correlation exist to characterize the similarity between time 

series. Some have been proposed for estimating FC from rsfMRI, but none have been 

widely adopted (Anzellotti and Coutanche, 2018; Chen et al., 2015a,b; DSouza et al., 

2018; Gultepe and He, 2013; Liu et al., 2018; Mohanty et al., 2020). Meszlényi et al. 

(2017b) recently proposed dynamic time warping (DTW) as a more accurate way to quantify 

BOLD time series similarity, with promising initial results. DTW was first developed to 

facilitate speech recognition (Sakoe and Chiba, 1978), but has also previously been applied 

to study similarity of neural responses recorded using electrocorticography (Cho et al., 

2004) and to compare responses from electroencephalography and fMRI (Dinov et al., 

2016). It is an elastic matching algorithm and as such can account for lag and shape 

differences between time series, while also being more robust to linearly combined global 
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noise and accounting for temporal autocorrelation. Its output reflects a distance measure of 

the amount of warping required to align two time series. Using both simulations and repeat 

rsfMRI acquisitions from one participant, Meszlényi et al. (2017b) found that compared 

to Pearson correlation estimates of FC, DTW resulted in higher within-subject test-retest 

reliability and increased robustness to differences in preprocessing and denoising methods, 

including reduced sensitivity to global noise and GSR. Additionally, they demonstrated in an 

open-source dataset of 26 participants (14 males) that gender could only be classified from 

FC patterns derived using DTW, but not Pearson correlation or cross-correlation. In another 

study utilizing DTW to estimate FC, Meszlényi et al. (2017a) showed that classification 

of patients with amnestic mild cognitive impairment was improved when multiple different 

connectome measures were used as features.

Studies of clinical populations may benefit from such non-linear methods, especially 

when the goal is to identify atypical FC patterns and their relationship to behavior 

and symptomatology. ASDs are generally characterized by differences in the network 

organization and communication of the brain (Di Martino et al., 2014; Hull et al., 

2017). However, despite decades of research and hundreds of studies investigating atypical 

functional connectivity in ASDs, there is little consensus regarding the exact nature of these 

differences, and no clear biomarkers have yet been identified (He et al., 2019; Plitt et al., 

2015). Autism encompasses a highly heterogenous spectrum of disorders, and in addition to 

methodological differences mentioned above, cohort effects likely contribute to inconsistent 

findings (Lenroot and Yeung, 2013). A mostly neglected factor may be the limitations 

of Pearson correlation described above, which may prevent reliable identification of 

atypical functional network organization in ASDs, especially in view of neurophysiological 

differences affecting neurovascular coupling (for a review see Reynell and Harris, 2013). 

For example, HRF (Yan et al., 2018) as well as BOLD lag structure (Mitra et al., 2017) 

have been shown to differ in individuals with ASDs compared to typical controls. Therefore, 

a method such as DTW that is robust to such differences when estimating FC may be 

particularly beneficial to the investigation of altered brain function in ASDs and its relation 

to symptomatology.

In the current study, we first test the impact of motion on DTW and PC estimates of FC 

and replicate the findings of increased robustness to GSR and higher test-retest reliability 

of DTW estimates of FC reported by Meszlényi et al. (2017b) (Analyses 1 and 2). We 

then show that DTW is more sensitive to brain function than PC by comparing FC between 

resting state and task performance, with predicted changes in FC due to frequent button 

responses during the task (Analysis 3). Lastly, we assess the sensitivity of DTW compared 

to PC to detect alterations of FC and relationships between FC, behavior and physiological 

confounds in individuals with ASDs compared to matched typical controls (Analyses 4 and 

5).

2. Materials and methods

2.1. Participants

Data from three cohorts were analyzed for the current study. Both resting state and task 

fMRI were collected in an adolescent cohort (n = 22, 12–19 years), and resting state fMRI 
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only was collected in a cohort of children and adolescents (n = 99, 7–18 years) and in an 

adult cohort (n = 38, 40–60 years). Demographic and clinical data for the three cohorts 

are summarized in Table 1. Participants were recruited for a study on lexical decision in 

adolescents with ASD, a study on childhood brain development, and a longitudinal study 

on ASD in adulthood. Individuals with comorbid ASD-related medical conditions (e.g., 

Fragile-X syndrome, tuberous sclerosis, epilepsy), or other neurological conditions (e.g., 

Tourette syndrome) were not eligible for participation. Exclusionary criteria for the typical 

control (TC) groups were: personal or family history (first degree relatives) of ASDs or 

other developmental disorders, neurological disorders, and severe mental illness including 

schizophrenia, bipolar disorder, severe major depressive disorder, and obsessive-compulsive 

disorder. Informed consent or assent was acquired from all participants or their caregivers, 

and participants were compensated for their time. All study protocols were approved by the 

institutional review boards of the University of California San Diego and San Diego State 

University.

2.2. Diagnostic assessments

ASD diagnoses were confirmed based on Diagnostic and Statistical Manual of Mental 

Disorders 5th edition (DSM-5) criteria (APA, 2013), supported by the Autism Diagnostic 

Observation Schedule, Second Edition (ADOS-2; Lord, 2012); the Autism Diagnostic 

Interview-Revised (ADI-R; Rutter et al., 2003) in children and adolescents; and expert 

clinical judgement.

2.3. MRI acquisitions

MRI data were collected at the University of California San Diego (UCSD) Center for 

Functional MRI (CFMRI) on a GE 3T Discovery MR750 scanner using a Nova Medical 32-

channel head coil (adolescent and adult cohort) and an 8-channel head coil (child/adolescent 

cohort).

2.3.1. Child/Adolescent cohort—A single-shot gradient-recalled EPI sequence (180 

whole-brain volumes were acquired (TR = 2000 ms; TE = 30 ms; slice thickness = 3.4 mm; 

flip angle = 90°; FOV = 22.0 mm; matrix = 64 × 64; in-plane resolution = 3.4 mm2) was 

used to acquire 6 min of resting state fMRI. High-resolution T1-weighted sequences (3D 

FSPGR; 1 mm isotropic voxel size, NEX=1, TE=min full, TI=600, flip=8°FOV=25.6 cm, 

matrix=256 × 256, receiver bandwidth 31.25htz) were collected in each participant.

