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Abstract

The DNA-origami technique has enabled the engineering of transmembrane nanopores with 

programmable size and functionality, showing promise in building biosensors and synthetic 

cells. However, it remains challenging to build large (>10 nm), functionalizable nanopores that 

spontaneously perforate lipid membranes. Here, we take advantage of pneumolysin (PLY), a 

bacterial toxin that potently forms wide ring-like channels on cell membranes, to construct hybrid 

DNA-protein nanopores. This PLY-DNA-origami complex, in which a DNA-origami ring corrals 

up to 48 copies of PLY, targets the cholesterol-rich membranes of liposomes and red blood 

cells, readily forming uniformly-sized pores with an average inner diameter of ~22 nm. Such 

hybrid nanopores facilitate the exchange of macromolecules between perforated liposomes and 

their environment, with the exchange rate negatively correlating with the macromolecule size 

(diameters of gyration: 8–22 nm). Additionally, the DNA ring can be decorated with intrinsically 

disordered nucleoporins to further restrict the diffusion of traversing molecules, highlighting 

the programmability of the hybrid nanopores. PLY-DNA pores provide an enabling biophysical 

tool for studying the cross-membrane translocation of ultra-large molecules and open new 

opportunities for analytical chemistry, synthetic biology, and nanomedicine.
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Introduction

Over the past decade, nanopores have enabled real-time, single-molecule analysis of 

small molecules, proteins, or nucleic acids.1–5 For example, accurate, ultra-long genome 

reads provided by the MinION (Oxford Nanopore Technologies) sequencer have become 

commercially available.6 Nearly all of today’s nanopore implementations can be categorized 

into two types: synthetic and biological.7, 8 The bulk of synthetic nanopores are solid-

state nanopores, typically made by beam milling on silicon chips to achieve pores 

with controllable geometry.9 Biological pores10,11, exemplified by transmembrane protein 

channels fabricated through molecular biology methods, allow for site-specific and 

atomically-precise modifications.9, 12 In addition to enabling nucleic acid and peptide 

sequencing and label-free biomolecule detection, nanopore technology provides a platform 

to build devices with sustained directional rotary motions, forming essential building blocks 

for more advanced nanomachines or synthetic cells.13, 14

Realizing the full potential of nanopore technology relies on the ability to precisely control 

the nanopore’s physical and biochemical characteristics, including channel diameter and 

depth, mechanical stiffness, and surface chemistry.7, 8 As an information-rich molecule 

for building self-assembled nanostructures with programmable geometry, mechanics, 

and chemical modifications, DNA has emerged as a promising material for nanopore 

engineering. DNA nanochannels with well-controlled width (0.5–30 nm) can be coupled 

to solid-state nanopores by an electric current or embedded into the lipid bilayer through 

hydrophobic interactions.15–23 With the site-specific modification of receptor-specific 

ligands or mechanical switches, these DNA nanopores have shown molecular gating effects 

with user-defined selectivity.16, 17, 20, 21, 24

We set out to address a long-standing challenge in nanopore engineering: to readily 

incorporate wide (>10 nm) DNA channels with customizable functionality into lipid 

membranes. To date, embedding a highly charged, hydrophilic DNA channel into the 

hydrophobic core of lipid bilayers was achieved with a high energy input provided 

by amphipathic membrane anchors (e.g., cholesterol, porphyrin, alkyl chains) displayed 

on the exterior of the DNA channel.25, 26 The energy requirement grows quadratically 

with increasing channel width27, necessitating a large number of amphipathic labels 

on the DNA channel, which brings additional design and experimental challenges to 

conceal the membrane anchors in order to mitigate hydrophobicity-mediated channel 

aggregation.16, 17, 22, 23, 28–30 Moreover, these DNA channels often require external stimuli 

(e.g., electric voltage, solvent, or detergent) to drive membrane insertion or suffer slow pore-

forming kinetics. Inspired by previous work that uses DNA scaffold to guide the assembly 

of protein pores31–33, here we built a DNA-toxin hybrid pore with a rigid, functionalizable 

