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Abstract

Studying viral–host protein–protein interactions can facilitate the discovery of therapies for 

viral infection. We use high-throughput yeast two-hybrid experiments and mass spectrometry to 

generate a comprehensive SARS-CoV-2–human protein–protein interactome network consisting of 

739 high-confidence binary and co-complex interactions, validating 218 known SARS-CoV-2 host 

factors and revealing 361 novel ones. Our results show the highest overlap of interaction partners 

between published datasets and of genes differentially expressed in samples from COVID-19 

patients. We identify an interaction between the viral protein ORF3a and the human transcription 

factor ZNF579, illustrating a direct viral impact on host transcription. We perform network-based 

screens of >2,900 FDA-approved or investigational drugs and identify 23 with significant network 

proximity to SARS-CoV-2 host factors. One of these drugs, carvedilol, shows clinical benefits 

for COVID-19 patients in an electronic health records analysis and antiviral properties in a 

human lung cell line infected with SARS-CoV-2. Our study demonstrates the value of network 

systems biology to understand human–virus interactions and provides hits for further research on 

COVID-19 therapeutics.

The severity of the global COVID-19 pandemic caused by severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) highlights the need to fill in the gaps in our understanding 

of the interplay between this virus and its hosts. Once inside a cell, viruses interact with 

intracellular proteins to hijack host mechanisms that facilitate viral replication and evasion 

of an immune response1. Studying viral–host protein–protein interactions (PPIs) is therefore 

crucial for understanding the mechanisms of the viral infection and the host response and 

to develop new strategies for disease treatment and prevention2–5. Interaction networks are 

especially important as proteins generally act not in isolation but in concert with their 

neighborhood of interacting partners. Such interactomes can thus reveal biological pathways 

and processes impacted by the viral proteome, allowing for the discovery of novel drug 

targets.

Here we leverage high-throughput yeast two-hybrid (Y2H) and tandem mass tag affinity 

purification followed by mass spectrometry (TMT-AP–MS) to generate a binary and co-

complex SARS-CoV-2–human protein–protein interactome network, which we propose 

to be a more complete resource for exploration of the viral–host interactome (Fig. 1a). 

We adopted this approach for several reasons. To date, Y2H and AP–MS are the only 
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two methods available for mapping protein–protein interactome networks on a proteomic 

scale6,7. Pioneering studies on the earliest SARS-CoV-2–human interactomes utilized 

label-free AP–MS as their sole method for interaction mapping2–5. While both Y2H 

and AP–MS alone produce high-quality interactome datasets, they fundamentally capture 

different yet complementary aspects of the full network; specifically, Y2H interactions 

often represent key connections between different protein complexes and pathways8. Thus, 

Y2H and AP–MS together can provide a more comprehensive view of the topological and 

biological properties of the interactome8. Moreover, labeled (for example, TMT-based) AP–

MS has been shown to provide more precise, accurate and reproducible quantification of 

proteins compared to label-free AP–MS-based approaches, which is an important criterion 

when trying to identify true protein interactions and generate high-quality interactome 

networks9–19.

Here we used both Y2H and quantitative TMT-AP–MS to generate a total of 739 high-

confidence interactions among 579 human proteins and 28 SARS-CoV-2 proteins. Our 

interactome had an unprecedented scale and coverage compared with existing ones. Using 

our interactome, we identified important pathways such as protein translation, mRNA 

splicing, Golgi transportation, neutrophil-mediated immunity and glucose metabolism. 

Moreover, we prioritized host-targeting therapies by searching U.S. FDA-approved and 

investigational drugs for their potential anti-SARS-CoV-2 effect using state-of-the-art 

network proximity methods. Using two large independent COVID-19 patient databases, we 

found that usage of one of the top candidates, carvedilol, was associated with a lowered 

risk (17–20%) of a positive COVID-19 test. Experimental validation shows that carvedilol 

inhibits SARS-CoV-2 infection with a half-maximal effective concentration (EC50) of 4.1 

μM. Altogether, these results suggest that our comprehensive SARS-CoV-2–human protein 

interactome offers substantial opportunities for understanding the pathobiological process of 

SARS-CoV-2 in human and identifying host-targeting therapies for COVID-19.

Results

A comprehensive SARS-CoV-2–human protein–protein interactome

To generate a binary SARS-CoV-2–human protein–protein interactome, we systematically 

tested all pairwise combinations of 28 SARS-CoV-2 proteins (GenBank accession 

MN908947) against ~16,000 human proteins (hORFeome V8.1)20 using high-throughput 

Y2H screens8,21–24 (Fig. 1a). We treated each protein as both a bait and a prey, yielding 

over 896,000 (28 × ~16,000 × 2) total tested pair combinations. Before screening, all 

autoactivating DNA-binding domain (DB) ORF clones were removed from further tests 

(see Methods). To increase experimental throughput, viral ORF activating domain (AD) and 

DB clones were mated against pools of 24 human ORF DB or AD clones, respectively. 

Following auxotrophic selection, AD–DB pairs were identified via PLATE-seq24 to generate 

a list of candidate interactions (Methods). Interaction candidates were then subsequently 

re-tested using Y2H to ascertain high reproducibility. In all, we report a total of 299 

high-quality binary SARS-CoV-2–human PPIs via our high-throughput Y2H screen, 267 of 

which were unique to this assay in this study (Supplementary Table 1).
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To complement our binary SARS-CoV-2–human protein–protein interactome, we 

independently expressed each of the 28 SARS-CoV-2 proteins in the human intestinal 

epithelial cell line Caco-2 (HTB-37; ATCC) to identify viral–host co-complex interactions 

using TMT-AP–MS proteomics (Fig. 1a). We used Caco-2 as our cell line model owing to 

its endogenous expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane 

serine protease 2 (TMPRSS2) required for SARS-CoV-2 cell entry and S protein priming, 

respectively25, the extensive use of the line in SARS-CoV and SARS-CoV-2 infection 

studies26,27, supported by known in vivo replication of SARS-CoV-2 in gastrointestinal 

cells28,29 and desirable cell culture characteristics including robust transfectability and rapid 

propagation. All Strep-, Myc-, or FLAG-tagged SARS-CoV-2 baits and their corresponding 

empty vector controls were transfected in biological duplicates, followed by subsequent 

affinity purification, TMT labeling and synchronous precursor selection (SPS) MS3-based 

quantification. We filtered for interactions that met stringent fold change (FC) and P 
value cutoffs (Methods). In all, we report a total of 472 high-confidence co-complex 

SARS-CoV-2–human PPIs via AP–MS, 440 of which were unique to this assay in this 

study (Supplementary Table 1). Altogether, our orthogonal approaches generated a network 

composed of 739 interactions among 28 viral and 579 host proteins (Supplementary Table 

1).

We visualized the SARS-CoV-2–human protein–protein interactome through a network 

shown in Fig. 1b. The colors of the edges between the viral proteins (represented as diamond 

nodes) and the host proteins (represented as circle nodes) indicate the methods that detected 

the interaction. Host proteins that interact with a single viral protein are shown in boxes 

connected to their interacting partner. Several human proteins interact with multiple SARS-

CoV-2 proteins, such as ACTN4, ITGB1BP2, TRIM27 and ACTN1, while the majority of 

human proteins (469, 81%) interact with only one SARS-CoV-2 protein (Supplementary Fig. 

1a). Among the viral proteins, N, ORF7b and ORF9b achieved the highest network degrees, 

whereas E, NSP7 and NSP1 have the lowest network degrees (Supplementary Fig. 1b). 

In terms of the shared interacting partners, overall, the viral proteins showed low overlap 

(Supplementary Fig. 1c), consistent with a previously published SARS-CoV-2 interactome 

network2,3. We examined the overlap of host factors for Y2H and AP–MS separately and 

found overall low overlap of host factors as well (Supplementary Fig. 1d,e).

For the entire interactome, functional enrichment analysis revealed significantly 

overrepresented biological processes (Supplementary Fig. 2a and Supplementary Table 2), 

including protein translation, transcription and neutrophil-mediated immunity (highlighted 

with yellow background in Fig. 1b). Semantic analysis shows major biological process 

categories such as ‘ribosome biogenesis,’ ‘rRNA metabolic process,’ and ‘viral gene 

expression’ (Supplementary Fig. 2b). Pathway enrichment analysis show top enriched 

pathways such as ‘protein processing in the endoplasmic reticulum,’ ‘tight junction,’ 

‘glycolysis,’ ‘ribosome,’ and ‘protein export’ (Supplementary Fig. 2c and Supplementary 

Table 2). For individual SARS-CoV-2 proteins, many pathways and biological processes 

are shared in these viral proteins (Supplementary Fig. 3). For example, NSP12, NSP13 and 

NSP16 share biological processes such as ‘regulation of cellular component movement,’ 

‘negative regulation of cell morphogenesis involved in differentiation’ and ‘negative 

regulation of substrate adhesion-dependent cell spreading’ (Supplementary Fig. 3a); ORF7a, 
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ORF7b, ORF8 and NSP4 share the pathway ‘protein processing in endoplasmic reticulum’ 

(Supplementary Fig. 3b).