2.3.2. Adolescent cohort—A multi-echo multi-slice (MEMS) echo planar imaging 

(EPI) sequence allowing simultaneous acquisition of multiple slices at multiple echo times 

(Kundu et al., 2012; Olafsson et al., 2015), was used for collection of a resting state (6 

min) fMRI scan, as well as during the performance of a lexical decision task (2 × 7 min) 

with the following EPI parameters: TR=1100 ms, TEs=13.2/30.3/47.4 ms, flip angle=60°, 

FOV=21.6 cm, acquisition matrix=72 × 72, 45 slices, voxel size=3mm 3. EPI data from the 

different echo times were optimally combined and – to keep pre-processing and denoising 

comparable to more common single echo EPI acquisitions (also see Discussion) – pre-

processed using a standard pre-processing and denoising pipeline described below. Since 

DTW estimates are dependent on the length of the time series, only the first 300 volumes 
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of each run were analyzed. High-resolution structural images were acquired with the same 

FSPGR T1-weighted sequence as in the child/adolescent cohort.

2.3.3. Adult cohort—A multiband EPI sequence which allows simultaneous acquisition 

of multiple slices was used to acquire two back-to-back fMRI runs (6-minute duration each) 

with high spatial and temporal resolution (TR=800 ms, TE=35 ms, flip angle 52°, 72 slices, 

multiband acceleration factor 8, 2 mm isotropic voxel size, 104 × 104 matrix size, FOV 

20.8 cm, 400 volumes per run). A fast 3D spoiled gradient recalled (FSPGR) T1-weighted 

sequence was used to acquire high-resolution structural images (0.8 mm isotropic voxel size, 

NEX=1, TE/TI=min full/1060 ms, flip angle 8°, FOV=25.6 cm, matrix=320 × 320, receiver 

bandwidth 31.25hz).

For the adolescent and adult cohorts, two separate 20 s spin-echo EPI sequences with 

opposing phase encoding directions were also acquired using the same matrix size, FOV and 

prescription to correct for susceptibility-induced distortions.

During all resting state functional scans, participants were presented with a white cross on a 

black screen and instructed to “Keep your eyes on the cross. Let your mind wander, relax, 

but please stay as still as you can. Try not to fall asleep.” Participants’ adherence to the 

instructions to remain awake, with eyes open, was monitored with an MR-compatible video 

camera. Heart rate and respiration during the functional scans were recorded continuously 

using a Biopac pulse oximeter and respiratory belt but were only of sufficient quality for 

analysis in the adult cohort (see Methods-Imaging data preprocessing and denoising).

2.4. Imaging data preprocessing and denoising

MRI data from all cohorts were preprocessed, denoised and analyzed in FSL (v5.0.10), 

FreeSurfer (v 5.3.0) and Matlab 2015b (Mathworks Inc., Natick, MA, USA) using SPM12 

(Wellcome Trust Centre for Neuroimaging, University College London, UK), the CONN 

toolbox v17f, and custom Matlab code available upon request.

The structural image was converted from dicom to nifti format and was coregistered to 

the mean functional image, segmented and normalized to MNI space using non-linear 

registration and the default tissue probability maps included with SPM12. The white matter 

(WM) and CSF probability maps obtained from segmentation of the structural image for 

each individual subject were thresholded at 0.95 and eroded by 1 voxel. Due to high 

variability in ventricle size across adult participants, the template CSF map was used to 

extract CSF time courses (thresholded at 0.5 and eroded by 1 voxel). There was no overlap 

with gray matter voxels for the eroded WM and CSF masks for any participant. WM and 

CSF time courses were extracted from the thresholded and eroded masks using aCompCor 

(Behzadi et al., 2007) for subsequent nuisance regression (see below).

Functional images from the adult and adolescent cohorts were corrected for susceptibility-

induced distortions using the two spin-echo EPI acquisitions with opposite phase encoding 

directions and FSL’s TOPUP tools (Smith et al., 2004). Functional images from all three 

cohorts were motion-corrected using rigid-body realignment as implemented in SPM12. The 

Artifact Detection Toolbox (ART, as installed with conn v17f) was used to identify outliers 
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in the functional image time series from the resulting 6 motion parameters (3 translational 

and 3 rotational) that had frame-wise displacement (FD) >0.5 mm and/or changes in signal 

intensity that were greater than three standard deviations in the child/adolescent cohort. As 

oscillations due to respiration are prominent in motion parameters derived from multiband 

EPI realignment (Fair et al., 2018) and would result in unnecessary censoring of large 

segments of data in some participants, the thresholds to detect outliers in the adolescent and 

adult cohorts were more lenient than those used for standard resting state fMRI acquisitions 

with slower TRs (FD>0.9 mm and/or changes in signal intensity that were greater than five 

standard deviations). In order to ensure that none of our findings were due to differences 

in apparent motion between the ASD and TC groups, groups in each cohort were matched 

on RMSD (see Table 1) calculated from rigid-body realignment (of the raw data prior 

to TOPUP correction in case of the adolescent and adult cohort) parameters, and partial 

correlations controlling for RMSD were used when assessing brain-behavior relationships 

(Analysis 5).

