Abstract
Picosecond lasers have a very short pulse duration and a high peak power density. When fractional optical delivery systems are attached to picosecond lasers, they generate an array of concentrated microspots with a high fluence surrounded by areas with a low fluence. This article discusses the histologic characteristics and clinical applications of fractional picosecond laser treatment. Fractional picosecond laser produces laser-induced optical breakdown (LIOB) and laser-induced cavitation (LIC) in the epidermis and dermis respectively, and can encourage skin regeneration and dermal remodeling. It has been shown that fractional picosecond laser has a positive effect on facial photoaging, enlarged facial pores, dyspigmentation, wrinkles, and atrophic scars. Further research is still needed to confirm the benefits of fractional picosecond lasers.
Keywords: Picosecond laser, Fractional optical delivery systems, Histologic characteristics, Clinical applications
Introduction
Laser treatment has long been used in dermatology. The wavelength governs the energy of the photons, while the pulse duration governs the time during which the laser delivers energy to the tissue, and the thermal relaxation time refers to the time required for the heated target tissue to reduce its absorbed energy by 50% through thermal diffusion. The target tissue undergoes specific thermal damage when the pulse duration is shorter than the thermal relaxation time [1]. Picosecond lasers can provide pulse durations between 300 and 900 picoseconds (10–12 s) [2]. In 2012, the FDA approved the first picosecond laser for skin applications (Picosure, Cynosure, Westford, Massachusetts) [1].
Regarding the wavelength, picosecond lasers include the picosecond alexandrite laser (755 nm) and the picosecond neodymium: yttrium‐aluminum‐garnet (Nd:YAG) laser (1064 nm), which delivers 730-nm and 785-nm laser light when used with a laser‐pumped handpiece, or 532 nm if frequency doubled [3].
For skin cosmetology, laser-tissue interactions include photothermolysis, photomechanical (photoacoustic) effect, photochemistry, and photobiomodulation (biostimulation). Photothermolysis involves tissue vaporization or melting through heating by lasers, including the carbon dioxide (CO2) laser or the erbium: yttrium–aluminum-garnet (Er:YAG) laser [1]. The photomechanical or photoacoustic effect occurs when an ultrafast temperature increase generated by a picosecond pulse causes a powerful acoustic shock wave after absorption by a tissue chromophore, producing a tensile stress beyond the tissue fracture threshold [2]. Photochemistry occurs when laser energy is absorbed by the tissue and triggers chemical reactions, which leads to the breaking of chemical bonds between the molecules, and then weakens and destroys the tissue [1]. Photobiomodulation refers to delivering energy to mitochondria, changing the permeability of cell membranes, stimulating fibroblasts to synthesize more collagen and elastin, or regulating the cell signal transduction pathway to upregulate or downregulate the expression of certain genes, rather than producing skin rejuvenation by the effects of tissue heating. Picosecond laser therapy differs from nanosecond laser therapy in that the pulse width is shorter and the peak power density is higher [4]. Nanosecond laser treatment relies mainly on photothermolysis rather than photomechanical effects; however, picosecond lasers rely mainly on photoacoustic destruction [5, 6]. This approach can enhance the energy transmitted to target cells within the lesion, and avoid thermal damage to surrounding tissues[6].
A variety of holographic or diffractive lens arrays can be used to produce fractional picosecond laser energy. These arrays allow the energy to be concentrated within laser microbeams, while neighboring tissue between the microspots is unharmed [2]. Commercially available fractional optical delivery technologies include, diffractive lens arrays (DLA), micro-lens arrays (MLA), and holographic optical arrays [7]. Different optical arrays with different spot sizes have been applied in various picosecond laser devices. DLA technology is employed in the 755-nm alexandrite picosecond laser, and involves closely packed individual hexagonal lenses with a 500 μm pitch [8]. The DLA produces a hexagonal pattern of high-intensity spots surrounded by low-intensity background [8]. The 532-nm and 1064-nm picosecond Nd:YAG laser employ a MLA with a spot size of 4 mm to produce high-intensity zones of tissue damage while preserving the remainder of the surrounding tissue unaffected [9]. This holographic optical array (PicoWay Resolve, Candela) delivers an array of 100 microbeams over a 6 mm × 6 mm area [10].
These systems all employ fractional optical delivery devices attached to picosecond lasers [11]. In this article, we review the histological characteristics and clinical applications of fractional picosecond laser treatment (Table 1).
Table 1.