Given the surge of COVID-19-related studies since 2020, we repeated the enrichment 

analyses using gene set libraries generated before and after the start of the pandemic to 

evaluate whether bias was introduced to the gene sets. By comparing Gene Ontology (GO) 

biological process 2018 versus GO biological process 2021 and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) human pathway 2021 versus KEGG human pathway 2019, 

we found that our enrichment analyses were not biased by the addition of the COVID-19 

research. In both comparisons, we found that terms such as ‘ribosome biogenesis’, 

‘rRNA processing’ and ‘rRNA metabolic process’ and pathways such as ‘Ribosome’ were 

significantly enriched in the gene set libraries both before and after the pandemic, with 

similar odds ratio and combined score (Supplementary Fig. 3c).

Overall, our interactome is comprised of abundant information that can be utilized for 

the identification of COVID-19-relevant pathobiology and host-targeting therapies. We also 

developed an interactive visualization tool for our interactome which can be accessed from 

https://github.com/ChengF-Lab/COVID-19_PPI.

Coverage and quality of our interactome

To ensure the authenticity when applying our interactome for downstream studies, 

we first evaluated the quality through several means. We examined three previously 

published SARS-CoV-2–human protein–protein interactome networks2,4,5. All three of 

these interactomes were generated using AP–MS-based methods alone. Overall, we found 

that the host factors of these interactomes significantly overlap (Fisher’s exact test, false 

discovery rate (FDR) < 0.05) (Fig. 2a, Extended Data Fig. 1a and Supplementary Table 

3), although each interactome still identified a large number of unique factors. This could 

be explained by differences in the cell line models used (Gordon et al.3 and Li et al.4 

used HEK293T/17; Stukalov et al.5 used A549) as well as distinct computational and/or 

experimental methodologies implemented in their respective studies. Nonetheless, we found 

that our interactome had the highest overlap of interaction partners among published SARS-

CoV-2–human protein–protein interactome networks (Fig. 2a, Extended Data Fig. 1a and 

Supplementary Table 3), suggesting that our interactome had a high level of coverage. We 

also found that Y2H confirmed many interactions and resulted in identifying slightly more 

overlapping host factors with previous studies (Fig. 2a), confirming the complementary 

nature of our Y2H assay, which was performed in a highly sensitive screen outside of human 

cells. Overall, AP–MS achieved significantly more overlapping viral–human protein–protein 

interactions across studies when known human pathways and complexes are taken into 

consideration (Extended Data Fig. 1b).

In comparison to the published SARS-CoV-2–human protein–protein interactome 

networks2,4,5, our interactome validated 218 (38%) human host factors previously reported, 

including ALG5, G3BP1, CLCC1, VPS39, SIGMAR1, G3BP2 and RAP1GDS1, which 

are identified in all four interactomes (Fig. 2a). Our interactome offers 361 (62%) newly 

discovered human host factors which in total interact with SARS-CoV-2 proteins in 493 

interactions. For S protein, which plays a key role in the entry of SARS-CoV-2 into 
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host cells30, we identified 24 interacting partners. Among these interacting partners of S 

protein, we found that CORO1C31 and STON232, which are known to be present in the cell 

membrane, suggesting potential cell entry of SARS-CoV-2 through these human proteins in 

addition to known mechanisms.

We next performed more comparisons between these published interactomes and our 

own. First, we found that our interactome was enriched in several disease-relevant 

pathways and biological processes that were not enriched in previous interactomes, for 

example, ‘Coronavirus disease,’ ‘ribosome biogenesis,’ and ‘rRNA metabolic process’33–36 

(Supplementary Table 2). Next, we examined whether these datasets contained interaction 

partners that coincided with genes that had expression changes in response to SARS-CoV-2 

infection. To this end, we performed differential expression analysis for several bulk 

and single-cell RNA sequencing (RNA-seq) datasets from COVID-19 models or patients 

(Methods). For the single-cell dataset37, for which we compared the gene expression in 

SARS-CoV-2+ and SARS-CoV-2− cells, we found that our interactome showed significant 

overlap (Fisher’s exact test, FDR < 0.05) with the differentially expressed genes (DEGs) in 

more cell types than that of other interactomes (Extended Data Fig. 1c and Supplementary 

Table 3). Using four bulk RNA-seq/proteomics datasets that contained samples such as 

upper airway and bronchial epithelial cells38–41, we found that our interactome had a 

comparable number of significant overlaps to other datasets and showed the highest overall 

Jaccard index and overlap coefficient with the bulk RNA-seq datasets (Extended Data 

Fig. 1d and Supplementary Table 3). These results suggest that our interactome is highly 

enriched in genes differentially expressed in response to SARS-CoV-2 infection.

We next inspected the evolutionary features of the SARS-CoV-2 human host factors 

(Extended Data Fig. 1e,f and Supplementary Table 4). Previous studies have shown that 

virus host factors have more conserved dN/dS rates compared to non-virus host factors42,43. 

Our SARS-CoV-2–human interactome showed more purifying selection (quantified by 

lower non-synonymous versus synonymous substitution rate ratio (dN/dS ratio)), as well 

as a lower evolutionary rate ratio, compared to the random background from the human 

protein interactome. These bioinformatics observations further indicated high evolutionary 

conservation of host factors of SARS-CoV-2 identified by our Y2H and TMT-AP–MS 

proteomics platforms, consistent with previous studies44,45.

Gene expression patterns in disease-related tissues capture important information for 

revealing the pathogenesis of the disease and identifying potential treatments46–48. 

We therefore examined the expression of the human host factors in different tissues 

(Supplementary Fig. 4a,b and Supplementary Table 5) using the GTEx data49. By 

normalizing the expression of each gene across different tissues (tissue specificity; 

Methods), we found that lung ranked the 7th out of 33 tissues in terms of the number 

of host factors with positive tissue specificity (Supplementary Fig. 4a), suggesting that lung 

is one of the tissues where these host factors have high expression50.

Altogether, these results show the high quality of the SARS-CoV-2–human interactome 

identified in this study and strongly encouraged us to further look into the pathobiology of 

COVID-19 and potential treatment using our interactome.
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Our interactome identifies potential COVID-19 pathobiology

ORF3a is a SARS-CoV-2 accessory protein that has been reported to induce apoptosis in 

HEK293T cells51 and to suppress the innate immune response52–54 via unclear molecular 

mechanisms. Our interactome revealed that ORF3a physically interacts with ZNF579 (Fig. 

1b), a previously uncharacterized human protein likely to be a transcription factor. We 

were able to validate this interaction using co-immunoprecipitation (co-IP) western blotting 

(Fig. 2b). Furthermore, we found that the level of ZNF579 protein is decreased after 

overexpression of ORF3a in HEK293T cells (Fig. 2c). As a result, we hypothesized 

that the presence of ORF3a in cells might trigger changes in the transcriptional state 

of human genes that are normally regulated by ZNF579. Using ENCODE chromatin 

immunoprecipitation–sequencing (ChIP–seq) data55,56, we found that there is a significant 

enrichment of genes known to be dysregulated in SARS-CoV-2 infection among targets 

bound by ZNF579 (Extended Data Fig. 2a,b). These overlapped genes participate in 

several disease-relevant pathways such as ‘ribosome’33–36, ‘coronavirus disease’ and various 

infection-related pathways in several COVID-19 relevant cell types (Extended Data Fig. 

2c). Specifically, ZNF579 is bound strongly to the promoter of HSPA6 (Fig. 2d). Using 

quantitative PCR (qPCR), we found that overexpression of ORF3a in HEK293T cells causes 

massive induction of HSPA6 (Fig. 2e). These results indicate that the multifunctional SARS-

CoV-2 accessory protein ORF3a can induce expression of HSPA6, presumably by disrupting 

ZNF579, which is likely to normally exert repressive activity at the HSPA6 promoter. This 

represents an additional previously unknown activity of this multifunctional viral accessory 

protein.

Notably, the oligosaccharyltransferase (OST) complex subunits STT3A/B, RPN1/2 and 

DDOST57 were all shown to be present in our Y2H and AP–MS interactome datasets, which 

we further validated using co-IP (Fig. 2f). The OST complex catalyzes the N-glycosylation 

of nascent polypeptides in the endoplasmic reticulum58. Glycoproteins are critical for 

normal cell–cell interactions, RNA replication and pathogenesis59–61. Interestingly, OST 

inhibition has been shown to have activity against Dengue virus, Zika virus, West Nile virus, 

yellow fever viruses and HSV162–64 by affecting the viral replication. The OST complex 

was also found to be crucial for innate immune responses triggered by lipopolysaccharide65. 

Additionally, we also found Sec61 (Fig. 2g), which is a major component of the ER 

translocon that facilitates the entry of nascent polypeptides into the ER lumen for protein 

processing66. Evidence suggests that Sec61 may participate in the replication of several 

viruses like Ebola virus, Influenza virus, HIV and Dengue virus66–68. Thus, we hypothesize 

that OST and Sec61 may also participate in SARS-COV-2 replication and/or the host 

immune response, offering potential targets for host-targeting therapy development.

The SARS-CoV-2 nucleocapsid (N) protein binds to the viral RNA genome and is 

multifunctional in viral RNA transcription, replication and genome condensation69–71. N 

protein is conserved and stable with ~90% amino acid homology to the SARS-COV N 

protein72. From our dataset, we confirmed known interactions, including the stress granule 

core protein G3BP1/2 also found in three other interactome datasets. In addition to these 

known interactions, we identified an interaction between histone H1.4 and N protein. To 

validate this histone H1.4 and N protein interaction, we overexpressed both N protein and 
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histone H1.4 to perform co-IP, confirming their interaction (Fig. 2h). Histone H1, also 

known as linker histone, mainly functions in chromatin condensation and transcriptional 

repression73,74. Accumulating evidence suggests that linker histone is essential in the 

pathogenesis of several diseases, particularly for viral infection74. There is also evidence that 

histone H1 could influence IFN and inhibit influenza replication75, in addition to playing a 

role in the regulation of viral gene expression76. Thus, we hypothesize that this viral–host 

interaction could also be involved in mediation viral replication and/or gene expression.