Functional images were directly normalized to MNI space with the same non-linear 

registration as used for the structural images. Since all analyses were run on averaged voxel 

time series within pre-defined ROIs (see below), no prior smoothing was applied to the 

data. Voxel timeseries were normalized to percent signal change, with a time series mean 

of zero for each voxel. Normalization to percent signal change rather than z normalization 

was performed prior to DTW as recent studies have shown that the variability of the 

BOLD signal carries meaningful information about brain function (e.g. Bijsterbosch et al., 

2017; Easson and McIntosh, 2019; Nomi et al., 2018, 2017) and the sensitivity of DTW 

to such differences might be an additional strength compared to PC (which is calculated 

on z normalized data). Band-pass filtering using a temporal filter of 0.008 to 0.08 Hz was 

carried out as part of the nuisance regression, which also included scrubbing of the motion 

outliers detected by the ART toolbox, and regression of the 6 motion parameters and their 

derivatives, as well as the first five PCA component time series derived from the eroded 

CSF and white matter masks. The residuals of the nuisance regression were then used for all 

subsequent functional connectivity analyses. Additionally, nuisance regression was repeated 

in the adult and child/adolescent cohort including the global signal (calculated as the average 

across all voxels in the brain) to test for the robustness of functional connectivity estimates 

to GSR (Analysis 1).

Physiological recordings during the fMRI scans were analyzed with the PhysIO toolbox 

(Kasper et al., 2017). Heart rate and respiratory measures (mean, standard deviation) were 

used to test the susceptibility of FC estimates to physiological noise in the adult cohort 

only (Analysis 5), as data quality particularly of the respiratory data was rarely of sufficient 

quality in children and adolescents due to poor equipment fit and frequent signal loss.

2.5. Functional connectivity estimates

Estimates of functional connectivity were derived from all cortical (91) and subcortical (14, 

excluding the brain stem) regions of interest (ROIs) of the Harvard Oxford atlas (Desikan et 

al., 2006). For Analysis 1 (Robustness to GSR) and Analysis 2 (Test-Retest Reliability) FC 

estimates were additionally extracted for 30 functionally defined network ROIs included in 
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the CONN toolbox (v17f). These spanned 7 functional networks derived using Independent 

Component Analysis of resting state fMRI data from 497 HCP participants. For analysis 3, 

primary visual cortex (occipital pole) and cortical motor regions (precentral and postcentral 

gyrus) as defined in the Harvard-Oxford atlas were used. Time series were averaged across 

unsmoothed voxels in each ROI, and Pearson correlation between time series was calculated 

as the standard measure of FC, with Fisher z-transformed correlation coefficients used for 

all further analyses. Similarity of BOLD time series was further calculated between all ROI 

pairs using DTW. DTW warps two time series to optimally align while minimizing cost with 

its output reflecting a distance measure of the amount of warping required. This is achieved 

by searching the space of all possible pairwise distances between time points (constrained 

by the warping window size) for an optimal warping path. We refer the reader to Meszlényi 

et al. (2017b) for a technical description of DTW. Here, the dynamic time warping function 

implemented in MATLAB (https://www.mathworks.com/help/signal/ref/dtw.html) was used 

with a warping window size of 100 s, as was determined to be optimal for fMRI data 

by Meszlényi et al. (2017b). Further following the methods of Meszlényi et al. (2017b), 

DTW distances were then multiplied by −1 and demeaned to transform distance measures 

to similarity estimates that follow a normal distribution around 0, with values below 0 

reflecting below average similarity of the time series and values above 0 reflecting above 

average similarity.

2.6. Analyses

2.6.1. Analysis 1: robustness to motion and GSR—Given the substantial noise 

head motion can introduce into resting state fMRI data, we first tested the impact of motion 

on PC and DTW estimates of FC. Resting state BOLD time series were simulated for 20 

participants and 25 distinct regions (excluding simulated CSF, WM and global components) 

using the SimTB toolbox implemented in Matlab (Erhardt et al., 2012). 180 volumes and 

300 voxels were used for simulations of BOLD time series with a 2 s TR. As in Erhardt et 

al., 2012, rician noise was added to the data, with a uniform contrast-to-noise distribution 

ranging between 0.65 and 2 across participants. Motion was simulated for each participant 

with a maximum translation of 0.02 mm and a maximum rotation of 5°. PC and DTW were 

used to estimate FC between all regions before and after adding simulated motion to the 

time series. FC similarity was calculated by Pearson correlating FC estimates derived in 

the absence and presence of motion, with a higher correlation reflecting more robustness 

to motion. Additionally, the change in FC for each ROI pair was calculated (no motion - 

motion) and a paired-samples t-test was used to test for differences in FC similarity and 

change in FC (quantified by calculating the percent change of the FC difference using 

the no motion scan as the baseline for each ROI pair, taking the absolute value and then 

calculating the median across all ROI pairs; median absolute% change) for PC compared to 

DTW estimates of FC. The median change was chosen for this and subsequent analyses to 

minimize the impact of any potential outlier ROI pairs with extremely large FC changes and 

percent change was chosen in order to make the magnitude of FC changes for PC and DTW 

measures more directly comparable. To also test the effect of motion on FC estimates with 

real data, three fMRI scans were acquired from one participant (author AL, 33-year-old, 

female) while watching a 10 min. clip of Despicable Me (Vanderwal et al., 2019), two 

while instructed to stay as still as possible and one with intentional head motion. A natural 
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stimulation “movie” design was chosen to minimize intra-subject variability introduced by 

different mental states that might be present during resting state fMRI and could decrease 

test-retest reliability. Imaging data were collected on a Siemens Prisma 3T at the SDSU 

Imaging Center (TR=2.4 s, TE=29 ms, flip angle 90°, 72 slices, 3 mm isotropic voxel 

size, 255 vol per run) and pre-processed using SPM12 and the Conn toolbox as described 

in Section 2.4. As for the simulated data, FC pattern similarity (across all cortical and 

subcortical Harvard Oxford ROIs) for scans with and without motion was calculated using 

Pearson correlation and changes in FC for each ROI pair were determined by subtracting 

FC estimates derived from the still and motion scans. A paired-samples t-test was used to 

test for differences in FC change between still and motion scans for PC compared to DTW 

estimates of FC.