Disease | Laser | Therapy parameters | Fitzpatrick scale | Number of cases | Clinical outcome | Adverse events | Reference |
---|---|---|---|---|---|---|---|
Facial rejuvenation | 755-nm picosecond laser with DLA | 8 mm spot, fluence of 0.4 J/cm2, 5 Hz pulse rate or 6 mm spot, fluence of 0.71 J/cm2, 10 Hz pulse for six treatments at 4-week intervals | III–IV | 18 | Skin texture and dyspigmentation scores improved significantly; however, in pore size or wrinkles, there was no significant improvements | Transient erythema and edema | [20] |
755-nm picosecond alexandrite lasers with DLA | 8-mm spot, fluence of 0.4 J/cm2, 750 ps pulse duration, 10 Hz pulse repetition for 3–5 treatment sessions at 4-week intervals | IV | 10 | Pores had improved at 12- and 20-week follow-up, while at 1-year follow-up, the score of pigmentation showed 38% improvement, and wrinkles improved significantly. | Mild erythema, itchiness, desquamation | [21] | |
755 nm picosecond alexandrite laser with a DLA | 8‐mm spot, 0.4 J/cm2, 10 Hz pulse repetition, and 750 ps pulse duration for 10 sessions at 2-week intervals |
III–IV III (n = 2); IV (n = 8) |
11 (10 patients completed) |
Pigmentation: compared with the control side, the improvement of the treated side reached statistical significance at follow‐up Wrinkles: the trend of improvement did not reach statistical significance at 6‐month follow‐ups |
Transient erythema and edema, slight PIH | [22] | |
755 nm picosecond laser with DLA | 8 mm spot, 10 Hz, 0.4 J/cm2 or 10 mm spot, 10 Hz, 0.25 J/cm2 in just one treatment session |
III–IV III (n = 29); IV (n = 17) |
46 | Wrinkles improved significantly, over half of patients showed improvement in pore size | Mild hyperpigmentation | [23] | |
Combination of the 1064 and 532-nm picosecond laser with a fractional handpiece |
Total pulse energy: 350 mJ for the 1064-nm wavelength, 250 mJ for the 532-nm wavelength The 532-nm component followed the 1064-nm portion |
I–III I (n = 2); II (n = 12); III (n = 4) |
18 (10 subjects completed) | At 1-month follow-up, 79% of patients had mild‐to‐moderate wrinkle improvement. 93%, 78%, and 87% of patients showed mild to significant mottled pigmentation improvement at 1-month, 3-month, and 6-month follow-up | Trace erythema | [24] | |
Wrinkles | 755 nm alexandrite picosecond laser with DLA | 6 mm spot, fluence of 0.57 J/cm2, 750 ps pulse duration, 10 Hz repetition rate for 5 treatments at 4-week intervals. Standard half face treatment: an average of 3301 + / − 155 pulses, the other half of face: an average of 5867 + / − 500 pulses | II–IV | 4 | Two treated sides had no significant difference. The standard pulse side had good to excellent improvement, and the high pulse side had very good to excellent improvement | Erythema and edema | [25] |
755 nm alexandrite picosecond laser with DLA | 6 mm spot, fluence of 0.71 J/ cm2, 750 ps pulse duration, 10 Hz pulse repetition for 4 treatments at 1 month intervals |
I–IV I (n = 4); II and III (n = 34); IV (n = 2) |
40 |
At the 6-month follow-up, the average Fitzpatrick wrinkle score was 3.47 (the baseline was 5.48). 31.6% of individuals were very much improved, 28.9% were much improved, and 28.9% were improved at 6-month follow-up. |
Transient erythema, edema, bruising | [26] | |
Dyspigmentation (melasma) | 755 nm alexandrite picosecond laser with DLA | 8-mm spot size, fluence of 0.4 J/cm2, 750 ps for three treatment sessions at 4- to 6-week intervals | IV | 20 | The mean MASI score improved to 6.9 ± 3.7 after 3 sessions treatment with the baseline was 9.4 ± 4.7 | Erythema, pruritus, scaling, and only one developed mild PIH | [27] |
Fractional 1064-nm picosecond laser | 450 ps pulses with a maximum microbeam energy per pulse of 3 mJ |
III–IV III (n = 2) IV (n = 8) |
10 | Compared with baseline, 7 patients showed moderate to marked improvement at 6 weeks post-treatment, and 5 patients showed sustained improvement | Erythema, edema, hyper/hypopigmentation | [28] | |
Dyspigmentation (PIH) | 755-nm alexandrite picosecond laser with DLA | 8 mm spot, fluence of 0.4 J/cm2, 750 ps, 10 Hz pulse repetition for three treatments at 1- to 2‐month intervals | III | 1 | At the 3-year follow-up, the PIH lesions had 50–75% improvement | Deepening of local skin lesions | [4] |
Facial pores | Picosecond 1064-nm laser with MLA | 8 mm spot, 0.8 J/cm2, 10 Hz for one session | III–IV | 59 | Compared to baseline, the number of enlarge pores decreased by 15.13%, while the diameter of face pores did not alter much | Mild erythema and folliculitis | [29] |
1064‐nm picosecond laser with MLA | 8 mm spot, fluence of 0.8 J/cm2, 5 Hz pulse repetition for three treatments at 4‐week intervals |
III–IV III (n = 19) IV (n = 6) |
25 | Pore volumes had a significant reduction, with average pore size had shrunk by 30% at 6-month follow-up | Moderate erythema,mild‐to‐moderate swelling, acneiform eruptions | [30] | |
Atrophic acne scars | 755 nm alexandrite picosecond laser with DLA | fluence of 0.71 J/cm2, 6 mm spot, 750 ps pulse width, repetition rate of 5 Hz for 6 sessions at 4 to 8 weeks intervals |
I–V I (n = 1) II (n = 7); III (n = 6); IV (n = 3) |
20 (17 patients completed) |
Patients were satisfied with overall appearance and texture. scar volume improved 24.3% at the sixth treatment session | Transient erythema and edema | [15] |
755 nm alexandrite picosecond laser with DLA | 6 mm spot, fluence of 0.57 J/cm2, 750 ps pulse duration, 10 Hz repetition rate for 5 treatments at 4-week intervals. standard half face treatment: an average of 3301 + / − 155 pulses, the other half of face: an average of 5867 + / − 500 pulses | II-IV | 3 |
Two treated sides had no significant difference. The standard pulse side had good to excellent improvement, and the high pulse side had very good to excellent improvement |
Mild transient PIH, erythema, and edema | [25] | |
755-nm diffractive lens picosecond laser | Different sessions according to the patient’s condition | Not mentioned | 3 | Two cases improved > 75%, one improved 50–75% in skin texture | No | [31] | |
755 nm alexandrite picosecond laser with DLA | 6 mm spot, fluence of 0.71 J/cm2, 5‐Hz pulse repetition, and 750 ps pulse duration for 3 sessions at 4‐ to 6‐week intervals |