Discovery of host-targeting therapies for COVID-19

Using our newly discovered SARS-CoV-2–human protein–protein interactome network, 

we performed network-based drug screening for more than 2,900 FDA-approved or 

investigational drugs77 (Fig. 3a and Supplementary Table 6). We obtained a list of 189 

FDA-approved drugs with significantly closer network proximities to the SARS-CoV-2 host 

factors, among which 44 had clinical trials for SARS-CoV-2 (Supplementary Table 7). 

To refine this list, we obtained the antiviral profiles of the top 189 drugs from NCATS 

(https://opendata.ncats.nih.gov/covid19/assays, National Center for Advancing Translational 

Sciences) and evaluated each drug for their desired antiviral properties (Methods). From 

this, we obtained a curated list of 23 drugs with significant network proximities to the 

SARS-CoV-2 host factors as well as desired anti-SARS-CoV-2 activities in at least two 

NCATS assays (Fig. 3b, Supplementary Fig. 5, Supplementary Table 8).

Overall, these top drugs fall into several major categories, including anti-infective 

(amodiaquine, azithromycin, tetracycline, adefovir dipivoxil, tipranavir), anti-inflammatory 

(apremilast, mefenamic acid, balsalazide, fenoprofen), antihypertensive (carvedilol, 

hydrochlorothiazide, nilvadipine) and antineoplastic (toremifene, decitabine, venetoclax). 

Among these drugs, apremilast, toremifene, decitabine, amodiaquine, azithromycin are 

currently being or have been tested in clinical trials for SARS-CoV-2. These top 23 

drugs offer candidate treatments for SARS-CoV-2 infections across diverse mechanism-of-

actions identified from our human–SARS-CoV-2 interactome. For example, balsalazide, 

toremifene, tetracycline, venetoclax, tipranavir and brimonidine may inhibit viral replication 

by inhibiting papain-like protease 3CL (Supplementary Fig. 5 and Supplementary Table 8). 

Other drugs, such as carvedilol and hydrochlorothiazide, may directly inhibit viral entry 

by disrupting the spike–ACE2 PPI (Supplementary Fig. 5 and Supplementary Table 8). We 

also found some literature evidence that may provide mechanistic insights for these drugs 

against SARS-CoV-2 (Fig. 3b). For example, apremilast is a phosphodiesterase 4D (PDE4D) 

inhibitor78, which interacts with PDE4DIP79, a direct target of NSP13. Amitriptyline 

activates SIGMAR180, while NSP6 interact with SIGMAR1 to inhibit host autophagosome 

formation to facility coronavirus replication81. SIGMAR1 also interact with MOV10 (an 

RNA helicase, also a host factor targeted by the N protein), which exhibits antiviral activity 

against RNA viruses82.

To test whether our interactome identified drugs that could not be predicted by previously 

published datasets, we compared the screening results using different interactomes and their 

combinations. We found that 16 drugs identified by our interactome could not be predicted 

by any of the other three interactomes or their combinations (Extended Data Fig. 3a). Of the 
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top 23 drugs with desired anti-SARS-CoV-2 profiles, 6 were among the 16 drugs that can 

only be identified by our interactome (Extended Data Fig. 3a). We also found that among the 

seven drugs identified by combining all four interactomes that could not be identified by any 

interactome individually, three drugs (Extended Data Fig. 3b) were found to have desired 

anti-SARS-CoV-2 profiles (Supplementary Fig. 6).

Among the top 23 drug candidates, toremifene achieved significantly closer network 

proximity (Z = −2.19, FDR = 0.037) and has a desired anti-SARS-CoV-2 profile. Previous 

studies show that toremifene blocks various viral infections efficiently, including SARS-

CoV-283 (half-maximal inhibitory concentration (IC50) = 3.58 μM), SARS-CoV-184 (EC50 

= 11.97 μM), MERS-CoV85 (EC50 = 12.9 μM) and Ebola virus86 (IC50 = ~1 μM). 

Indeed, NCATS data show that toremifene is active across four assays: spike–ACE2 protein–

protein interaction (half-maximal activity concentration (AC50) = 11.92 μM), SARS-CoV 

pseudotyped particle entry (AC50 = 15.85 μM), MERS-CoV pseudotyped particle entry 

(AC50 = 31.62 μM) and 3CL enzymatic activity (AC50 = 5.01 μM) (Supplementary Fig. 

5). Mechanistically, a previous study showed that toremifene may inhibit SARS-CoV-2 

cell entry by blocking the S and NSP14 proteins87. These comprehensive validations 

show potential implications of SARS-CoV-2 interactome-predicted drugs (for example, 

toremifene) offer candidates to be tested further in COVID-19 patients.

Validation of interactome-predicted drugs

Further, we used subject matter expertize to select candidate drugs for patient-level data 

validation and experimental validation on the basis of a combination of factors: (1) strength 

of the interactome network-based prediction associations (a stronger network proximity 

score in Supplementary Table 7); (2) novelty of predicted drugs; (3) availability of sufficient 

patient data for meaningful evaluation (exclusion of infrequently used medications); and 

(4) ideal pharmacokinetics properties in the lung of interactome-predicted drugs. Applying 

these criteria resulted in two top candidate drugs, carvedilol (Z = −2.195, FDR = 0.03) and 

hydrochlorothiazide (Z = −2.428, FDR = 0.005), which are originally approved for treatment 

of hypertension.

To identify the drug–outcome relationships of these drugs, we used a state-of-the-art 

active user-design approach47,88, which is based on large-scale electronic health record 

(EHR) data. Using the Northwestern Medicine Enterprise Data Warehouse (NMEDW) 

COVID-19 dataset (481,526 total patients, 66,541 COVID-19 positive cases, Table 1), 

we found that both carvedilol (odds ratio = 0.8, 95% confidence interval 0.68–0.94, P 
= 0.008) and hydrochlorothiazide (odds ratio = 0.62, 95% confidence interval 0.47–0.82, 

P < 0.001) were associated with a significantly lowered risk of positive COVID-19 test 

after confounding adjustment (age, sex, race and comorbidities) using a propensity-score 

matching approach47,88 (Fig. 4a,b and Supplementary Table 9). The effect of carvedilol 

was consistent for different race and sex subgroups (Fig. 4a and Supplementary Table 9). 

To validate these observations, we used a second EHR database from the Cleveland Clinic 

COVID-19 registry as an external validation set (168,712 total individuals, 83,340 SARS-

CoV-2 positive cases; Supplementary Table 10). We found that carvedilol had a sufficient 

number of usage cases for the drug–outcome evaluation. By comparing individuals with and 
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without carvedilol usages (propensity-score-matched by age, sex, race and/or comorbidities), 

we found that carvedilol usage was associated with a 17% (odds ratio = 0.83, 95% 

confidence interval 0.78–0.88, P < 0.001) significantly lowered risk of COVID-19 positive 

test (Fig. 4c). This protective effect was also consistent when we examined subgroups from 

the registry in terms of race and sex (Fig. 4c).

We found that carvedilol not only showed favorable results in the EHR-based validation, 

but also has a promising antiviral profile from NCATS, showing high potencies for multiple 

desired activities (Supplementary Fig. 5). The NCATS profile of carvedilol is comparable to 

that of remdesivir, whose profile was deemed highly desirable89. We then investigated the 

anti-SARS-CoV-2 activity of carvedilol experimentally. We treated A549-ACE2 cells with 

0.3–20 μM of carvedilol for 2 h followed by infection with SARS-CoV-2 at a multiplicity of 

infection of 0.5 and incubation for 2 days. Carvedilol showed a low cell toxicity (Fig. 4d). 

Cells were subsequently fixed and immunostained to detect for S protein, which was used 

as a marker for infection. We found that carvedilol inhibited SARS-CoV-2 infection with 

an EC50 value of 4.1 μM (Fig. 4d), mechanistically supporting our SARS-CoV-2–human 

interactome-based prediction and EHR-based findings. Lastly, we conducted drug–target 

network analysis of the targets of carvedilol and SARS-CoV-2 host factors (Extended Data 

Fig. 4 and Supplementary Table 11). We found that carvedilol could potentially affect the 

SARS-CoV-2 host factors (that is, VCAM1 and KCNH2) through PPIs with its targets 

(Extended Data Fig. 6).

Discussion

In this study, we used high-throughput Y2H and quantitative TMT-AP–MS to generate 

a binary and co-complex SARS-CoV-2–human protein–protein interactome network, 

expanding the known map produced solely by label-free AP–MS2–5. This interactome 

validated 218 previously published SARS-CoV-2 host factors and revealed 361 novel 

ones. In comparison with previous interactomes2–5, this interactome has higher overlaps 

among the interactomes and differentially expressed genes captured by bulk and single-cell 

RNA-seq of SARS-CoV-2 infection. The host factors we identified, particularly those 

altered in response to SARS-CoV-2 infection, will contribute to understanding the disease 

pathobiology of COVID-19 and prioritizing potential drug targets.