To test for the impact of GSR on the robustness of FC estimates, data from the child/

adolescent and adult cohort were denoised both with and without GSR and estimates of FC 

between Harvard-Oxford ROIs and the 30 network ROIs derived using PC and DTW were 

subtracted (noGSR – GSR) for each participant. This yielded a measure of how much FC 

estimates changed for each ROI pair when GSR was performed. A paired-samples t-test was 

performed to compare differences in the change of FC (median absolute% change across all 

ROI pairs) estimated using PC compared to DTW in each cohort separately. For the purpose 

of this analysis, ASD and TC cohorts were pooled to increase sample size. We hypothesized 

that FC would be more robust if estimated using DTW, thereby replicating findings by 

Meszlényi et al. (2017b).

2.6.2. Analysis 2: test-retest reliability—In order to examine test-retest reliability 

when FC was estimated using PC compared to DTW, FC was estimated separately for 

the two consecutive resting state fMRI scans collected in each individual from the adult 

cohort. For each participant, Pearson correlation of FC matrices (Harvard-Oxford ROIs and 

the 30 network ROIs) from the two back-to-back scans acquired during the same MRI 

session was used to quantify the similarity of the FC pattern across scans, which served 

as a measure of test-retest reliability. ASD and TC participants were again analyzed as 

one group. Paired-samples t-tests were performed to compare test-retest reliability between 

PC and DTW estimates of FC. We hypothesized that DTW would show higher test-retest 

reliability.

2.6.3. Analysis 3: sensitivity to brain function—While Meszlényi et al. (2017b) 

demonstrated increased robustness to GSR, higher test-retest reliability, and more accurate 

classification of gender when estimating FC using DTW compared to Pearson correlation, it 

remained unclear whether DTW was more sensitive to brain function or whether improved 

sensitivity was due to properties of the BOLD signal that could be independent of neural 

activity (e.g. temporal signal-to-noise differences due to head size, physiological differences 

between genders). We therefore assessed how FC between sensorimotor cortices changed 

with finger movements compared to a resting state condition, in order to test the sensitivity 

of FC estimates to brain function.

As part of a study on lexical decision making in adolescents with ASD and age, gender, and 

motion matched typically developing controls, we acquired both resting state and task fMRI 
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(Child/Adolescent Cohort). Only the first task fMRI run was analyzed to match the duration 

of the resting state fMRI acquisition and only the first 300 volumes were analyzed for both 

the resting and task run. The task required that participants distinguish between animal 

and non-animal words, and to withhold a response if the stimulus was a pseudoword. All 

responses were made using a button box placed in the left hand (120 finger button responses, 

approximately every 2 s, interspersed with 114 null trials and 30 response suppression 

pseudoword trials). Performance accuracy was high in both diagnostic groups (mean 89.7% 

correct in the ASD and 93.6% correct in the TC group). Since the focus of this analysis 

was only on BOLD signal fluctuations related to button presses, we again analyzed the 

diagnostic groups together to increase sample size. We hypothesized that interhemispheric 

time series similarity between left and right motor cortices should decrease during task 

performance compared to resting state, given the frequent unilateral button presses required 

by the task (Kim et al., 2018; Moritz et al., 2000).

FC was estimated between left and right pre- and postcentral ROIs (as defined in the 

Harvard-Oxford atlas) using both PC and DTW. Since our main interest was in the change 

in FC during task performance compared to rest, the task design was not regressed out 

prior to FC estimation. We tested A) whether interhemispheric FC (precentral gyrus right 

– precentral gyrus left) differed during the task and resting state scans; and B) to ensure 

that the result was specific to the button press response and that FC was not generally 

lower during task performance, we further included intrahemispheric FC (precentral gyrus 

right – postcentral gyrus right) and interhemispheric connectivity between primary visual 

cortex (occipital pole) ROIs in 2 (rest, task) x 3 (ROI pairs) repeated measures ANOVAs. 

Additionally, change in FC between rest and task scans was determined by subtracting FC 

estimates (rest – task), and a paired-samples t-test examined whether the change in FC was 

larger when it was estimated using PC or DTW. We hypothesized that DTW would be more 

sensitive to differences in brain function between task and rsfMRI, and thus show a larger 

change in FC when the task was performed.

2.6.4. Analysis 4: detection of group differences—To further test the sensitivity of 

PC compared to DTW estimates of FC to group differences or changes in brain function, 

we assessed which method more robustly detected alterations of FC in the child/adolescent 

and adult ASD cohorts, compared to age, gender and motion matched TC groups. FC 

estimates were derived using PC and DTW for all cortical (91) and subcortical (14) 

ROIs of the Harvard-Oxford atlas. First, t-tests were performed for FC of all ROI pairs 

to test for ASD-TC group differences. P-values from these t-tests (separately for PC and 

DTW estimates) were plotted in a histogram (Breheny et al., 2018) and the fraction of 

null hypotheses being incorrect were estimated as 1-π0 (Storey and Tibshirani, 2003). To 

illustrate which regions in the brain most strongly differentiated ASD and TC groups, the 

number of times an ROI was part of a pair with different (p<.05, uncorrected) FC in the 

ASD and TC groups was counted for each Harvard-Oxford ROI. Next, we tested whether 

classification of ASD was more accurate when using FC estimates derived using PC or 

DTW. PCA was used for feature reduction, retaining the top 5 PCA components and linear 

support-vector machine classification (with 15-fold cross-validation) conducted separately 

for PC and DTW FC estimates (1000 iterations). The top 5 PCA components were chosen 
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as variance explained dropped steeply for additional components, with the lowest elbow for 

PC features observed at ~5 components. A Wilcoxon sign rank test was used to test for 

differences in classification accuracy. We hypothesized that DTW estimates of FC would be 

more sensitive to differences in FC in ASD.