DNA-origami channel carrying membrane-targeting pneumolysins (PLYs).34, 35 Powered by 

the potent PLY toxins, the PLY-DNA complex spontaneously formed large pores (lumen 

width >20 nm) on cholesterol-rich membranes. Furthermore, the DNA-origami channel 

promoted the uniform PLY pore size and accommodated additional diffusion-restricting 

molecules (e.g., Nsp1), thus forming size-selective gatekeepers to control macromolecule 

flux in and out of a synthetic membrane compartment. By integrating bacterial toxins into 
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DNA nanostructures, our work not only adds a robust ultrawide pore to the DNA nanopore 

toolkit, but also expands its design space and possible applications.

Results

In our modular hybrid nanopore design, PLY is responsible for perforating the lipid 

membrane, while the DNA-origami channel displays handles (ssDNA extensions) to 

corral a defined number of PLYs to limit pore size and host additional modifications. 

PLY is a cholesterol-dependent cytolysin (CDC),36 a pore-forming protein derived 

from Streptococcus pneumoniae.34, 35 Structural studies revealed that approximately 42 

PLY monomers form a transmembrane channel with an inner diameter of about 25 

nm.37 We utilized PLY because its monomers are reasonably stable in solution and 

remain monodispersed after covalently conjugated to a DNA oligonucleotide (Figure S1). 

PLY monomers targets cholesterol-rich membranes and form a circular assembly upon 

membrane binding, which undergoes further conformational changes to form a β-barrel that 

electrostatically repels lipids to open a pore.37, 38 Additionally, PLY necessitates a lower 

cholesterol level (30%) than other common CDCs (approximately 50%)39–41, allowing the 

hybrid nanostructures to function on a broader range of lipid compositions.

To facilitate PLY-DNA conjugation, we recombinantly expressed PLY containing a single 

cysteine (Cys) residue at the N-terminus within the soluble domain (Figure 1A, sequence 

in Table S1). Previous studies showed that removing the only internal Cys could reduce 

its cytotoxicity, but the Cys-free PLY retained the oligomerization and membrane insertion 

behaviors of the wild-type protein.42, 43 We then chemically crosslinked the N-terminal Cys 

of PLY to a 5’-amino-modified DNA oligonucleotide (termed “anti-handle” for its sequence 

complementarity to the DNA handles) and purified the anti-handle-conjugated PLY by size 

exclusion chromatography (SEC) to remove unreacted oligonucleotides (Figure S1).

We built a ring-shaped DNA channel (adapted from our previous studies44) with an inner 

diameter of 45 nm and a height of 14 nm. We extended 48 handles from two helices 

at the bottom of the DNA channel (red curls in Figure 1B, also see Figure S2 for the 

caDNAno45 diagram), to which the PLY-anti-handles bound after 2-hour incubation at room 

temperature or 37 °C (Figure 1C). Importantly, we purified the DNA-origami-PLY complex 

by density gradient centrifugation to enrich the correctly assembled products and remove 

any free PLY (Figure S3). The purified DNA-corralled PLY structure migrated as a retarded 

band compared to the empty DNA channel during agarose gel electrophoresis (Figure S3). 

Negative-stain transmission electron microscopy (TEM, Figure 1C and Figure S4) of the 

same sample revealed additional density at the designed locations of the DNA channel, 

confirming the DNA-guided arrangement of PLYs as expected.

To verify that our assemblies can insert into membranes, we incubated purified PLY-

DNA rings (5 nM) with large unilamellar vesicles (LUVs) containing 70% 1,2-dioleoyl-

sn-glycero-3-phosphocholine (DOPC) and 30% cholesterol (total lipid concentration = 1 

mg/mL, homogenized by extrusion through 100 nm filters) at 37°C for 10 minutes and 

imaged the mixture under TEM. From the EM micrographs, we observed that nearly all 

PLY-DNA rings had attached to the LUV membranes. In most cases, the DNA rings 
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and their interior PLY rings were clearly discernable (Figure 1C and Figure S5). These 

findings were corroborated by cryo-EM studies of LUV-bound PLY-DNA rings, which 

further captured a DNA-encircled PLY pore penetrating the LUV membrane (Figure 1D and 

Figure S6).