Among the novel interacting partners for S protein, we identified several human proteins 

that may play important roles in SARS-CoV-2 infection. CORO1C31 and STON232 are 

expressed on the cell membrane. CORO1C is highly expressed in lung (Supplementary 

Table 5). STON2 is ubiquitously expressed and involved in endocytic machinery32. It is 

possible that SARS-CoV-2 can enter host cells through binding of S protein not only to 

ACE2, NRP190,91 and BSG92, but also other (unknown) factors such as CORO1C and 

STON2. We also noticed two proteins, EPPK193 and SPECC1L94, that both express on the 

cell junctions. It has been suggested that SARS-CoV-2 could spread through cell-to-cell 

transmission95. These cell junction proteins that can be targeted by SARS-CoV-2 S protein 

may facilitate its cell-to-cell transmission.
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We identified a previously uncharacterized human transcription factor, ZNF579, that 

interacts with SARS-CoV-2 accessory protein ORF3a, and report that this interaction leads 

to the de-repression of HSPA6. Notably, HSPA6 is significantly upregulated after SARS-

CoV-2 infection in cell culture models38, indicating that the disruption of ZNF579 by 

ORF3a may be relevant in the context of infection. HSPA6 is a HSP70 family molecular 

chaperone, which are known to be involved in the entry, replication, assembly and release of 

various viral pathogens96. We speculate that SARS-CoV-2 has evolved this activity to ensure 

sufficient levels of molecular chaperones are available to assist with the production of viral 

proteins in cells.

Next, using this newly discovered SARS-CoV-2–human protein–protein interactome, we 

studied drug repurposing and identified 23 candidate drugs with desired anti-SARS-CoV-2 

profiles. In this study, we used undirected human protein interactome network and 

degree preserved node shuffling technique. We also tested different variations of the 

proximity analysis and found that using directed human protein interactome network 

and using degree preserved link shuffling resulted in overall highly consistent Z-scores 

compared to the original results in this study (Extended Data Fig. 5). Although some 

of these drugs can directly target the host factors, most of them indirectly affect the 

host factors through PPIs with their targets (Fig. 3b). For example, our predicted drug 

candidates are validated by well-established NCATS assays (Supplementary Fig. 5). In 

addition, among the drugs which did not have NCATS assay results, alprazolam (Iranian 

Registry of Clinical Trials: IRCT20211015052773N1), L-citrulline (ClinicalTrials.gov IDs: 

NCT04404426 and NCT04570384), nadroparin (European Union Clinical Trials Register: 

EUCTR2020-001709-21-FR, EUCTR2020-001739-28-BE, EUCTR2020-005884-29-IT), 

vortioxetine (ClinicalTrials.gov ID: NCT05047952) and myrrh (Clinical Trials Registry

—India: CTRI/2020/07/026669, CTRI/2020/12/029575, CTRI/2021/01/030825, Australian 

New Zealand Clinical Trials Registry: ACTRN12622000215729) are in clinical trials for 

COVID-19. Nevertheless, future experimental and clinical studies for our novel predicted 

drug candidates are warranted.

Further, we have identified carvedilol and hydrochlorothiazide as potential host-targeting 

treatments for COVID-19 supported by multiple lines of evidence (strong network 

proximities to SARS-CoV-2 host factors, significantly reduced SARS-CoV-2 positive test 

risks in patients using these drugs on the basis of large-scale EHR data and experimental 

validation of anti-SARS-CoV-2 activity). As drug repurposing focuses on drugs that are 

already in existing patient databases, we are able to test hypotheses using EHR data 

as we88,97 and other teams98,99 demonstrated. The unique strengths of EHRs include 

their provision of large patient populations useful for detecting small differences and 

the availability of a large number of patient factors recorded without risk of recall bias, 

allowing for high-dimensional covariate adjustment to minimize confounding47,98,100. Our 

findings are consistent with previous reports that hydrochlorothiazide98 and carvedilol99 

have potential beneficial effects for COVID-19 patients. Another beta-blocker metoprolol 

(Z = −2.327, FDR = 0.003) was also among the top 189 drugs (Supplementary Table 

7), which has been tested in a small clinical trial with positive effects101. These results 

confirm that the unique integration of SARS-CoV-2–human interactome findings and patient 

analysis approaches using two large-scale EHR databases from two independent health care 
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systems, along with in vitro antiviral observations, offer a powerful strategy for discovery 

of COVID-19 therapeutics. This kind of systems biology strategy can be applied to future 

pandemics as well.

To understand the potential mechanisms of the anti-SARS-CoV-2 activity of carvedilol, we 

examined the mechanism-of-action of carvedilol using network analysis (Extended Data Fig. 

4 and Supplementary Table 11). Among the 579 unique host factors, 237 (41%) have PPIs 

with carvedilol targets. A large portion of the human proteins in the enriched pathways 

(protein translation (26/37, 70%), mRNA splicing (14/21, 67%), glucose metabolism 

(9/15, 60%) and neutrophil-mediated immunity (14/27, 52%)) have PPIs with carvedilol 

targets, suggesting a potential mechanism-of-action in which carvedilol inhibits SARS-

CoV-2 replication through multiple important pathways such as protein translation and 

mRNA splicing. We found several carvedilol targets that exhibited closer network distance 

to the virus host factors and COVID-19 pathways, such as GJA1, KCNH2, NDUFC2, 

VCAM1 and VEGFA (Extended Data Fig. 4). For example, VCAM1 plays important 

roles and has elevated levels in COVID-19102,103, and carvedilol can inhibit expression 

of VCAM1104. These results offer hypotheses that can be tested for the anti-SARS-CoV-2 

effect of carvedilol. Yet, future experimental validation to decipher the anti-SARS-CoV-2 

mechanism-of-action of carvedilol is highly warranted as well104.

We acknowledge several limitations. For Y2H, expression in yeast cells or translocation 

into the nuclei may be inefficient for some viral or human proteins, which can lead to 

false negatives. While fragment libraries can improve the coverage of Y2H screens, they 

can also lead to self-activating false positives105. For AP–MS, although overexpression 

of bait proteins can lead to false positives, it is not a limitation in the context of 

viral–host interaction studies. Viral proteins are inherently exogenous to host cells and 

expressed at a high level upon natural infection. Many of the overexpression promoters 

used for AP–MS are, in fact, viral-derived. Another factor is the reported limitation of 

ratio compression in TMT, which has been alleviated by the development of the SPS 

MS3-based acquisition work flow106,107. Moreover, as confirmed by previous studies on 

direct comparisons between TMT-based and label-free quantification108,109, TMT-based 

quantification has better precision (that is, consistency of measurements across replicates), 

while label-free quantification has large numbers of missing values, even with strategies 

like match between runs108. Thus, TMT approaches have better statistical power to detect 

abundance changes for more proteins, leading to better coverage108,109. The network-based 

SARS-CoV-2 treatment discovery may be affected by the incompleteness of the human 

protein–protein interactome and drug–target network. Therefore, we relied not only on the 

network discoveries, but also incorporated other types of evidence, such as EHR-based 

validation and experimental validation. Our EHR-based validation is retrospective and 

can only be applied to commonly used drugs owing to data availability. Although we 

adjusted for several confounding factors, other unknown factors may still have effect on 

the results of EHR-based validation. Therefore, the drugs identified in this study must 

be validated using randomized clinical trials before they can be used in patients with 

COVID-19. Lastly, we focused on the SARS-CoV-2–human protein interactome in this 

study. Combining multiple data resources (such as clustered regularly interspaced short 

palindromic repeats (CRISPR)110, genome-wide association studies111, rare variants112, 
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synthetic-lethality-based genetics interactions113 and metabolomics and proteomics114) 

may help build up comprehensive knowledge of COVID-19 using various advanced 

computational (for example, genome-scale metabolic modeling115) and multi-omics data 

integration approaches.

Methods

SARS-CoV-2 ORF clones

ORF3b (plasmid no. 141384; Addgene), NSP4 (plasmid no. 141369; Addgene), NSP12 

(plasmid no. 141378; Addgene), NSP13 (plasmid no. 141379; Addgene) and NSP14 

(plasmid no. 141380; Addgene) were a gift from N. Krogan, University of California, 

San Francisco. NSP6 (plasmid no. 149309; Addgene) and NSP16 (plasmid no. 141269; 

Addgene) were a gift from F. Roth, University of Toronto, which we cloned into our 

pHAGE-CMV-GAW-3xMyc-IRES-PURO construct using Gateway. E, M, N, NSP1, NSP2, 

NSP3, NSP5, NSP7, NSP8, NSP9, NSP10, NSP15, ORF3a, ORF6, ORF7a, ORF7b, 

ORF8, ORF9b, ORF9c, ORF10 and S, cloned into pCAG-FLAG and pcDNA6B-FLAG 

constructs, were a gift from P.-H. Wang, Shandong University. All SARS-CoV-2 ORFs were 

codon-optimized and expressed in either pLVX-EF1alpha-2xStrep-IRES-Puro (plasmid no. 

141395; Addgene), pHAGE-CMV-3xMyc-IRES-PURO, pCAG-FLAG, or pcDNA6B-FLAG 

mammalian expression vectors.