2.6.5. Analysis 5 relationship of FC estimates to behavior and physiology—
Lastly, we tested whether PC or DTW estimates of FC showed more correlations with 

ASD symptom severity and executive function, as well as with physiological measures 

(respiration, heart rate) recorded during the fMRI scans that might confound functional 

connectivity estimates. For the child/adolescent cohort, ADOS-2 Total scores (ASD group 

only) and the BRIEF General Executive Composite (GEC), a continuously distributed 

measure within the ASD and TC groups, were Pearson correlated with FC estimates across 

all cortical Harvard-Oxford ROIs (controlling for motion during the resting state fMRI scans 

by using RMSD as a covariate). Additionally, the mean and standard deviation of respiratory 

volume per time (RVT), and mean and standard deviation of the heart rate (HR) recorded 

during the resting state scans in the adult cohort were also Pearson correlated with FC 

estimates (controlling for RMSD). Since sample size of the adult cohort was small and the 

adult ASD and TC groups did not show any differences in physiological measures, these 

correlations were conducted across groups to increase sample size. P-values from these 

correlations (separately for PC and DTW estimates) were again plotted in a histogram and 

the fraction of null hypotheses being incorrect was estimated as 1-π0, as in Analysis 4.

3. Results

3.1. Analysis 1: robustness to motion and GSR

Analysis 1 aimed to test the effect of motion on DTW compared to PC estimates of FC 

and to replicate previous findings of increased robustness to GSR reported by Meszlényi et 

al. (2017b). Simulations showed no significant differences in the impact of motion on the 

pattern of FC similarity for PC and DTW estimates of FC (t(19)=0.50, p=.62, Fig. 2A). 

When simulated motion was added to the time series, absolute changes in FC estimates 

(median absolute% change averaged across all ROI pairs), however, were larger when FC 

was quantified using PC (t(19)=6.81, p<.001, Fig. 2A; t(19)=2.9, p<.05 for mean absolute% 

change). When FC was compared for the same individual scanned while still and with 

intentional realistic motion (Fig. 1B), the similarity of FC patterns was higher for DTW 

estimates of FC for the two still scans (PC: r = 0.70, DTW: r = 0.87) and for still and motion 

scans (PC: r = 0.33, DTW: r = 0.47). There was no significant difference for the absolute% 

change in FC with motion for PC compared to DTW estimates of FC (t(5564)=0.95, p=.34).

GSR resulted in expected changes in FC, with the change in FC smaller (median absolute% 

change averaged across all ROI pairs) for DTW compared to PC estimates of FC for 

both the childhood/adolescent cohort (Harvard-Oxford ROIs: t(98)=13.88, p<.001; Network 

ROIs: t(98)=6.65, p<.001) and the adult cohort data (Harvard-Oxford ROIs: t(37)=13.04, 

p<.001; Network ROIs: t(37)=10.17, p<.001, Fig. 2C). Results were similar when using 

mean absolute% change (Harvard-Oxford ROIs; childhood/adolescent cohort: t(98)=4.09, 

p<.001; adult cohort (two outliers with means>3xSD excluded): t(35)=2.9, p<.01).

Linke et al. Page 11

Neuroimage. Author manuscript; available in PMC 2023 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.2. Analysis 2: test-retest reliability

We next tested whether previous results of increased test-retest reliability when using DTW 

to quantify FC replicated in a dataset that acquired two successive runs of rsfMRI. Test-

retest reliability between the two consecutive rsfMRI scans acquired in the adult cohort was 

higher for DTW than PC estimates of FC (t(37)=2.57, p=.014, Fig. 2D), mirroring the results 

of the individual scanned for Analysis 1 described above. The difference was decreased 

when GSR was performed and was no longer significant (t(37)=1.88, p=.068).

3.3. Analysis 3: sensitivity to brain function

Functional connectivity was hypothesized to be reduced between left and right primary 

motor cortex during a task that required frequent unilateral left-hand button responses 

compared to resting state FC acquired from the same participants during the same fMRI 

session. A repeated-measures ANOVA tested whether changes in FC during the task were 

unique to primary motor cortex by including two control ROI pairs (intrahemispheric FC 

between right precentral and right postcentral gyrus and interhemispheric FC between 

primary visual cortices).

The main effects of run (rest, task: F(1,21)=0.6, p=.45) and ROI pair (F(2,42)=0.81, 

p=.45) and the run x ROI interaction (F(2,42)=2.47, p=.097) were not significant for PC 

estimates of FC, with neither inter-hemispheric (between homotopic left/right precentral 

gyrus ROIs) nor intrahemispheric (between right precentral and right postcentral gyrus 

ROIs) FC differing compared to resting state FC (Fig. 3A). For DTW estimates of FC, 

the main effects of run (F(1,21)=7.85, p=.01) and ROI pair (F(2,42)=19.42, p<.001) 

as well as the run x ROI pair interaction (F(2,42)=13.99, p<.001) were significant. 

Interhemispheric connectivity was reduced during task performance compared to rest (Fig. 

3B), as hypothesized. Intrahemispheric connectivity was also reduced, but to a lesser extent. 

There were no significant differences for interhemispheric FC between left and right primary 

visual cortices during the resting state compared to task scan for PC or DTW estimates 

of FC. The median percent change in FC between the task and resting state scans across 

all motor ROIs was significantly greater for DTW than PC estimates (59.26% vs. 11.26%, 

respectively, t(21) = 5.72, p < .001).

3.4. Analysis 4: detection of group differences

A main goal of resting state fMRI in autism research is to identify group differences in FC. 

Analysis 4 tested whether atypical FC in ASD was more robustly detected when using DTW. 

More ROI pairs showed significant ASD-TD group differences (p<.05, uncorrected) when 

FC was estimated using DTW compared to PC in both the child/adolescent and adult cohorts 

(630/326 and 489/310 ROI pairs for DTW/PC estimates of FC for the child/adolescent and 

adult cohorts, respectively; Fig. 4A). More strikingly, low p-values were only enriched for 

DTW estimates of FC, with the fraction of null hypotheses estimated to be incorrect being 

substantially higher for DTW estimates. These analyses were repeated using data that had 

additionally been denoised using GSR (Fig. 4B). With GSR denoising, low p-values were 

also enriched for PC estimates of FC in the adolescent but not in the adult cohort. The 

frequency with which each ROI was part of a significant FC group difference is shown in 

Fig. 4C.