III–IV III (n = 5); IV (n = 15) |
20 | After three picosecond laser treatments, the texture of acne scars and post-inflammatory erythema greatly improved | Transient and mild erythema, edema, and scabbing | [32] | |
1064 nm picosecond laser with MLA | Fluence of 1.0 J/cm2, 8 mm spot, repetition rate of 10 Hz for 6 treatments at 1-month intervals | III–IV | 26 | Skin surface roughness and scar showed significant improvement | Mild‐to‐moderate erythema and swelling; transient PIH | [33] | |
Picosecond 1064-nm laser with MLA | 8 mm spot, 0.8 J/cm2, 10 Hz for one treatment | III–IV | 59 | Compared to baseline, acne scar volume reduced significantly | Mild erythema and folliculitis | [29] | |
Striae distensae | 1064 nm picosecond laser and MLA | Fluence of 0.6 J/cm2, 8 mm spot, 750 ps pulse width, repetition rate of 10 Hz for 4 sessions at 4-week intervals | IV–V | 20 | Significant improvement in the skin texture; 6 patients improved 51–75%, and 12 patients improved 25–50% in striae with the 6-month follow-up | Transient PIH in two patients | [34] |
Histological characteristics and mechanisms
Intradermal laser-induced cavitation (LIC) and laser-induced optical breakdown (LIOB) both produce tiny lesions within the dermis and the epidermis [12]. The mechanism of tissue breakdown induced by picosecond laser relies on free electrons, generated by either thermionic emission or chromophore-independent multiphoton absorption [12, 13]. Subsequently in the focus region, the electron density increases to form a plasma, which can more effectively absorb the remaining energy of the laser pulses. The plasma then expands driving the shock wave, and finally the expansion of the vaporized material creates cavitation bubbles, which spread outward into the nearby tissue, resulting in a microcavitation structural response [8, 11].
LIOB and LIC both appear to encourage local skin regeneration and skin remodeling. Habbema et al. [14] observed new collagen production close to the sites of optical breakdown. Similarly, in a study by Brauer [15], increased density and elongation of elastin fibers in the dermis, as well as mucin and collagen III deposition, were observed during the 3-month follow-up in patients treated with 755-nm picosecond laser using a DLA. In response to the LIOB damage in the epidermis, the keratinocytes release a variety of cytokines, chemokines, and growth factors [16]. The rapid development of vacuoles associated with the creation of a LIOB can produce skin pressure fluctuations, which could alter cell signaling and result in dermal remodeling [8]. A study by Ahn et al. has also shown that extravasation of red blood cells could be observed in the papillary dermis after treatment with 1064-nm picosecond laser with MLA, and it was suggested that LIOB could disrupt the neighboring blood vessels to produce a dermal remodeling effect [17]. A similar phenomenon was observed after treatment with a 755-nm picosecond laser with DLA [8].
One study compared the skin thermal effects of laser treatment with fractional or flat optics, and the results showed that compared with flat optics, treatment with fractional optics resulted in more obvious localized epidermal necrosis, which produced significant thermal and clinical effects [18].
It has been found that the depth of a laser-induced lesion and the corresponding laser energy level show an inverse correlation [12]. Higher energy levels result in more superficial intraepidermal LIOBs, whereas lower energy settings result in deeper intradermal LICs [12]. The explanation for this phenomenon is that in intradermal LICs, the low-energy laser beam cannot trigger the threshold for the formation of LIOBs, instead when the high-energy laser beam is greater than the threshold, the energy is focused into LIOBs [12, 19].
The number and size of LIOBs in the epidermis appears to be correlated with the fluence and the number of passes, according to a study by Chang [7]. Similarly, another study showed that the size and number of LIOBs in the epidermis increased as the fluence or the amount of melanin in the skin increased. It was also shown that treatment with higher energy settings produced larger numbers and sizes of LIOBs [8].
Skin rejuvenation
Long-term exposure to ultraviolet radiation can cause facial photoaging (Fig. 1). Irregularities in skin texture, skin laxity, dyspigmentation, wrinkles, and enlarged pores are all signs of skin photoaging [20]. Effective skin rejuvenation is becoming more popular as a clinical treatment, and some studies have used fractional picosecond laser for facial rejuvenation.
Wat et al. reported the first prospective trial to assess the safety and effectiveness of a 755-nm picosecond laser coupled DLA in Chinese patients with photoaging [20]. After six treatment sessions, the skin texture and dyspigmentation scores showed statistically significant improvement; however, there was no significant improvement in pore size or wrinkles [20]. Similarly, in a study by Lin, 755-nm picosecond laser with DLA was used in Asian patients, and the result showed pores and pigmentation had improved at 12 and 20 week follow-up, while at the 1-year follow-up, the improvement in pores had regressed, although pigmentation showed 38% improvement, and wrinkles also improved significantly [21].
Yu et al. treated patients with facial photoaging with 755 nm picosecond alexandrite laser coupled DLA using a fluence of 0.4 J/cm2, an 8-mm spot, and 10 Hz pulse rate for 10 sessions at 2-week intervals. At the 6-month follow-up, there was no significant improvement in wrinkles, while the improvement in pigmentation reached statistical significance compared with the control side [22]. In another study in 46 Asian patients, all patients showed statistically significant improvement in wrinkles, and the pore size improved in more than half the patients after one session of 755 nm picosecond laser with DLA [23]. Ross et al. found that fractional picosecond laser was well tolerated, and wrinkles and improvement in pigmentation were scored as mild to moderate after treatment with the 532- and 1064-nm picosecond laser equipped with a fractional handpiece [24].