Y2H

Y2H screens were carried out as previously described8,21–24. In brief, viral ORFs 

were cloned into pDEST-AD and pDEST-DB vectors using Gateway LR to generate 

N-terminal ORF fusions. Similarly, human ORFeome 8.1 (ref.20) was cloned into pDEST-

AD and pDEST-DB vectors. All AD and DB expression clones were transformed into 

Y2H Saccharomyces cerevisiae strains MATa Y8800 and MATα Y8930 (genotype: 

leu2-3, 112 trp1-901 his3Δ200 ura3-52 gal4Δ gal80Δ GAL2∷ADE2 GAL1∷HIS3@LYS2 

GAL7∷lacZ@MET2 cyh2R), respectively. To screen out autoactivating DB-ORFs, all 

DB-ORF MATα Y8930 transformants were mated pairwise against empty pDEST-AD 

MATa Y8800 transformants and scored for growth on SC-Leu-Trp+3AT and SC-Leu-Trp-

Ade plates, where DB-ORFs that triggered reporter activity were removed from further 

experiments. To increase screening throughput, 24 human ORF AD or DB clones were 

pooled into single human ORF AD or DB wells, respectively. Viral ORF AD and DB clones 

were then mated pairwise against pools of human ORF DB and AD clones, respectively, for 

the first round of Y2H testing (called phenotyping I). Mated transformants were incubated 

overnight at 30 °C before being plated onto SC-Leu-Trp to select for mated diploid yeast. 

After another overnight incubation at 30 °C, diploid yeast was plated onto SC-Leu-Trp-

His+3AT and SC-Leu-Trp-Ade selection plates. After another overnight incubation at 30 °C, 

plates were replica cleaned and incubated again for 3 days at 30 °C for colony picking. All 

yeast colonies picked from phenotyping I were individually subjected to another round of 

Y2H testing called phenotyping II. Positive colonies from phenotyping II were processed 

for PLATE-seq to identify each AD-X and DB-Y pair. Finally, for every AD-Y and DB-X 

identified by PLATE-seq, we performed pairwise Y2H testing of each identified pair to 

ensure high reproducibility.
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PLATE-seq

Each colony was picked into 96-well plates containing 15 μl 2.5 mg ml−1 Zymolyase 

(catalog no. E1004; Zymo Research) and incubated for 45 min at 37 °C followed by 10 

min at 95 °C to prepare yeast cell lysate used as PLATE-seq DNA template. PLATE-seq 

was carried out as previously described24. In brief, plasmid(s) from individual wells of 

96-well plates were PCR amplified using a plasmid-specific forward primer and a reverse 

primer consisting of a well-position-specific barcode and TruSeq 3′ sequencing adapter. 

Amplicons derived from the same 96-well plate were pooled and purified using QIAquick 

PCR Purification Kit (catalog no. 28104; Qiagen). Each amplicon pool was subject to Tn5 

tagmentation to fragment the amplicons and append adapters consisting of a plate-specific 

barcode and TruSeq 5′ sequencing adapter. Tagmented DNA was purified using QIAquick 

PCR Purification Kit (catalog no. 28104; Qiagen) and pooled across all 96-well plates. 

These pools were then subjected to low-cycle PCR both to extend the TruSeq end adapters 

with sequences compatible for binding to the Illumina flow cell and to enrich for only 

DNA fragments consisting of TruSeq adapter sequences on both ends of the plate-specific 

and well-position-specific barcodes. PLATE-seq libraries were paired-end sequenced on an 

Illumina MiSeq.

Affinity purification

Caco-2 (HTB-37; ATCC) cells were cultured in EMEM (catalog no. 30–2003; ATCC) 

with 15% fetal bovine serum (FBS) (catalog no. 30–2020; ATCC) at 37 °C with 5% 

CO2. All 28 SARS-CoV-2 ORFs were codon-optimized and cloned into mammalian 

expression vectors that contained Strep, Myc, or FLAG affinity tags. SARS-CoV-2 ORF 

plasmids and corresponding empty vectors were individually transfected in biological 

duplicates into Caco-2 cells using Lipofectamine 3000 Transfection reagent (catalog no. 

L3000001; Invitrogen) following manufacturer’s instructions. Cells were harvested 72 h 

after transfection and lysed using RIPA lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM 

NaCl, 1% (v/v) Nonidet P 40 Substitute, 5 mM EDTA, phosphatase inhibitor (catalog no. 

4906845001; Roche) and protease inhibitor cocktail (catalog no. 11873580001; Roche)). 

Samples were incubated for 30 min at 4 °C and then centrifuged at 13,000g for 15 

min at 4 °C. Supernatants were collected and incubate with either MagStrep ‘type3’ XT 

beads (catalog no. 2-4090-002; IBA Lifesciences), Myc-Trap Agarose (catalog no. yta-10; 

ChromoTek) or Anti-FLAG M2 Affinity Gel (catalog no. A2220; Millipore) overnight at 4 

°C. Strep-tagged samples were washed with 10x Buffer W (catalog no. 2-1003-100; IBA 

Lifesciences) three times at 4 °C. Myc- and FLAG-tagged samples were washed with RIPA 

buffer. Strep-tagged samples were eluted using 10x Buffer BXT (catalog no. 2-1042-025; 

IBA Lifesciences). Myc- and FLAG-tagged samples were eluted using IP elution buffer (100 

mM Tris-HCl [pH 7.5], 1% (v/v) SDS) and incubated for 15 min at 65 °C. Other primary 

antibodies used in this study include c-Myc monoclonal antibody (catalog no. 13-2500; 

Invitrogen) and monoclonal anti-FLAG M2 antibody (catalog no. F3165; Sigma-Aldrich).

Proteomic sample preparation

IP eluates were reduced using 200 mM TCEP for 1 h at 55 °C. Samples were then alkylated 

using 375 mM iodoacetamide for 30 min at room temperature in the absence of light. 
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Samples were digested using Trypsin Gold, mass spectrometry grade (catalog no. V5280; 

Promega) at an enzyme-to-substrate ratio of 1:100 and incubated overnight with nutation at 

37 °C. Peptide concentrations were measured using Pierce Quantitative Colorimetric Peptide 

Assay (catalog no. 23275; Thermo Scientific). Samples were normalized and resuspended 

using 1 M triethylammonium bicarbonate for TMT experiments (catalog no. 90114; Thermo 

Scientific). Samples were labeled using TMT10plex Isobaric Mass Tagging Kit (catalog no. 

90113; Thermo Scientific) or TMTsixplex Isobaric Label Reagent Set (catalog no. 90061; 

Thermo Scientific) at a (w/w) label-to-peptide ratio of 10:1 for 1 h at room temperature. 

Labeling reactions were quenched by the addition of 5% hydroxylamine and immediately 

pooled and dried using a SpeedVac. Labeled peptides were enriched and fractionated using 

Pierce High pH Reversed-Phase Peptide Fractionation Kit according to the manufacturer’s 

protocol (catalog no. 84868; Thermo Scientific).

Liquid chromatography–tandem mass spectrometry

Fractions were analyzed using an EASY-nLC 1200 System (catalog no. LC140; Thermo 

Scientific) equipped with an in-house 3 μm C18 resin-(Michrom BioResources) packed 

capillary column (75 μm × 25 cm) coupled to an Orbitrap Fusion Lumos Tribrid Mass 

Spectrometer (catalog no. IQLAAEGAAPFADBMBHQ; Thermo Scientific). The mobile 

phase and elution gradient used for peptide separation were as follows: 0.1% formic acid in 

water as buffer A and 0.1% formic acid in 80% acetonitrile as buffer B; 0–5 min, 5%-10% 

B; 5–65 min, 10–55% B; 66–67 min, 55%-95% B; 67–68 min, 2% B; 68–72 min, 95% 

B; 72–80 min, 5% B; with a flow rate set to 200 nl min−1. MS1 precursors were detected 

at m/z = 375–1500 and resolution = 120,000. A CID-MS2-HCD-MS3 method was used 

for MSn data acquisition. Precursor ions with charge of 2+ to 7+ were selected for MS2 

analysis at resolution = 30,000, isolation width = 0.4 m/z, maximum injection time = 50 

ms and CID collision energy at 35%. 6 SPS precursors were selected for MS3 analysis and 

ions were fragmented using HCD collision energy at 65%. Spectra were recorded using 

Thermo Xcalibur Software v.4.1 (catalog no. OPTON-30965; Thermo Scientific) and Tune 

application v.3.0 (Thermo Scientific). Raw data were searched using Proteome Discoverer 

Software 2.3 (Thermo Scientific) against an UniProtKB human database containing all 

SARS-COV-2 proteins. Search parameters specified precursor mass and fragment mass 

tolerance of 15 p.p.m. Peptide-spectrum matches (PSMs) were searched with SEQUEST HT 

and Percolator and filtered at FDR < 1%.

See Supplementary Table 12a for viral bait vector and tag information, Supplementary Table 

12b,c for TMT10/TMT6 channel label information, including bait and control tags; and 

Supplementary Table 12d for isotope impurity correction information. Mass spectrometry 

proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE 

partner repository with the dataset identifier PXD035805.

Downstream proteomic analysis

We applied the MSstatsTMT116 linear-model-based pipeline (optimized for our 

experimental setup and purpose) to identify high-confidence viral–host interactions from 

TMT-AP–MS datasets. In brief, PSMs filtered at 1% FDR were selected for quantification 

by (1) the number of reporter intensity values per fraction, (2) percent isolation interference 
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and (3) precursor intensity values to select for one instance of a peptide peak. If more 

than one PSM passed these criteria, then the average of the reporter ion intensities per 

channel of these PSMs were taken to represent the quantification of the peptide peak. 