Linke et al. Page 12

Neuroimage. Author manuscript; available in PMC 2023 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Classification of diagnostic status achieved higher accuracy for DTW than for PC estimates 

of FC, in both the child/adolescent and adult cohort (Fig. 5).

3.5. Analysis 5: relationship of FC estimates to behavior and physiology

Lastly, we tested whether DTW or PC estimates of FC were more sensitive to brain-behavior 

relationships and potential physiological confounds. The association between FC estimates 

and ASD symptom severity was assessed in the child/adolescent cohort only, due to sample 

size limitations in other cohorts. Enrichment of low p-values for the correlation with 

ADOS-2 Total scores was only evident for DTW estimates of FC (Fig. 6A), with the fraction 

of null hypotheses rejected at 19% vs. 4.1% for DTW vs. PC estimates of FC, respectively. 

Similar results were observed in the ASD and TC groups for the BRIEF GEC (Fig. 6B). 

Only for DTW estimates of FC was there an indication of a relationship with executive 

function. Interestingly, this pattern was partially reversed for physiological variables, with 

a strong enrichment for small p-values for the association between PC FC and measures of 

respiration during the resting state scans (4% vs. 39% null hypotheses rejected for mean 

RVT, and 21% vs. 54% for RVT standard deviation, Fig. 6C top panel).

Results were more similar for measures of HR (9% vs. 19% null hypotheses rejected for 

mean HR for DTW compared to PC estimates of FC respectively, and 15% vs. 10% for HR 

standard deviation, Fig. 6C bottom panel). Since it is possible that PC estimates of FC would 

have shown a stronger relationship to behavior if GSR had been performed (Li et al., 2019b), 

the analyses were repeated using PC estimates of FC derived from data in which the global 

signal had been included during nuisance regression. The results largely mirrored those 

described above, with no enrichment for low p-values obvious for the relationship between 

PC FC estimates for ASD symptom severity or executive function (Fig. 6A/B). However, 

performing GSR reduced the associations between PC FC estimates and respiration (to 17% 

of null hypotheses rejected for mean RVT, and 14% for RVT standard deviation, Fig. 6C).

4. Discussion

Across five different analyses, our findings consistently suggest that dynamic time warping 

performs at superior levels, compared to Pearson correlation, in quantifying functional 

connectivity while also protecting more successfully from noise. We replicated increased 

robustness to GSR and higher test-retest reliability for DTW estimates of FC, as first 

reported by Meszlényi et al. (2017b). Additionally, we found that DTW FC was more 

sensitive to differences in brain function associated with task performance (compared 

to rest). Resting state fMRI and estimation of FC is frequently performed in clinical 

populations. Using DTW (compared to PC) estimates of FC, we observed improved 

classification accuracy of diagnostic status (ASD vs. TC) in cohorts of children and 

adolescents and of adults. Furthermore, we showed that group differences in FC were more 

frequently detected when using DTW rather than PC estimates of FC in two independent 

cohorts. Additionally, only DTW estimates of FC revealed robust associations with ASD 

symptom severity and executive function. Conversely, PC (but not DTW) estimates of FC 

were strongly related to respiration, suggesting that PC estimates are more sensitive to 

potential physiological confounds, especially when the global signal is not removed.
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4.1. Effects of global, noise are smaller for DTW

Compared to PC estimates of FC, DTW estimates were less affected by GSR (Analysis 

1). The smaller difference between DTW FC estimates from analyses with and without 

GSR implies that DTW is less sensitive to global noise, even when it is not explicitly 

removed. While it has been shown previously that removing the global signal from rsfMRI 

data improves the detection of relationships to behavior (Li et al., 2019b), this was not 

observed in the current analyses. Evidence for relationships between PC FC estimates 

and ASD symptom severity and executive function was low irrespective of performing 

GSR. Significant correlations between PC FC estimates and respiration, however, were 

substantially reduced when removing the global signal. Whether to use GSR during 

denoising of rsfMRI data remains highly controversial (Liu et al., 2017; Murphy and 

Fox, 2016; Power et al., 2017a; Uddin, 2017), due to concerns of introducing “artefactual 

negative correlations” (Murphy et al.,2009), distorting group differences (Gotts et al., 2013; 

Saad et al., 2012) or removing true neuronal signal (Li et al., 2019a; Schölvinck et al., 

2010), and is therefore often avoided in resting state analyses. However, GSR also removes 

global noise (particularly from respiration) from rsfMRI data (Power et al., 2017a, 2017b; 

Power, 2019). The current analyses suggest that PC estimates of FC might be particularly 

vulnerable to confounds from respiration when they are not controlled for. Future studies 

need to investigate whether methods that might improve denoising (e.g. multi-echo ICA 

(Kundu et al., 2012; Power et al., 2018), RETROICOR (Glover et al., 2000), dynamic GSR 

(Erdoğan et al., 2016), or temporal ICA (Glasser et al., 2017)) may result in PC FC estimates 

that are more comparable to those from DTW in terms of differential sensitivity to brain 

function and noise. Pre-whitening would additionally account for temporal autocorrelations 

in fMRI time series, which is high particularly when analyzing fMRI data acquired with 

relatively high temporal resolution, and might further improve the test-retest reliability and 

sensitivity to brain function of Pearson correlation measures of time series similarity (Bright 

et al., 2017; Corbin et al., 2018).