Next, we compared the pore-formation behaviors of our PLY-DNA rings to that of 

unconjugated PLYs. We expected minimal differences between the two as the 48 copies of 

PLY monomers in our PLY-DNA ring design closely match those quantified from the cryo-

EM structures of PLY complexes (38, 42, or 44 copies) in bilayers.37, 46 While we designed 

the DNA-origami channel to carry a few more PLY monomers than the wild-type PLY 

complexes, variations of several monomers are typical of CDCs and have only mild effects 

on the subunit packing within the pore complex.46 Indeed, our negative-stain TEM and 

cryo-EM measurements determined the inner diameter of DNA-corralled PLY complexes to 

be 21.2±2.39 nm (n=50) and 22.3±1.96 nm (n=24) (Figure S5), respectively. These numbers 

were slightly larger than the 20.2±0.97 nm (n=48) we measured for PLY-only pores on the 

same membranes (Figure S5) and close to the inner diameter of wild-type 42-mer PLY 

pores previously reported (~25 nm).37 The small deviations may be attributed to variations 

in imaging conditions and measurement techniques, relocation of the single Cys in PLY, 

imperfect DNA-origami labeling efficiency, and steric constraints imposed by the DNA ring. 

We further performed a classical cell-lysis assay to confirm the PLY’s membrane-puncturing 

function, where the rupture of the cell membrane was reported by the absorbance of heme 

in the released hemoglobin (Figure 1E). By mixing purified PLY-DNA rings, free PLY 

(positive control), or unmodified DNA rings (negative control) with sheep erythrocytes, we 

verified that the PLY-DNA ring was almost as effective as free PLYs at rupturing red blood 

cells (EC50=160.6±3.63 and 119.2±7.35 pg/μL, respectively), showing that DNA-origami 

attachment did not substantially hinder the pore-forming activities of PLY.

To further verify that PLY-DNA rings punctured holes on lipid bilayers that permit 

macromolecules to pass through, we mixed purified Cy3-labeled PLY-DNA rings with 

giant unilamellar vesicles (GUVs, containing 69.2% DOPC, 30% cholesterol, and 0.8% 

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-Cy5) and simultaneously added FITC-

labeled dextran with a nominal molecular weight of 20 kDa to the mixture. After 20 

minutes, we imaged the GUVs under a confocal fluorescence microscope to measure the 

adhesion of PLY-DNA rings and the influx of dextrans (Figure 2). Integrating the Cy3 

fluorescence accumulated on GUV membranes and comparing that to the Cy3 signals in 

solution obtained from a DNA-only sample, we estimated the surface density of PLY-DNA 

rings to be 40.3±12.8/μm2 or a surface coverage of 12.2±3.9% (n = 11, Figure S7). 

Moreover, most GUVs co-incubated with PLY-DNA rings were permeable to the 20 kDa 

dextran, as indicated by the equal fluorescence intensities inside and outside of the GUVs 

(Figure 2, GUV + PLY-DNA ring). Compared to free PLY proteins (50 nM; Figure 2, GUV 

+ PLY), the PLY-DNA ring (1 nM) showed comparable pore-forming efficiency, consistent 

with results from our cell lysis assay (Figure 1E). In contrast, most GUVs remained 

impermeable (with unfilled interiors) in the absence of PLY (Figure 2, GUV only and 

GUV+DNA ring), confirming the function of PLY in mediating the DNA-membrane binding 

and pore formation. We note that the PLY-DNA rings produced transmembrane nanopores 
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in the absence of detergent or electric field within minutes, suggesting the robustness and 

efficacy of PLY-mediated formation of hybrid nanopores.

Subsequently, we studied the diffusion of macromolecules through the PLY-DNA pores. 