The reporter intensity values of selected PSMs were log transformed, weighed with their 

respective precursor intensities and averaged to obtain protein level quantification values. 

Our pipeline’s novelty lies in its ability to retain useful information separated across 

fractions at the PSM level while ensuring no violation of the assumption of independence, 

such that our linear fixed-effects model with conditions (for example, sample versus 

control), as a fixed effect, can be utilized. An improved P value calculation was used through 

empirical Bayes estimation of prior variance as implemented using limma package v.3.46.0 

(ref.117) in R platform v.4.0.3.

The FC and P values obtained from this linear-model-based approach are used to generate 

volcano plots for each viral bait protein compared to control. A baseline cutoff was set at 

a FC of greater than 2 and P value of less than 5%, on top of which a hyperbolic curve 

is optimized using the distribution of the log-transformed FCs of all identified proteins to 

identify high-confidence interactors. As a result, the actual cutoffs used for each AP–MS 

experiment are often significantly more stringent than the baseline values. A PSM cutoff, 

along with a peptide-coverage percent cutoff (that is, the percentage of all possible trypsin-

digested peptides, accounting for up to two missed cleavages that can be found), on the basis 

of the number of the PSMs of the viral protein’s and peptide-coverage percentage, is also 

implemented before the optimization of this hyperbolic curve.

Co-immunoprecipitation

HEK293T (CRL-3216; ATCC) cells were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM) (catalog no. 30-2002; ATCC) supplemented with 10% FBS (catalog no. 30-2020; 

ATCC) and incubated at 37 °C with 5% CO2. Cells were seeded onto six-well plates and 

grown until reaching 70–80% confluency. SARS-CoV-2 N, ORF3a, ORF7b, histone H1.4 

or N + histone H1.4, Sec61 or ORF7b + Sec61, STT3A or ORF7b + STT3A and empty 

vector controls were transfected into cells by combining 2 μg of DNA with 10 μl of 1 mg 

ml−1 PEI (catalog no. 23966; Polysciences) and 150 μl Opti-MEM (catalog no. 31985062; 

Gibco). After 24 h incubation, cells were gently washed three times with Dulbecco’s PBS 

(1×) (catalog no. 14040117; Gibco), resuspended with 200 μl cell lysis buffer (10 mM 

Tris-HCl [pH 8.0], 137 mM NaCl, 1% (v/v) Triton X-100, 10% (v/v) glycerol, 2 mM 

EDTA and protease inhibitor cocktail (catalog no. 11873580001; Roche)) and incubated 

on ice for 30 min. Extracts were then cleared by centrifugation at 16,000g for 10 min 

at 4 °C. To perform co-immunoprecipitation (co-IP), 100 μl cell lysate was incubated 

with 5 μl Red Anti-FLAG M2 Affinity Gel (catalog no. F2426; Millipore) overnight at 

4 °C under gentle rotation. Bound proteins were then washed three times with cell lysis 

buffer, eluted with 50 μl elution buffer (10 mM Tris-HCl [pH 8.0], 1% (v/v) SDS) and 

incubated for 10 min at 65 °C. Cell lysates and co-IP samples were then treated with 6× 

SDS protein loading buffer (1 M Tris-HCl pH 6.8, 10% (v/v) SDS, 50% (v/v) glycerol, 

0.03% (v/v) bromophenol blue and 10% (v/v) β-mercaptoethanol), subjected to SDS-

PAGE, and transferred onto PVDF membranes (catalog no. GE10600023; Amersham). For 

immunoblotting analysis, V5 Tag monoclonal antibody (catalog no. R960-25; Invitrogen), 
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c-Myc monoclonal antibody (catalog no. 13-2500; Invitrogen), monoclonal anti-FLAG M2 

antibody (catalog no. F1804; Sigma-Aldrich), or ZNF579 polyclonal antibody (catalog no. 

A303-275A; Bethyl Laboratories) were used at 1:1,000 dilutions.

Quantitative PCR

HEK293T cells were cultured as above, and ORFa–FLAG or empty vector were introduced 

with Lipofectamine 2000 transfection reagent (catalog no. 11668030; Invitrogen) according 

to the manufacturer’s instructions. Transfection experiments were performed in duplicate. 

Medium was replaced 6 h after transfection, and RNA was harvested using TRIzol 

Reagent (catalog no. 15596018; Invitrogen). Reverse transcription was performed with 

the Maxima First Strand cDNA Synthesis Kit for qPCR with reverse transcription (RT–

qPCR), with dsDNase (catalog no. K1671; Thermo Scientific). qPCR was performed 

on a LightCycler 480 System using LightCycler FastStart DNA Master SYBR Green 

I (catalog no. 03003230001; Roche Diagnostics). We used two primer sets for HSPA6 
(FWD1: CAAGGTGCGCGTATGCTAC, REV1: GCTCATTGATGATCCGCAACAC, 

FWD2: CATCGCCTATGGGCTGGAC, REV2: GGAGAGAACCGACACATCGAA), and 

performed three technical replicates of three concentrations of cDNA (1:10, 1:100, 1:1,000) 

for each replicate, and then compared expression levels normalized to GAPDH using the 

ΔΔCp method.

Interactome comparative analysis

We compared our SARS-CoV-2–human interactome to a collection of three previously 

reported interactomes3–5, and compared with ours in terms of the overlap (Fisher’s exact 

test) with the differentially expressed genes in SARS-CoV-2 from several SARS-CoV-2 

RNA-seq/proteomics datasets. These datasets include: (1) a single-cell dataset that contains 

CD8, epithelial (epi)-ciliated, epi-secretory, epi-squamous, macro, mono and natural killer 

cells from BALF37. We performed comparisons of virus+ versus virus− cells for each 

cell type; (2) bulk RNA-seq of human bronchial epithelial cells infected with SARS-

CoV-238 (GSE147507), denoted as SARS2-DEG; (3) proteomic dataset of human Caco-2 

cells infected with SARS-CoV-239, denoted as SARS2-DEP; (4) bulk RNA-seq of upper 

airway from COVID-19 patients versus non-COVID-19 patients (GSE156063)40, denoted 

as DE-NS; (5) bulk RNA-seq of peripheral blood mononuclear cell (PBMC) isolated from 

COVID-19 patients versus non-COVID-19 patients (GSE157103)41, denoted as DE-PBMC. 

For differential expression analysis, a cutoff of |log2FC| > 0.5 and FDR < 0.05 was 

considered significant. We calculated the Jaccard index (J) and overlap coefficient (C)118 

for two gene sets A and B as below:

J = A ∩ B
A ∪ B (1)

C = A ∩ B
min( A , B ) (2)
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Functional enrichment analysis

Functional enrichment of our SARS-CoV-2 host factors were analyzed using Enrichr119 

against the KEGG and GO biological process datasets. Pathways a GO terms with FDR < 

0.05 were considered significantly enriched. GO terms were summarized using Revigo120.

Selective pressure and evolutionary rates

The non-synonymous and synonymous substitution rate ratio (dN/dS ratio)121 and the 

evolutionary rate ratio122 of our SARS-CoV-2 host factors were evaluated as described in 

a previous study123. For dN/dS ratio, dN/dS < 1 was considered purifying selection; dN/dS 

= 1 was considered neutral evolution; and dN/dS > 1 was considered positive Darwinian 

selection. The evolutionary rate ratio >1 was regarded as a fast rate and <1 as a slow rate122.

Tissue gene expression specificity

We evaluated the gene expression specificity of the SARS-CoV-2 host factors in 33 tissues 

using the RNA-Seq data from GTEx V8 (ref.49) (https://www.gtexportal.org/home/). The 

expression specificity of gene i in tissue t was defined as

zit = Eit − Ei
σi

(3)

where Ei was the mean and σi was the standard deviation of the expression of gene i across 

all considered tissues, and Eit was the mean expression of gene i in tissue t.

Construction of human protein–protein interactome and drug–target network

The human protein–protein interactome and the drug–target network were used to 

screen for drugs against the SARS-CoV-2 host factors. The human protein–protein 

interactome, composed of 17,706 protein nodes and 351,444 unique PPI edges was 

constructed in our previous studies46,47,124,125. In brief, several types of high-quality 

PPI evidence gathered from public databases and datasets were considered, including: 

binary PPIs identified by high-throughput yeast two-hybrid in three datasets47,126,127; 

low- or high-throughput experimentally discovered kinase–substrate interactions from 

KinomeNetworkX128, PhosphoNetworks129, Human Protein Resource Database130, DbPTM 

3.0 (ref.131), Phospho.ELM132 and PhosphositePlus133; signaling networks identified using 

low-throughput experiments in SignaLink2.0 (ref.134); protein complexes revealed by 

robust affinity purification-mass spectrometry in BioPlex v.2.016135; and curated PPIs 

from Instruct136, IntAct137, BioGRID138, MINT139, PINA140 and InnateDB141 that were 

identified by yeast two-hybrid studies, affinity purification-mass spectrometry, protein 

three-dimensional structures, or low-throughput experiments. For comparison, we also 

built a directed version of the human protein interactome using the PPI direction 

information (including kinase–substrate and signaling networks) from PhosphositePlus133 

and SignaLink2.0 (ref.134).