4.2. DTW is robust to lag between brain regions

It remains unclear to what degree BOLD signal lag across the brain is neuronal rather than 

physiological. Some studies investigating BOLD lag structure, and related quasi-periodic 

patterns (QPPs), have made strong arguments in favor of a neuronal nature (Mitra et al., 

2015, 2014; Thompson et al., 2014; Yousefi et al., 2018). However, physiological factors 

and differences in hemodynamics and blood arrival times clearly contribute to BOLD lag 

structure and FC patterns (Aso et al., 2017; Byrge and Kennedy, 2018; Chang and Glover, 

2009; Chu et al., 2018; Golestani et al., 2017; Tong et al., 2018, 2015; Tong and Frederick, 

2014; Wu and Marinazzo, 2016). For example, a recent study found that networks derived 

purely from respiratory and cardiac measures mimicked traditional functional networks 

derived from the BOLD signal using PC (Chen et al., 2019; also see Tong et al., 2015). 

Correcting for blood arrival times when regressing the global signal (“dynamic GSR”) also 

results in improved specificity and sensitivity of FC estimates (Erdoğan et al., 2016, also 

see Colenbier et al., 2019). In our study, PC estimates of FC were much more strongly 

associated with respiration than DTW estimates, potentially due to lag patterns introduced 

by respiration. In the presence of lag, Pearson correlation between two otherwise very 

similar time series will be low, making it difficult to separate lag from truly independent 
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BOLD fluctuations. DTW on the other hand, will still identify similarity between the BOLD 

time series of brain regions with varying lag. This results in an estimate of FC that is not 

only easier to interpret but also less affected by potential physiological confounds. While 

beyond the scope of the current manuscript, further analyzing the shape of the warping 

path from which DTW estimates of BOLD time series similarity are calculated could offer 

additional information about how much lag or shape differences contributed to the FC 

estimate.

4.3. DTW is sensitive to BOLD signal amplitude

Lastly, while DTW is robust to lag and shape differences of the BOLD time series, it is 

sensitive to amplitude differences. The degree to which amplitude versus lag and shape 

differences influence FC estimates derived using DTW is currently not well understood. 

While the sensitivity of DTW to BOLD signal amplitude could benefit the detection of 

individual differences in brain function that are related to behavior (Bijsterbosch et al., 

2017), it might also render it more sensitive to hardware differences (e.g. type of scanner or 

head coil) when pooling data from different sites and, thus, require careful standardization 

and harmonization (e.g. using tools such as ComBat, (Yu et al., 2018)). This will have 

to be carefully investigated prior to applying DTW to pooled data from different sites. 

While using Pearson correlations does not eliminate site differences and the need for data 

harmonization (Badhwar et al., 2019) its indifference to signal magnitude might make it 

slightly less sensitive to these confounds. Interestingly, however, this also means that PC can 

detect resting state networks even when BOLD sensitivity of an EPI sequence is low (e.g. 

because of a short echo time used to acquire fMRI data, Rane et al., 2014). The implications 

of this observation are difficult to unravel. While PC FC estimates are reduced at low TEs, 

resting state networks are still easily identifiable despite largely reduced BOLD sensitivity 

(Rane et al., 2014). This raises the question of whether the existence of these networks 

traditionally detected using Pearson correlation or ICA is predominantly driven by neuronal 

contributions to the BOLD response or by varying lag structure due to physiology and 

differences in blood arrival times (Tong et al., 2015).

In the absence of a gold standard for FC patterns across the human brain, it will be necessary 

to study and compare estimates of FC derived using multiple methods with different 

strengths and weaknesses. It is likely that DTW and PC estimates of FC are sensitive to 

different and partly complementary properties of functional brain organization. For example, 

Meszlényi et al. (2017a) found classification of mild amnestic cognitive impairment was 

improved when features derived from quantifying FC using Pearson correlation and DTW 

were combined. The results presented suggest that DTW is more sensitive to brain function 

and alterations of FC in ASDs than traditional Pearson correlation estimates. It remains to 

be determined how DTW estimates of FC relate to other measures of time series similarity 

(e.g. cross-correlation or cross-covariance) that can be derived from rsfMRI data. In a 

recent study comparing 9 different methods to estimate FC (Mohanty et al., 2020), DTW 

performed well and most methods resulted in FC estimates that were more closely related 

to behavior, and improved age classification. In network-level analyses, however, using 

correlation-based methods were shown to perform better than those sensitive to lag (Smith 

et al., 2011). It is possible that the appropriateness of the chosen time series similarity 
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metric depends on the subsequent analysis methods, with Pearson correlation performing 

well in the context of network modeling but not when applied in analyses in which absolute 

FC magnitude matters (such as when testing for group differences in FC for specific ROI 

pairs, or when using pairwise FC estimates for classification). Ultimately, it is important to 

consider what characteristics render two time series similar and thus suggest involvement in 

the same underlying process prior to choosing a method to quantify FC from rsfMRI data. 

Interpretation of differences in FC magnitudes then need to be interpreted with the chosen 

method in mind.

4.4. Pearson correlation may impede detection of critical FC differences in ASD

The rsfMRI literature on ASD has almost exclusively relied on PC to estimate similarity 

of regional BOLD signal changes. This predominance of PC is broadly shared with FC 

research across different fields of clinical neuroscience and psychiatry (Rosazza and Minati, 

2011). Our findings suggest that this reliance on PC may have significantly impeded FC 

research in the past decades. Specifically, with respect to ASD, we found that the alternative 

method of DTW afforded more extensive and robust detection of group differences (ASD 

vs. TC) in FC, better classification of diagnostic status, and improved detection of brain-

behavior relations. These results have two implications for FC research on ASD, suggesting 

the possibility of both false positive and false negative findings. First, given evidence of 

greater sensitivity to noise in PC-based FC analyses and the possibility that differences 

in hemodynamic response and other physiological variables may be falsely interpreted 

as ‘atypical FC’, previous PC-based FC studies may have detected group differences 

between ASD and TC samples that do not truly reflect differences in neuronal activity and 

connectivity. Second, several of our findings suggest that PC-based FC studies may fail to 

detect group differences between ASD and TC cohorts as well as important brain behavior 

links (e.g., those related to symptom severity). This problem may be aggravated in studies 

with limited sample size and statistical power, which have been common in the literature, as 

relatively weak effect sizes in PC-based FC analyses may fail to reach arbitrary thresholds 

of ‘significance’. More generally, our findings suggest that research on FC in ASD (and 

beyond) may heavily benefit from alternative approaches that avoid the limitations of PC. 