Dextrans of various diameters of gyration—8.4 nm (20 kDa), 11.6 nm (40 kDa), 15.2 nm 

(70 kDa), and 22.0 nm (150 kDa)17, 47—were separately purified by SEC (Figure S8) 

and mixed with GUVs and PLY-DNA rings. The cross-nanopore diffusion of dextrans met 

greater impedance as their sizes increased, showing a considerable variation in the influx 

rate (Figure S9). For example, the 20 kDa dextran could completely fill a perforated GUV 

around 10 minutes, while the 150 kDa variant did not reach equilibrium after 90 min 

(Figure S9). Given the average size of the 150 kDa dextrans (~22.0 nm), we consider these 

observations consistent with the inner diameters of DNA-corralled PLY pores measured by 

negative-stain TEM and cryo-EM (21–22 nm, Figure S5).

To quantify the size-dependent cross-nanopore diffusion kinetics, we performed 

fluorescence recovery after photobleaching (FRAP) assays using the three FITC-dextran 

species (20, 40, and 70 kDa) that can enter GUVs through the PLY-DNA pores within 1 

hour (Figure 3A). After fluorescence intensities reached equilibrium in and outside GUVs, 

we bleached the GUVs’ interiors and measured the FITC fluorescence recovery. From 

representative FRAP traces (Figure 3B), it is evident that larger dextran molecules took 

longer to diffuse through PLY-DNA pores. We normalized the initial linear slope of the 

recovery traces by multiplying the GUV radii and used this value as a proxy of diffusion 

rate, under the assumption that GUVs have the same nanopore densities (Figure 3C and 

Figure S10). By this measurement, the 20 kDa dextran diffuses 4-times and 14-times 

more rapidly than the 40 kDa and 70 kDa counterparts, respectively. Variations in the 

apparent diffusion rate within each group could be attributed to the heterogeneous nanopore 

density on GUVs. To estimate the number of pores on each GUV, we used an established 

method17 to find the total porous area of the membrane by fitting FRAP traces (n=7) with 

an exponential function derived from Fick’s first law48. By this method, we estimated 

29–184 nanopores per GUV (diameter: 5–9 μm) or a pore density of 0.56±0.34/μm2, 

assuming a total PLY-DNA channel length of 25 nm (see Supporting Information for 

details). Compared to the estimated 40.3±12.8/μm2 PLY-DNA rings attached to GUVs, 

this suggests an estimated pore-formation efficiency of 1.39%. While this reduction in pore 

formation efficiency compared to the 50–60% of wild-type PLY38 might be related to the 

C428A mutation42, 43 (necessary for the site-specific DNA conjugation to the N-terminal 

Cys), we attribute this discrepancy chiefly to the methods we used to quantify the pores. 

Here the pore-forming efficiency was derived from two indirect measurements based on 

bulk fluorescence and diffusion kinetics instead of direct single-pore counting, and therefore 

should be treated as a very rough estimation. Nonetheless, the PLY-DNA complexes robustly 

penetrated membranes without the help of electric field, detergent or solvent, supporting its 

potential as an adaptable platform for building functionalized nanopores.

The programmability of DNA origami provides the opportunity to incorporate putative 

gating molecules into the lumen of the PLY-attached DNA channel. In eukaryotic cells, 

massive protein channels called nuclear pore complexes (NPCs) control entry and exit 

from the nucleus through the function of intrinsically disordered phenylalanine-glycine (FG) 
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rich nucleoporin/nup proteins (FG-nups) that fill the central channel. The FG-nups are 

therefore ideal candidates to form a size-selective diffusion barrier that might be capable of 

gating the 20 nm wide PLY-DNA origami channels. Indeed, in prior work, we successfully 

built reductionist NPCs by grafting size-defined DNA-origami channels with FG-nups. 