The drug–target network was constructed using several data sources as described in our 

recent studies46,47,124: DrugBank database (v.4.3)142, BindingDB143, ChEMBL (v.20)144, 

Therapeutic Target Database145, PharmGKB database146 and IUPHAR/BPS Guide to 
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PHARMACOLOGY147. Binding affinities Ki, Kd, IC50 or EC50 ≤ 10 μM were used 

as cutoff for the drug–target interactions. All networks were visualized using Cytoscape 

3.8.0148. Clinical trial information was retrieved from the International Clinical Trials 

Registry Platform (assessed in May 2022).

Network proximity-based drug and drug combination screening

The ‘closest’ network proximity measure was used to screen for 2,938 FDA-approved or 

investigational drugs. The ‘closest’ distance dAB for two gene/protein sets A (for example, 

drug targets) and B (for example, SARS-CoV-2 host factors) was calculated as:

dAB = 1
A + B ∑

a ∈ A
minb ∈ Bd(a, b) + ∑

b ∈ B
mina ∈ Ad(a, b) (4)

where d(a, b) is the shortest path length of a and b in the human protein–protein interactome. 

Network proximity dAB was further normalized to obtain a Z-score using a permutation test 

with randomly selected proteins from the interactome with similar degree distributions to A 
and B (degree preserved node shuffling). Permutation tests were repeated 1,000 times. We 

prioritized drugs by Z < −2 and FDR < 0.05. For comparison, we also conducted degree 

preserved link shuffling using the double edge swap method to swap the links ten times 

the size of the human protein interactome times. For individual drug–target level network 

proximity to the disease modules, we used the ‘shortest’ measure that measures the average 

shortest distances of a target to the disease proteins (host factors):

dAB = ∑a ∈ A, b ∈ Bd(a, b)
A × B (5)

The antiviral profiles of the prioritized drugs were retrieved from NCATS (https://

opendata.ncats.nih.gov/covid19/assays). NCATS contains experimental high-throughput 

screening results for drugs from a series of screenings (some accompanied by counter 

screens) to evaluate their anti-SARS-CoV-2 potential. We included the following screening 

results: SARS-CoV-2 cytopathic effect and its counter screen SARS-CoV-2 cytopathic 

effect (host tox counter)/cytotoxicity; human fibroblast toxicity; spike–ACE2 protein–

protein interaction (AlphaLISA) and its counter screen spike–ACE2 protein–protein 

interaction (TruHit Counter); ACE2 enzymatic activity; SARS-CoV pseudotyped particle 

entry (CoV-PPE) and its counter screen SARS-CoV pseudotyped particle entry counter 

screen (CoV-PPE_cs); MERS-CoV pseudotyped particle entry (MERS-PPE) and its counter 

screen MERS-CoV pseudotyped particle entry counter screen (MERS-PPE_cs); and 3CL 

enzymatic activity. on the basis of the NCATS SARS-CoV-2 data, we further selected a list 

of top drugs from the network proximity-based prioritization that show ideal activities in at 

least two of these screenings.

COVID-19 patient data observations

Two independent datasets revealed corroborating evidence for the drug carvedilol, which 

was identified by our interactome prioritization framework. The first dataset (discovery 

dataset) was from the NMEDW. We first identified 512,198 patients who had SARS-
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CoV-2 reverse transcription-polymerase chain reaction (RT–qPCR) test results recorded 

in NMEDW. Patients with a positive RT–qPCR test were considered COVID-19 positive, 

where the earliest time of the test was recorded as the effective time. Patients that did 

not have any positive or presumptive positive RT–qPCR tests and the latest PCR test 

was negative (excluding pending and undetermined results) were considered COVID-19 

negative, where the latest time of the test was recorded as the effective time. By these 

metrics, 29,224 patients with pending or undetermined results were removed, yielding 

482,974 patients of interest. We excluded patients without age or sex information yielding a 

cohort of 481,526 patients, 66,541 of which were COVID-19 positive. We then extracted the 

carvedilol (and other drugs) administration information for all patients in the final cohort. If 

a patient had a carvedilol administration record with an administration date in the 6-month 

time window leading to the effective RT–qPCR result date and an administered dose > 0, 

the patient was considered carvedilol+. We also extracted comorbidity information of the 

cohort for propensity-score matching, for which we used the Charlson comorbidity index. 

All comorbidities and corresponding patient numbers are listed in Table 1.

The second dataset (external validation dataset) was an institutional review board-approved 

COVID-19 registry dataset that included 168,712 individuals tested for SARS-CoV-2 

infection (83,340 of which were positive cases) from March 8th to May 26th 2021, at 

the Cleveland Clinic in Ohio and Florida, United States (Supplementary Table 10). Pooled 

oropharyngeal and nasopharyngeal swab specimens were used to test for SARS-CoV-2 by 

RT–qPCR assay in the Cleveland Clinic Pathology and Laboratory Medicine Institute. All 

SARS-CoV-2 testing followed the guidelines established by the Centers for Disease Control 

and Prevention of United States. The dataset included baseline demographic information, 

medications and COVID-19 test results. We used REDCap149 electronic data capture tools 

to extract the patient data from the electronic health records (EPIC Systems), and the data 

were manually checked by a professional team trained on uniform sources for the study 

variables. A carvedilol exposure group (carvedilol+) included patients that were actively 

taking carvedilol at the time of SARS-CoV-2 testing. Positive laboratory test results for 

COVID-19 were used as the primary outcome. Propensity score was used to match age, 

sex and race to reduce various confounding factors. Odds ratio was used to evaluate the 

carvedilol benefit to primary outcome. All analyses were conducted by MatchIt package 

v.4.0.0 in the R v.4.1.0 platform.

Anti-SARS-CoV-2 activity assay for carvedilol

A549 (CCL-185; ATCC) cells exogenously expressing ACE2 (A549-ACE2) were a gift 

from B. R. Tenoever, Icahn School of Medicine at Mount Sinai. A549-ACE2 cells were 

cultured in DMEM (catalog no. 11965092; ThermoFisher) with 10% FBS (catalog no. 

100–106; GeminiBio) and used for SARS-CoV-2 infection. SARS-CoV-2 virus (nCoV/

Washington/1/2020) was provided by the Biocontainment Laboratory University of Texas 

Medical Branch Galveston National Laboratory, Texas, United States. Vero E6 (CRL-1586; 

ATCC) cells were used to propagate and titer SARS-CoV-2. SARS-CoV-2 infections were 

performed under biosafety level 3 conditions at the Biocontainment Laboratory University 

of Chicago Howard T. Ricketts Laboratory, Illinois, United States. A549-ACE2 cells 

cultured in DMEM with 2% FBS were treated with carvedilol for 2 h at the indicated 
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concentrations. Cells were infected with a multiplicity of infection of 0.5 in medium 

containing the appropriate concentration of drug. Forty-eight hours after infection, cells 

were fixed with 10% formalin (catalog no. 305–510; Fisherbrand), blocked and probed 

with mouse anti-SARS-CoV-2-spike antibody (catalog no. GTX632604; GeneTex) diluted 

1:1,000 for 4 h, rinsed and probed with anti-mouse-HRP (catalog no. MP7401; Vector 

Labratories) for 1 h, washed and then developed with DAB substrate (catalog no. 34065; 

ThermoScientifc) for 10 min. Spike positive cells (n > 40) were quantified by light 

microscopy as blinded samples. A sigmoid fit was used to extract EC50 values using 

MATLAB (2020b).

To measure the effect of carvedilol on cell viability, cells were treated with various 

concentrations of carvedilol diluted in DMEM with 2% FBS for 48 h. The drug solution 

was then removed and cells were fixed with 10% formalin solution. The cells were stained 

with Crystal Violet 0.25% for 30 min. The plate was spun dried in a tabletop centrifuge and 

absorbance of each well was measured using a TECAN Infinite 200 Pro at 595 nm. The 

percent survival was calculated relative to cells treated with dimethyl sulfoxide.

Zhou et al. Page 21

Nat Biotechnol. Author manuscript; available in PMC 2023 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data

Extended Data Fig. 1 |. Characteristics of the interactome.
(a) Overlap of the host factors among the four interactomes compared in this study. 

Heatmaps show the Jaccard indexes (green) and overlap coefficients (purple) of the host 

factors against other gene sets. Dots indicate FDR < 0.05 by Fisher’s exact test. In 

the box plots, boxes range from lower to upper quartiles, center lines indicate medians, 

whiskers show 1.5 × interquartile ranges and crosses show mean values. (b) The overlap 

of the interactions in our interactome with the other three interactomes by considering the 

protein complexes and pathways. If two host factors interacting with the same viral protein 

are known to interact with each other in the literature, we consider the two viral-host 

interactions as overlapping. (c) Overlap of the host factors with the differentially expressed 
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genes in SARS-CoV-2+ vs. SARS-CoV-2− cells in seven cell types from COVID-19 patient 

samples. Epi - epithelial. (d) Overlap of the host factors with the differentially expressed 

genes from four bulk RNA-seq/proteomics datasets. (e, f) Biological characteristics of the 

SARS-CoV-2 host factors. The host factors have lower non-synonymous to synonymous 

substitutions (dN/dS) ratios (e) and lower evolutionary ratios (f) compared to random 

background (gray, mean ± standard deviation of 100 repeats using genes randomly selected 

by degree preserved node shuffling). Genes were sorted in ascending order in terms of 

dN/dS ratio or evolutionary ratio.