Our results suggest that DTW may be such an alternative of choice.

4.5. Limitations

Limitations of our study include reliance on relatively small sample sizes in each cohort. It is 

reassuring, however, that previous results of increased robustness to GSR, higher test-retest 

reliability and improved classification accuracy reported by Meszlényi et al. (2017b) as 

well as Mohanty et al. (2020) replicated in our independent datasets. We are hopeful that 

the replication of these results and additional findings of improved classification accuracy 

of ASD diagnosis and relationship to brain function and behavior of DTW will result in 

more widespread adoption of DTW when quantifying FC, including replication in larger 

datasets. Our analyses were also restricted to two different parcellation schemes, with most 

analyses only carried out using the anatomically defined ROIs from the Harvard-Oxford 

atlas. We believe that an anatomical atlas is more appropriate for comparisons of PC with 

new FC quantification methods than a PC-derived parcellation that would conceivably bias 

comparisons. However, it will be necessary to test in future studies whether our results 
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replicate across different brain parcellations. Particularly when studying clinical populations 

with possibly altered cortical differentiation (Dickie et al., 2018), individualized approaches 

to ROI definition might further improve sensitivity to group differences and brain-behavior 

relationships (Braga and Buckner, 2017; Gordon et al.,2017). Lastly, calculating time series 

similarity using DTW is computationally more intensive than linear methods such as PC 

(Silva et al., 2018). When running analyses in larger cohorts and when using fMRI data 

acquired with high temporal resolution or over a long period of time, parallelization is 

recommended.

4.6. Summary

While open questions remain, ours as well as a few previous studies (Meszlényi et al. 2017b, 

Mohanty et al., 2020) consistently suggest that non-linear methods such as DTW developed 

specifically for time series analyses should be more widely adopted in the analyses of 

functional connectivity derived from fMRI data. The use of different or additional metrics to 

quantify FC promises higher sensitivity to brain function, group differences and detection of 

brain-behavior relationships, addressing the low reliability of rsfMRI studies (Noble et al., 

2019).
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Fig. 1. 
A) Pearson correlation between a simulated time series (ROI A) and the identical time 

series shifted by 1 time point (ROI B) illustrates the assumption of synchronicity when 

assessing time series similarity using Pearson correlation. B) A large enough lag between 

time series will render a Pearson correlation of two otherwise identical time series negative. 

C) Matching of time series when calculating time series similarity using PC (left) or DTW 

(right) illustrates how PC might underestimate time series similarity when there is lag.
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Fig. 2. 
A) No significant difference in FC similarity between simulated data without and with added 

simulated motion was observed for DTW (red) compared to PC (blue) estimates of FC 

(left) indicating that DTW estimates do not seem to be more vulnerable to motion. In fact, 

changes in FC estimates for individual ROI pairs were significantly smaller in the presence 

of motion for DTW estimates (right). B) To test the impact of motion in real data, one 

participant (author AL) was scanned while watching the same movie clip from Despicable 

Me, while still and with intentional head motion. Realignment parameters are shown to 

illustrate the magnitude of motion. FC similarity between still and motion runs was reduced 

for PC estimates of FC (PC: r = 0.33, DTW: r = 0.47). C) Median absolute% change in FC 

estimated using Pearson correlation and DTW as a consequence of including vs. excluding 

the global signal in nuisance regression denoising of resting state fMRI data in the adult 

cohort, averaged across all cortical and subcortical Harvard-Oxford ROIs. D) Test-retest 

reliability of FC between two resting state fMRI scans acquired back-to-back during the 

same MRI session in each participant. Test-retest reliability was estimated as the similarity 

(Pearson correlation) of FC matrices across Harvard-Oxford ROIs.
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Fig. 3. 
FC between cortical motor regions (pre- and post-central gyrus from the Harvard-Oxford 

atlas) during a resting state and a task fMRI in the same participants. A) Interhemispheric 

FC (preCG R-L) was reduced during the task compared to rest for DTW estimates of FC, as 

was expected given frequent button presses with the left index and middle finger during task 

fMRI. It did not differ for PC estimates of FC. Results of post-hoc pairwise paired-samples 

t-tests are reported for each comparison. B) Interhemispheric connectivity between left and 

right primary visual cortex was also estimated as a control and did not differ between rest 

and task fMRI for PC or DTW estimates of FC. Note, that for DTW estimates a value of 0 

reflects average FC while positive values indicate above average time series similarity.
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Fig. 4. 
ASD-TC group differences detected for DTW and PC estimates of FC in the child/

adolescent cohort (left) and adult cohort (right). Panels A (no GSR denoising) and B (GSR 

included during denoising) show enrichment for low p-values only for DTW estimates 

of FC, indicating evidence of a larger fraction of null hypotheses being false (note, that 

a uniform distribution is expected if all hypotheses are null). C) Shows the pattern of 

ROIs contributing most frequently to FC group differences (at an uncorrected significance 

threshold of p<.05, no GSR denoising).
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Fig. 5. 
Linear SVM classification of diagnostic group (ASD/TC). The distribution of classification 

accuracy for 15-fold CV performed 1000 times using PC and DTW estimates of FC (top 

5 PCA components used for classification) for the child/adolescent (left) and adult (right) 

cohorts.
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Fig. 6. 
Enrichment for low p-values for the relationship (partial correlations controlling for RMSD) 

between FC and ASD symptom severity (A) and executive function (as measured by the 

BRIEF Global Executive Component) in the ASD and TD group separately (B) is only 

evident for DTW estimates of FC (Harvard-Oxford ROIs). For the relationship (partial 

correlations controlling for RMSD) between physiological measures (respiration and heart 

rate) and FC in the adult cohort results are partially reversed, with the number of null 

hypotheses rejected being generally higher for PC estimates of FC.
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