The above studies have shown that the fractional laser systems have overall good effects on facial photoaging, while the benefits observed in wrinkles, dyspigmentation, and pore size are considered promising.
Wrinkles
Dierickx et al. used a 755-nm alexandrite picosecond laser with DLA to treat seven cases of facial wrinkles in a split face study [25]. One half of the face received the standard protocol number of pulses while the other side received a higher number of pulses, and both sides showed comparable facial rejuvenation [25]. In another study by Weiss, a picosecond 755-nm alexandrite laser with DLA (fluence of 0.71 J/cm2, 6 mm spot size, 4 treatments at 1 month intervals) was used to treat forty patients with perioral and ocular wrinkles attributed to chronic photodamage [26]. At the 6-month follow-up, the average Fitzpatrick wrinkle score improved from 5.48 at baseline to 3.47, and most patients reported satisfaction with the improvement in wrinkles [26]. Therefore, the 755-nm alexandrite picosecond laser with DLA seems a good choice for treating wrinkles.
Dyspigmentation disorders
Melasma is a pigmentation disorder related to photoaging. Chen et al. used a 755-nm alexandrite picosecond laser with DLA to treat 20 Asian patients with Fitzpatrick skin type IV with melasma. After treatment, the MASI scores showed a significant reduction and an improvement in the skin condition [27]. Wong et al. used fractional 1064-nm picosecond laser to treat melasma, and 70% patients showed moderate to marked improvement [28]. These results suggested the fractional picosecond laser with a DLA could be an effective treatment for melasma.
Post-inflammatory hyperpigmentation (PIH) is a common complication of inflammatory skin diseases [4]. In a study by Ren, they treated PIH patients with a 755-nm picosecond laser with DLA, and the pigmented lesions showed 50–75% improvement at the 3-year follow-up [4]. The results suggested the 755-nm picosecond laser with DLA could be a long-term effective treatment for PIH in Asian skin [4].
Enlarged facial pores
One study from Thailand used the 1064-nm picosecond laser with MLA to treat patients with enlarged pores. The results showed that after a single fractional picosecond 1064-nm laser treatment, the number of enlarged pores was 15.13% lower, while the diameter of the facial pores was unchanged [29]. In another study in Asians with enlarged pores treated with three monthly sessions of 1064-nm picosecond laser with MLA, there was a 30% decrease in average pore size at the 6-month follow-up [30]. The efficacy of fractional picosecond laser in the treatment of enlarged pores seems to need further study.
Treatment for atrophic skin lesions
Atrophic acne scars
Hypertrophic, atrophic, and keloid scars are the three different types of acne scars [15]. There are now several approaches to treat atrophic acne scars. Brauer et al. reported the efficacy of the 755-nm picosecond laser with DLA to treat atrophic acne scars [15]. They treated patients with a 755-nm picosecond laser with DLA (fluence of 0.71 J/cm2, 6 mm spot size, six sessions at 4- to 8-week intervals), and reported a mean scar improvement of 24.3% after the final treatment [15]. In a study by Dierickx et al., they treated 3 patients using the 755-nm picosecond laser with DLA, and they randomly assigned half of the face to be treated with the standard pulse coverage, while the other half of the face received 1.7 times more pulses [25]. The standard pulse side showed good to excellent improvement, while the high pulse side had very good to excellent improvement [25]. Huang reported that the 755-nm picosecond laser with DLA over several sessions was successful in treating atrophic acne scars in Asian patients [31]. A study by Zhang et al. [32] reported similar effects. Zhang treated 20 Chinese patients with a picosecond alexandrite laser with DLA over 3 treatment sessions, and suggested it effectively improved scar appearance and texture, without any serious adverse effects.
In Asian patients, a 1064-nm picosecond laser with MLA was used for treating atrophic acne scars. The skin surface roughness and the scars showed significant improvement, with the erythematous and hyperpigmented appearance improving at the same time [33]. Similarly, in patients from Thailand, the 1064-nm picosecond laser with MLA has also shown good results. All the patients’ acne scars were reduced significantly after one treatment session [29]. These clinical studies suggest that the fractional picosecond laser has a good effect on acne scars.
Striae distensae
Striae distensae (or stretch marks) is another type of atrophic dermal scar, and is often caused by rapid changes in body weight, long-term exposure to steroids, or other endocrine conditions [34]. In a prospective study by Kaewkes, they treated twenty female patients with abdominal striae alba using a 1064-nm picosecond laser with a MLA handpiece using a fluence of 0.6 J/cm2, 8 mm spot size, over four sessions [34]. The results showed significant improvement in skin texture and striae, and only two patients developed PIH [34]. Fractional 1064-nm picosecond laser could be effective in treating striae distensae in dark skin types.
Comparison of picosecond laser with other laser treatments
Tanghetti et al. compared the clinical and histological characteristics of skin lesions produced by a picosecond 532-nm and 1064-nm Nd:YAG laser with a holographic optic, or by a 755-nm picosecond laser with a DLA [35] (Table 2). Their study revealed that both devices caused skin vacuoles. The fractional 532-nm and 1064-nm picosecond laser caused cutaneous hemorrhages by damaging and heating the superficial blood vessels, while the 755-nm laser was absored by melanin and showed superior safety by avoiding any damage to the vasculature [35].
Table 2.