Building on this NuPOD (NucleoPorins Organized on DNA) platform,44, 49 we hybridized 

an anti-handle-conjugated Nsp1, a model FG-nup,50–54 to the 36 copies of complementary 

handles on the inner face of the purified PLY-DNA origami (Figure 4A). As in previous 

studies18, 44, 49, 55, we confirmed the Nsp1 incorporation into the PLY-DNA ring by agarose 

gel electrophoresis and TEM (Figure 4B and Figure 4C). We then used such Nsp1-modified 

PLY-DNA rings to perforate GUVs and tested their permeability against dextrans of various 

sizes. While unmodified PLY-DNA rings allowed a sufficient influx of 20 and 40 kDa 

dextrans into GUVs to reach equilibrium within 15 minutes, Nsp1 severely delayed this 

process, resulting in substantially reduced entry after the same duration (Figure 4D). Within 

the timeframe of our measurement (~60 min), the Nsp1-modified pores were effectively 

impermeable to the 70 kDa dextran (Figure S11). These data suggest that Nsp1 altered the 

size selectivity of the nanopore, reducing the effective pore size to further hinder cross-pore 

diffusion.

We then subjected the GUVs with Nsp1-PLY-DNA pores to a FRAP assay to quantitatively 

measure the diffusion kinetics of 20 and 40 kDa dextrans through the Nsp1-modified pores 

(Figure 4E). The 20 kDa dextran passed through the Nsp1-modified pores about 2.7 times 

faster than the 40 kDa dextran. Compared to empty PLY-DNA pores, the presence of 

Nsp1 slowed the diffusion of 20 and 40 kDa dextrans by approximately 74% and 58%, 

respectively (Figure 4F), suggesting that Nsp1 reduced the effective pore size in a way 

that more heavily impacted diffusing molecules of smaller sizes. These measurements are 

in qualitative agreement with the size selectivity of Nsp1-NuPOD we previously reported: 

Nsp1 forms a “soft” diffusion barrier with lower permeability to larger molecules.49 The 

reduction of diffusion introduced by Nsp1 also matched expectations from established 

models that describe the diffusion coefficient of a solute through a porous membrane 

as a function of the solute-to-pore-size ratio.56, 57 Together, these results highlight the 

programmability of the hybrid nanopore design that enables the customization of the 

nanopore’s selectivity.

Conclusion

Membrane-spanning nanopores with increasing size and complexity are needed for basic 

research, such as experimentally modeling nuclear transport, and advanced translational 

applications, including nanopore detection of macromolecules and their assemblages (e.g., 

viruses). Our modular toxin-DNA hybrid pores provide a practical method to build well-

behaved transmembrane pores over 20 nm in width, featuring the design flexibility and 

precision to functionalize the nanopore with gating or recognition molecules. The PLY-

DNA rings readily penetrate bilayer membranes using the specialized pore-forming toxins 

and, with the densely grafted Nsp1 in the DNA channel, exhibit altered size selectivity 

against macromolecules. Thus, the robust pore-forming capability of PLY and the tunable 

permeability afforded by the DNA channel bode well for future applications that require 

a stable nanopore with controllable dimensions and gating functions. For example, other 
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nucleoporins can be incorporated into the DNA-PLY pores to mimic the nuclear pore more 

closely and to ultimately reconstitute a nucleus-like synthetic compartment with controlled 

molecular uptake and export. It is also conceivable to extend the toxin pore size beyond 

20 nm using DNA-origami channels carrying a larger number of PLY or other CDCs 

(wild-type or engineered). The spacings between the DNA ring, toxins, and gating molecules 

can be further reduced (e.g., by reducing DNA handle length or coating DNA with block 

co-polymers58, 59) to mitigate possible leakage of small molecules. Finally, cell targeting 

molecules and on-off switches similar to those previously described16, 20, 21, 24, 60 may be 

added to the DNA-origami channel. Activation of nanopores by biomarkers will enable the 

perforation of diseased cells61 or control the release of liposome-confined therapeutics.62
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: The construction and membrane-insertion activities of PLY-DNA rings.
(A) Schematical illustration of PLY-anti-handle conjugation (left) and SDS-PAGE assay 

(right) showing the gel mobility shift of PLY before and after ssDNA anti-handle 

conjugation.

(B) Cartoon models showing the dimensions and handle positions of the DNA-origami ring 

(left) and a negative-stain TEM micrograph of the purified DNA rings. Three sets of handles 

with orthogonal sequences (blue, green, and red curls) were strategically placed for attaching 

fluorophores and proteins via handle/anti-handle hybridization. Scale bar: 50 nm.