Extended Data Fig. 2 |. ZNF579 targets significantly overlap with the differentially expressed 
genes in SARS-CoV-2 infected patient samples.
(a) Enriched KEGG pathways of genes associated with ZNF579 binding by ChIP-seq 

(ENCODE:ENCSR018MQH). Genes were considered to be bound by ZNF579 if a ChIP-

seq peak overlapped with the promoter region (-1000 to transcription start site). (b) Overlap 
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of ZNF579 targets and differentially expressed genes (DEGs) in bronchoalveolar lavage 

fluid (BALF) SARS-CoV-2+ vs. SARS-CoV-2− samples. See Methods for the source of the 

single-cell dataset. Fisher’s exact tests show that the overlaps are significant (FDR < 0.05) 

for five cell types, including CD8, epithelial-ciliated, epithelial-secretory, macrophage and 

monocyte. (c) The enriched pathways of the overlapping ZNF579 targets and DEGs in the 

five cell types. Pathways that are significantly enriched in at least two cell types are shown.

Extended Data Fig. 3 |. Comparison of the drug screening results using different interactomes 
and their combinations.
(a) 16 drugs identified by our interactome cannot be identified by any of the other three 

interactomes (and the interactome combined from them for 13 drugs) compared in this 

study. 6 of the top 23 drugs with desired anti-SARS-CoV-2 profiles are among these drugs. 

Zhou et al. Page 24

Nat Biotechnol. Author manuscript; available in PMC 2023 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(b) Drugs identified by combining all four interactomes that could not be identified by any 

interactome individually. Three drugs (highlighted with a star) were found to have desired 

anti-SARS-CoV-2 profiles.

Extended Data Fig. 4 |. Carvedilol indirectly targets the SARS-CoV-2 host factors through 
protein-protein interactions with its targets.
(a) Individual target-level network proximities to the SARS-CoV-2 gene sets (all host 

factors, host factors for each viral protein and gene sets by different functions from 

Reactome). Network proximities were computed using the ‘shortest’ method (See 

Methods). (b) Potential mechanisms-of-action of carvedilol by exploring the protein-protein 

interactions of its targets and the SARS-CoV-2 host factors.
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Extended Data Fig. 5 |. Comparison of the drug screening results using different variations of the 
network proximity-based screening methods.
(a) Network proximity-based drug screening using directed human protein-protein 

interactome vs. undirected human protein-protein interactome. (b) Network proximity-based 

drug screening using degree preserved edge shuffling vs. degree preserved node shuffling. 

PCC, Pearson correlation coefficient.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. SARS-CoV-2–human protein interactome.
a, Pipelines using Y2H and AP–MS for detecting SARS-CoV-2–human protein–protein 

interactions. b, Edges between viral proteins (diamonds) and human proteins (circles) 

represent protein–protein interactions. Edge colors indicate the methods used to detect the 

protein–protein interaction. Several biological processes that are significantly enriched in 

these human proteins (Supplementary Fig. 2 and Supplementary Table 2) are highlighted 

with yellow background. Human proteins that interact with only one SARS-CoV-2 protein 

are shown in the box connected to that specific protein. The interactome can be found in 

Supplementary Table 1.
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Fig. 2 |. Characteristics of the interactome and validation of novel SARS-CoV-2–human 
interactions.
a, UpSet plot showing the overlap of SARS-CoV-2–human protein–protein interactions 

from four studies (Supplementary Table 3). Each bar shows the interactions shared by 

only the marked studies at the bottom. Composition of each bar in terms of the source 

of the interactions are indicated by different colors. b, Co-IP confirming ORF3a–ZNF579 

interaction in HEK293T cells following transfection with ORF3a–FLAG or empty vector. 

The experiment was repeated independently three times with similar results. c, Western 

blot showing levels of ZNF579 along with GAPDH as a loading control in HEK293T 

cells following transfection with ORF3a–FLAG or empty vector. Experiment was repeated 

independently three times with similar results. d, ChIP–seq for ZNF579 in MCF7 cells from 

the ENCODE consortium at the HSPA6 locus. Signal is log2FC over input. e, Expression 
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of HSPA6 after transfection with ORF3a–FLAG or empty vector (E.V.). Two transfection 

replicates were probed with two primer pairs to HSPA6 at three different template dilutions 

in technical triplicate (18 total reactions for each condition). Expression is normalized to 

GAPDH and then to the empty vector average using the ΔΔCt method. Box plots display 

the median as the center line, the 1st and 3rd quartiles as hinges and 1.5× interquartile 

range as whiskers. Significance was assessed using the two-tailed Mann Whitney U test. 

f,g Co-IP confirming ORF7b–STT3A and ORF7b–Sec61 interactions in HEK293T cells 

following transfection with ORF7b–FLAG or empty vector and STT3A–MYC or Sec61–V5, 

respectively. Each experiment was repeated independently three times with similar results. h, 

Co-IP confirming N-histone H1.4 interaction in HEK293T cells following transfection with 

N or empty vector and histone H1.4. Experiment was repeated independently three times 

with similar results.
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Fig. 3 |. Discovery of interactome-based host-targeting therapies for COVID-19.
a, Work flow of drug repurposing for COVID-19 using our interactome. We ranked 

the drugs by their proximity to the SARS-CoV-2 host factors (Supplementary Table 7), 

filtered the top drugs by their NCATS anti-SARS-CoV-2 profiles (Supplementary Table 

8) and finally analyzed their drug–outcome relationship using EHR data (Table 1 and 

Supplementary Table 9,10). b, The top 23 drugs can target the SARS-CoV-2 host factors 

directly or through protein–protein interactions with their targets.
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Fig. 4 |. Population-based and experimental validation of interactome-predicted drugs.
a–c, Drug–outcome evaluation using the NMEDW and CCF COVID-19 databases. Odds 

ratio was used to evaluate the carvedilol effect to the positive laboratory test result of 

COVID-19. Statistically significant at P < 0.05 and odds ratio < 1 indicate that the carvedilol 

user with lower odds of COVID-19 positive testing. The central diamond box denotes the 

odds ratio and the error bar denotes the 95% confidence interval. Patients were matched with 

propensity score using age, sex, race and other comorbidities (Table 1) to reduce various 

confounding factors. Statistics derived from cohort details shown in Table 1. d, Experimental 

validation of the anti-SARS-CoV-2 activity of carvedilol showed an EC50 value of 4.1 μM 

and low cell toxicity. CC50, half-maximal cytotoxic concentration; SI, selectivity index (SI = 

CC50/EC50).
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Table 1 |

Patient Characteristics of NMEDW dataset

All patients SARS-CoV-2 positive patients

Carvedilol− Carvedilol+ Carvedilol− Carvedilol+

Total 478,536 2,990 66,289 252

Age 44.67±21.74 67.37±15.08 41.86±21.09 63.52±17.20

Sex, male 202,994 (42.4) 1,674 (56.0) 30,550 (46.1) 146 (57.9)

Race

Black 41,858 (8.7) 725 (24.2) 6,136 (9.3) 73 (29.0)

White 343,549 (71.8) 1,927 (64.4) 46,493 (70.1) 143 (56.7)

Other 60,273 (12.6) 274 (9.2) 9,407 (14.2) 27 (10.7)

Comorbidity

AIDS HIV 1,843 (0.4) 36 (1.2) 248 (0.4) 5 (2.0)

CD 32,555 (6.8) 1,336 (44.7) 3,498 (5.3) 103 (40.9)

CPD 87,868 (18.4) 1,249 (41.8) 12,078 (18.2) 123 (48.8)

CHF 26,973 (5.6) 2,042 (68.3) 3,331 (5.0) 172 (68.3)

Dementia 8,567 (1.8) 358 (12.0) 1,297 (2.0) 42 (16.7)

Diabetes with cc 20,670 (4.3) 1,359 (45.5) 3,031 (4.6) 139 (55.2)

Diabetes without cc 54,322 (11.4) 1,629 (54.5) 8,301 (12.5) 150 (59.5)

HP 5,380 (1.1) 298 (10.0) 568 (0.9) 27 (10.7)

Malignancy 47,660 (10.0) 805 (26.9) 4,606 (6.9) 67 (26.6)

MST 23,690 (5.0) 413 (13.8) 2,385 (3.6) 36 (14.3)

MLD 29,730 (6.2) 583 (19.5) 3,711 (5.6) 53 (21.0)

MSLD 2,906 (0.6) 119 (4.0) 307 (0.5) 11 (4.4)

MI 7,913 (1.7) 630 (21.1) 1,017 (1.5) 54 (21.4)

PUD 11,785 (2.5) 309 (10.3) 1,289 (1.9) 32 (12.7)

PVD 23,925 (5.0) 1,158 (38.7) 2,626 (4.0) 99 (39.3)

RD 26,068 (5.4) 1,820 (60.9) 3,479 (5.2) 181 (71.8)

RHD 13,887 (2.9) 232 (7.8) 1,607 (2.4) 18 (7.1)

Age is shown as mean ± standard deviation. All other characteristics are shown as number of cases (percentage). P values were calculated by 
two-sided t-test for age and Fisher’s exact test for other variables. AIDS HIV, acquired immunodeficiency syndrome and human immunodeficiency 
virus; CD, cerebrovascular disease; CPD, chronic pulmonary disease; CHF, congestive heart failure; diabetes with/without cc, diabetes with/
without chronic complications; HP, hemiplegia or paraplegia; MST, metastatic solid tumor; MLD, mild liver disease; MSLD, moderate or severe 
liver disease; MI, myocardial infarction; PUD, peptic ulcer disease; PVD, peripheral vascular disease; RD, renal disease; RHD, rheumatic disease.
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