Disease | Laser | Therapy parameters | Fitzpatrick scale | Number of cases | Clinical outcome | Adverse events | Reference |
---|---|---|---|---|---|---|---|
Melasma | 755‐nm picosecond laser with DLA and with a fullbeam | Coupled with a DLA on one side of the face and without DLA (flat optics) on the other side: 8‐mm spot, fluence of 0.40 J/cm2, 2.5 Hz for five treatments at 1‐month intervals | IV–V | 18 (14 patients completed) | All patients had significant improvement in pigment clearance without significant differences in different treatment sides | Mild PIH and erythema | [36] |
Acne scar | NAFL and P-DOE |
P-DOE side: a 450-ps pulse duration, 2-dimensional 10 × 10 mm2 array of pulses, fluence of 130–430 mJ/cm2, 5–10 Hz, 10-mm spot size the NAFL side: 25–35 J/cm2 at level 4–6 over four to eight passes |
III–IV III (n = 12); IV (n = 13) |
25 | P-DOE provides better clinical results, fewer side effects, and more improvements at the follow-up visit | Erythema, oedema, dryness; mild hyperpigmentation only on the NAFL side | [37] |
Acne scar | The fractional Nd:YAG 1064-nm picosecond laser with FLA and fractional 1550-nm erbium fiber |
The fractional Nd:YAG 1064-nm picosecond laser with FLA: spot size of 8 mm, fluence of 0.3–0.4 J, and frequency of 10 Hz for one pass; the fractional 1550-nm erbium fiber laser: 100–400 spots/cm2, energy of 25–30 J/cm2 for two passes total four times at 4-week intervals |
III–IV III (n = 27); IV (n = 3) |
30 (27 patients completed) | Median scores of both devices were significantly improved from baseline, and no significant difference between the two devices | Erythema, hyperpigmentation, pinpoint bleeding, pain | [38] |
Acne scar | FxCO2 and FxPico | FxPico:8 mm spot size, a fluence of 0.8 J/cm2, 5 Hz repetitive rate; FxCO2: 3 ms pulse duration, a power of 10 W, depth of penetration about 350 to 400 mm | III–V | 25 | Both devices caused significant reduction in the scar volume without significant difference between them | Scarring, persistent erythema; PIH was only present in FxCO2 sides | [39] |
A prospective split face study compared the 755-nm picosecond laser with DLA and the same laser used in a fullbeam mode for treating melasma. They found that all patients showed significant pigment clearance without any significant difference between the treatment sides. Compared to the fractional laser, the full-beam 755-nm picosecond laser showed a lower incidence of PIH, less downtime, and less pain during treatment [36].
A controlled study compared the effectiveness and safety of a non-ablative fractional laser (NAFL) or a 1064-nm Nd:YAG picosecond laser with a diffractive optical element (P-DOE) for treating acne scars [37]. In the treatment of acne scars in Asian patients, the P-DOE provided better clinical results, fewer side effects, and more improvement at the follow-up visit [37].
Similarly, another study compared the fractional Nd:YAG 1064-nm picosecond laser with a fractional lens array (FLA) with the fractional 1550-nm erbium fiber laser for treating acne scars [38]. The clinical scores with both devices showed significant improvement from baseline; however, there was no significant difference between the two devices. More pinpoint bleeding as a side effect was observed with the picosecond laser, whereas more pain was reported with the erbium laser [38].
Fractional carbon dioxide laser (FxCO2) was compared with fractional picosecond 1064-nm laser in a study to treat acne scars [39]. The results showed that FxCO2 was as effective as fractional picosecond 1064-nm laser, but the latter was accompanied by a lower incidence of PIH [39].
Combinations of picosecond laser with other treatments
Combination treatment for facial rejuvenation
Theoretically, soft tissue inflammation following laser treatment could affect the diffusion of botulinum neurotoxim to undesirable locations. Therefore, Wang et al. designed a study to test the combination of 755-nm picosecond laser with DLA plus botulinum toxin applied for facial rejuvenation [40]. There were no reported side effects from neurotoxin spreading, and the combined therapy could improve the efficacy with possible synergistic effects [40].
The 755-nm picosecond laser with DLA could treat wrinkles and fine lines, while the 1060-nm laser has been used for non-invasive lipolysis, and could improve the appearance of lax tissue [41]. Wang et al. combined the 755-nm picosecond laser with DLA with the 1,060-nm laser for submental lipolysis to treat patients with facial aging. Their results demonstrated that the combination of 1,060-nm laser submental lipolysis plus 755-nm picosecond laser with DLA could improve the overall clinical aesthetic effects [41].
Soft tissue fillers and laser treatments are frequently employed for facial rejuvenation [42]. Because laser treatment may change the filler properties, patient safety and filler efficacy could be a concern. Therefore, Wang et al. designed a retrospective study and found that there were no recorded adverse effects among 406 single-session treatments in patients receiving 755-nm picosecond laser with DLA combined with fillers [42].
Combination treatments for benign pigmented lesions
In a split face study by Chalermchai, they treated melasma patients with fractional picosecond 1064-nm laser plus 4% hydroquinone on the intervention side, and 4% hydroquinone cream alone on the control side[43]. The intervention side showed greater reductions in melasma area severity index scores compared to 4% hydroquinone cream alone, and it was suggested that fractional picosecond 1064-nm laser could be an effective treatment for melasma.
Various methods have been tested to remove unwanted tattoos, and there was a study to compare tattoo removal results with fractionated 1064-nm picosecond laser plus unfractional 1064-nm picosecond laser, with unfractional 1064-nm picosecond laser alone [44]. The combination side showed greater clearance scores and fewer adverse events than the unfractional 1064-nm picosecond laser alone; as a result, they suggested that combination therapy may be a good method for tattoo removal [44].