(C) Schematics and negative-stain EM micrographs showing the assembly of PLY-modified 

DNA-origami rings and their membrane insertion. Scale bars: 50 nm.

(D) A cryo-EM image showing a liposome perforated by a DNA-origami-corralled PLY 

pore. Scale bar: 50 nm.
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(E) Sheep erythrocytes lysis assay comparing membrane puncturing by unconjugated PLY 

and PLY-DNA rings. DNA-origami rings without PLY modification serve as a negative 

control. Data points are shown with mean and standard deviation from three independent 

trials.
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Figure 2: PLY-DNA-origami produces transmembrane nanopores that facilitate the diffusion of 
macromolecules into GUVs.
Shown from left to right are the schematics and representative images of GUVs 20 minutes 

after adding buffer only, anti-handle-conjugated PLY, PLY-DNA rings, and DNA-origami 

rings without PLY. Pseudo-colors: Cyan = Cy3 (DNA ring), red = Cy5 (GUV), and green = 

FITC (dextran). Scale bars: 5 μm. Bar graphs at the bottom denote the percentages of GUVs 

with observable dextran influx.
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Figure 3: Diffusion of macromolecules across PLY-DNA-origami pores is size-dependent.
(A) Schematics of the FRAP assay on a GUV with PLY-DNA nanopores. After the interior 

of the GUV is equilibrated with the exterior containing FITC-dextran, the interior is 

photobleached and monitored for the fluorescence signal recovery caused by the exchange 

of FITC-dextran through the nanopores.

(B) Representative FRAP traces of perforated GUVs mixed with FITC-dextran of various 

sizes. The slope K (red line) denotes the initial rate of FITC fluorescence recovery after 

photobleaching (time 0). Insets: Confocal micrographs of GUVs at selected time points 

during the FRAP experiment. Scale bars: 5 μm.

(C) The initial recovery rates (K) normalized by the radii of GUVs are used to compare the 

diffusion rates of dextrans of various sizes through PLY-DNA pores. Data points are shown 

with mean and standard deviation. ****: P < 0.0001, two-tailed Mann–Whitney tests, U = 

17 (left) and 9 (right). See Supporting Information for details of statistical analyses.
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Figure 4: Incorporating Nsp1 into PLY-DNA rings alters the nanopore size selectivity.
(A) A schematic illustrating a PLY-DNA nanopore modified by 36 copies of Nsp1 grafted to 

the DNA central channel.

(B) An SDS-agarose gel showing the empty DNA ring, PLY-DNA ring, and Nsp1-modified 

PLY-DNA ring structures.

(C) Negative-stain EM micrographs of PLY-DNA rings modified by Nsp1. Scale bar: 50 nm.

(D) Schematics (left) and representative fluorescence confocal images showing the influx 

of FITC-dextran (green) through PLY-DNA pores (top) and Nsp1-modified PLY-DNA pores 

(bottom) into Cy5-labeled GUVs (red) after 15 min co-incubation. Scale bars: 5 μm.
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(E) Representative FRAP traces of GUVs containing Nsp1-modified PLY-DNA nanopores 

mixed with 20kDa (top) and 40kDa (bottom) FITC-dextran. K (red line) denotes the 

initial rate of FITC fluorescence recovery after photobleaching (time 0). Insets: Confocal 

micrographs of GUVs at selected time points during the FRAP experiment. Scale bars: 5 

μm.

(F) The initial rates of fluorescence recovery (K) normalized by the radii of GUVs are 

used to compare the diffusion rates of 20 kDa and 40 kDa dextrans through empty (grey, 

same as those shown in Figure 3C) and Nsp1-modified (blue) PLY-DNA pores. Data points 

are shown with mean and standard deviation. ****: P < 0.0001, two-tailed Mann–Whitney 

test, U = 17 (left), 27 (middle), and 34 (right). See Supporting Information for details of 

statistical analyses.
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