Combination treatments for scars
Kim combined the 1064-nm picosecond laser with MLA and hyaluronic acid fillers (HAF) to treat acne scars and achieved good results. Their histological findings suggested that the laser did not disrupt the pre‐injected HAF, and also induced significant neocollagenesis [45].
In a study by Feng et al., an intense pulsed light (IPL) device was used on its own to treat one-half of the face, while the other half was treated by fractional 1064-nm Nd:YAG picosecond laser (FxPico) combined with IPL. The combination showed greater pore count reduction and scar improvement, and they suggested that FxPico combined with IPL could be a better treatment option for atrophic acne scars [46].
Rho et al. reported a patient with a full-thickness laceration scar who was treated with 1064-nm Nd:YAG laser with MLA combined with polynucleotide gel injection, and reported a significant clinical improvement [47].
Conclusion
Clinical studies have reported that the high-intensity micro-injury zones caused by fractional picosecond laser can improve atrophic scars, enlarged facial pores, dyspigmentation, and wrinkles (Fig. 2). Combination therapy with fractional picosecond laser does not affect the efficay of other treatments, and may show additive or synergistic benefits (Table 3). More clinical research on different disorders treated with fractional picosecond laser is needed to improve our understanding of the overall benefits of fractional picosecond laser.
Table 3.
Disease | Laser | Therapy parameters | Fitzpatrick scale | Number of cases | Clinical outcome | Adverse events | Reference |
---|---|---|---|---|---|---|---|
Facial rejuvenation | 755-nm picosecond laser with DLA and botulinum toxin | Botulinum toxin: mean total units per treatment was 39.5 units |
I–V I (n = 75); II (n = 76); III (n = 45); IV (n = 11); V (n = 1) |
208 | Combined therapy improved efficacy and introduce synergistic effects | No adverse events recorded | [40] |
755 nm picosecond laser with DLA and 1060 nm laser lipolysis | 755-nm picosecond laser with DLA: fluence of 0.71 J/cm2, 6 mm spot size for 3 Laser treatments and 2 lipolysis treatments at 2- to 8-week intervals | II–VI | 11 | Neck laxity improved in all subjects from baseline | Transient pain, nodule formation, dyspigmentation, tenderness, edema, roughness, and blister formation | [41] | |
Facial fillers and 755-nm picosecond laser with DLA | Soft tissue fillers; picosecond 755-nm alexandrite laser with DLA: the mean was 3,730.2 pulses |
I–IV I (n = 71), II (n = 64), III (n = 38),IV (n = 10) |
183 | Single-session facial fillers and 755-nm picosecond laser with DLA was safe | No adverse events recorded | [42] | |
Melasma | Fractional picosecond 1064-nm laser and 4% hydroquinone | Fractional picosecond 1064-nm laser: fluence of 1.3–1.5 mJ per microbeam, pulse duration 450 ps, 4 Hz; daily application of 4% hydroquinone |
III–IV III (n = 5), IV (n = 25) |
30 | The intervention side considerably reduced the melasma area severity index scores than 4% hydroquinone cream alone | Mild erythema,skin desquamation and burning sensation | [43] |
Tattoo | Fractionated 1064-nm picosecond lasers and unfractional 1064-nm picosecond lase | The 1064-nm picosecond laser: fluence of 1.5–7.24 J/cm2; spot size: 3–4.5 mm, 2- 5 Hz; fractionated 1064-nm picosecond lasers: fluence of 0.8 J/cm2; spot size: 8 mm, 2–5 Hz |
III–V III–IV (n = 8) V (n = 3) |
11 | The combination side showed greater clearance scores and fewer adverse events than the side of unfractional 1064-nm picosecond laser alone | Temporary crusting, purpura, edema, erythema, burning, sensation, and petechiae | [44] |
Acne scars | 1064-nm MLA‐type picosecond lasers and HAF | Each scar was filled with 0.01–0.1 ml of HAF and MLA handpiece: 6 mm spot, fluence of 1.4 J/cm2, 5 Hz frequency; 450 ps pulse duration for two treatments at 4‐week intervals | III–IV | 36 | Acne scars improved significantly | Temporary pain, instant erythema, and flushing | [45] |
FxPico and IPL |
FxPico: 6 mm spot size, energy of 1.5–2.5 mJ/microbeam, 3–4 passes IPL: 560- or 590-nm filter, pulse width of 3.5–4.0 ms, fluence of 15–19 J/cm2, 1 pass One half of the face treated by FxPico + IPL, and the other by IPL alone for five sessions of treatment |
III–IV III (n = 13); IV (n = 2) |
17 (15 patients completed) |
More pore count reduction and scar improvement were observed on the FxPico + IPL side | Mild‐to‐moderate pain, erythema, edema, petechiae, crusting, pruritus, and acneiform eruptions, | [46] | |
Full-thickness laceration scar | 1064-nm Nd:YAG laser with MLA and polynucleotide gel | 1064-nm Nd:YAG laser with MLA at fluence of 0.7 J/cm2, and then 20 mg/mL polynucleotide gel was injected | Not mentioned | 1 | Significant clinical improvement | pruritus | [47] |
Abbreviations
- Nd: YAG
Neodymium: yttrium‐aluminum‐garnet
- CO2
Carbon dioxide
- Er: YAG
Erbium: yttrium–aluminum-garnet
- DLA
Diffractive lens arrays
- MLA
Micro-lens arrays
- LIOB
Laser-induced optical breakdown
- LIC
Laser-induced cavitation
- PIH
Post-inflammatory hyperpigmentation
- NAFL
Non-ablative fractional laser
- P-DOE
Picosecond laser with a diffractive optical element
- FLA
Fractional lens array
- FxCO2
Fractional carbon dioxide laser
- HAF
Hyaluronic acid fillers
- IPL
Intense pulsed light
- FxPico
Fractional 1064-nm Nd: YAG picosecond laser
Author contribution
YanJun Zhou performed the literature search and data analysis, and wrote the first draft of the article. Michael R Hamblin critically revised the manuscript for content and meaning. Xiang Wen had the original idea for the article and critically revised the work.
Funding
This work was supported by National Natural Science Foundation of China (81903226).
Data Availability
The data used to support the findings of this study are available from the corresponding author upon request.
Declarations
Ethics approval
This is a review article of compliance with ethical standards.
Competing interests
MRH declares the following potential conflicts of interest. Scientific Advisory Boards: Transdermal Cap Inc, Cleveland, OH; Hologenix Inc. Santa Monica, CA; Vielight, Toronto, Canada; JOOVV Inc, Minneapolis-St. Paul MN; Sunlighten, Kansas City, MO; Consulting; USHIO Corp, Japan; Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany; Klox Asia, Guangzhou, China. Stockholding: Niraxx Light Therapeutics, Inc., Irvine CA; JelikaLite Corp, New York NY. All other authors declare no competing interests.
Footnotes
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
- 1.Freedman JR, Kaufman J, Metelitsa AI, Green JB. Picosecond lasers the next generation of short-pulsed lasers. Sem Cutan Med Surg. 2014;33:164–168. doi: 10.12788/j.sder.0117. [DOI] [PubMed] [Google Scholar]
- 2.Wu DC, Goldman MP, Wat H, Chan HHL. A systematic review of picosecond laser in dermatology: evidence and recommendations. Lasers Surg Med. 2021;53:9–49. doi: 10.1002/lsm.23244. [DOI] [PubMed] [Google Scholar]
- 3.Lee SJ, Han HS, Hong JK, Park KY, Seo SJ. Successful treatment of pigmentary disorders in asians with a novel 730-nm picosecond laser. Lasers Surg Med. 2020;52:923–927. doi: 10.1002/lsm.23261. [DOI] [PubMed] [Google Scholar]
- 4.Ren R, Bao S, Qian W, Zhao H. 755-nm alexandrite picosecond laser with a diffractive lens array or zoom handpiece for post-inflammatory hyperpigmentation: two case reports with a three-year follow-up. Clin Cosmet Investig Dermatol. 2021;14:1459–1464. doi: 10.2147/ccid.S323872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Kasai K. Picosecond laser treatment for tattoos and benign cutaneous pigmented lesions (secondary publication) Laser therapy. 2017;26:274–281. doi: 10.5978/islsm.17-RE-02. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Dong W, Wang N, Yuan X, Zhang W. Treatment of pigmentary disorders using picosecond laser in Asian patients: a meta-analysis and systematic review. Dermatologic therapy. 2021;34:e14709. doi: 10.1111/dth.14709. [DOI] [PubMed] [Google Scholar]
- 7.Chang YS, Yang TH, Li CN. Histology changes of in vivo human skin after treatment with fractional 1064 nm Nd:YAG picosecond laser in different energy settings. Lasers Med Sci. 2022;37:2087–2092. doi: 10.1007/s10103-021-03396-w. [DOI] [PubMed] [Google Scholar]
- 8.Tanghetti EA. The histology of skin treated with a picosecond alexandrite laser and a fractional lens array. Lasers Surg Med. 2016;48:646–652. doi: 10.1002/lsm.22540. [DOI] [PubMed] [Google Scholar]
- 9.Oc K, Cho SB, Chung HJ. Wound healing profile after 1064- and 532-nm picosecond lasers with microlens array of in vivo human skin. Lasers Surg Med. 2021;53:1059–1064. doi: 10.1002/lsm.23390. [DOI] [PubMed] [Google Scholar]
- 10.Balu M, Lentsch G, Korta DZ, König K, Kelly KM, Tromberg BJ, et al. In vivo multiphoton-microscopy of picosecond-laser-induced optical breakdown in human skin. Lasers Surg Med. 2017;49:555–562. doi: 10.1002/lsm.22655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Chen SX, Cheng J, Watchmaker J, Dover JS, Chung HJ. Review of lasers and energy-based devices for skin rejuvenation and scar treatment with histologic correlations. Dermatol Surg. 2022;48:441–448. doi: 10.1097/dss.0000000000003397. [DOI] [PubMed] [Google Scholar]
- 12.Yeh YT, Peng JH, Peng P. Histology of ex vivo skin after treatment with fractionated picosecond Nd:YAG laser in high and low-energy settings. J Cosmetic Laser Ther. 2020;22:43–47. doi: 10.1080/14764172.2019.1710536. [DOI] [PubMed] [Google Scholar]
- 13.Chung HJ, Lee HC, Park J, Childs J, Hong J, Kim H, et al. Pattern analysis of 532- and 1064-nm microlens array-type, picosecond-domain laser-induced tissue reactions in ex vivo human skin. Lasers Med Sci. 2019;34:1207–1215. doi: 10.1007/s10103-018-02711-2. [DOI] [PubMed] [Google Scholar]
- 14.Habbema L, Verhagen R, Van Hal R, Liu Y, Varghese B. Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation. J Biophotonics. 2012;5:194–199. doi: 10.1002/jbio.201100083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Brauer JA, Kazlouskaya V, Alabdulrazzaq H, Bae YS, Bernstein LJ, Anolik R, et al. Use of a picosecond pulse duration laser with specialized optic for treatment of facial acne scarring. JAMA Dermatol. 2015;151:278–284. doi: 10.1001/jamadermatol.2014.3045. [DOI] [PubMed] [Google Scholar]
- 16.Werner S, Krieg T, Smola H. Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol. 2007;127:998–1008. doi: 10.1038/sj.jid.5700786. [DOI] [PubMed] [Google Scholar]
- 17.Ahn HJ, Hye Suh D, Kang IH, Jun Lee S, Kyung Shin M, Yong Song K. Interaction of skin with fractional picosecond laser in Asian patients. J Clin Aesthetic Dermatol. 2021;14:14–15. [PMC free article] [PubMed] [Google Scholar]
- 18.Tanghetti EA, Tartar DM. Comparison of the cutaneous thermal signatures over twenty-four hours with a picosecond alexandrite laser using a flat or fractional optic. J Drugs Dermatolo: JDD. 2016;15:1347–1352. [PubMed] [Google Scholar]
- 19.Qu Y, Wang L, Zhou P, Zhang W. Efficient picosecond laser for tattoo removal in rat models. Med Sci Monit. 2020;26:e924583. doi: 10.12659/msm.924583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Wat H, Yee-Nam Shek S, Yeung CK, Chan HH. Efficacy and safety of picosecond 755-nm alexandrite laser with diffractive lens array for non-ablative rejuvenation in Chinese skin. Lasers Surg Med. 2019;51:8–13. doi: 10.1002/lsm.23014. [DOI] [PubMed] [Google Scholar]
- 21.Lin ET, Chiang HM, Lin BS, Huang YH, Chang CC. Photoaging reversibility in Asian patients with melasma treated using picosecond lasers with a diffractive lens array: a 1-year prospective observational cohort study. Dermatol Surg. 2021;47:e10–e14. doi: 10.1097/dss.0000000000002405. [DOI] [PubMed] [Google Scholar]
- 22.Yu W, Zhu J, Yu W, Shang Y, Lyu D, Lin X, et al. Three-year results of facial photoaging in asian patients after alexandrite 755 nm picosecond laser with diffractive lens array: a split-face, single-blinded, randomized controlled comparison. Lasers Surg Med. 2021;53:1065–1072. doi: 10.1002/lsm.23393. [DOI] [PubMed] [Google Scholar]
- 23.Sun Y, Yang TT, Chih PL, Chen YC, Lan CE. Favorable effect after single treatment session of 755-nm-picosecond laser with a diffractive optic lens on facial wrinkles and pore size in Asians. J Cosmet Dermatol. 2022 doi: 10.1111/jocd.14810. [DOI] [PubMed] [Google Scholar]
- 24.Ross EV, Tidwell WJ, Guss L, Sutton AV. Study of a 532/1064 fractional picosecond laser for facial rejuvenation. Dermatol Surg. 2022;48:109–113. doi: 10.1097/dss.0000000000003229. [DOI] [PubMed] [Google Scholar]
- 25.Dierickx C. Using normal and high pulse coverage with picosecond laser treatment of wrinkles and acne scarring: long term clinical observations. Lasers Surg Med. 2018;50:51–55. doi: 10.1002/lsm.22763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Weiss RA, McDaniel DH, Weiss MA, Mahoney AM, Beasley KL, Halvorson CR. Safety and efficacy of a novel diffractive lens array using a picosecond 755 nm alexandrite laser for treatment of wrinkles. Lasers Surg Med. 2017;49:40–44. doi: 10.1002/lsm.22577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Chen YT, Lin ET, Chang CC, Lin BS, Chiang HM, Huang YH, et al. Efficacy and safety evaluation of picosecond alexandrite laser with a diffractive lens array for treatment of melasma in Asian patients by VISIA imaging system. Photobiomodulation, Photomed Laser Surg. 2019;37:559–566. doi: 10.1089/photob.2019.4644. [DOI] [PubMed] [Google Scholar]
- 28.Wong CSM, Chan MWM, Shek SYN, Yeung CK, Chan HHL. Fractional 1064 nm picosecond laser in treatment of melasma and skin rejuvenation in Asians, a prospective study. Lasers Surg Med. 2021;53:1032–1042. doi: 10.1002/lsm.23382. [DOI] [PubMed] [Google Scholar]
- 29.Puaratanaarunkon T, Asawanonda P (2022) Efficacy of a one-session fractional picosecond 1064-nm laser for the treatment of atrophic acne scar and enlarged facial pores. J Cosmet Laser ther 1–5. 10.1080/14764172.2022.2055079 [DOI] [PubMed]
- 30.Palawisuth S, Manuskiatti W, Apinuntham C, Wanitphakdeedecha R, Cembrano KAG. Quantitative assessment of the long-term efficacy and safety of a 1064-nm picosecond laser with fractionated microlens array in the treatment of enlarged pores in Asians: a case-control study. Lasers Surg Med. 2022;54:348–354. doi: 10.1002/lsm.23449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Huang CH, Hsieh FS, Chang HC, Peng JH, Peng HP. 755 nm picosecond laser for facial atrophic scar-case reports of long-term clinical efficacy following up. J Cosmet Dermatol. 2019;18:778–782. doi: 10.1111/jocd.12925. [DOI] [PubMed] [Google Scholar]
- 32.Zhang M, Fang J, Wu Q, Lin T. Evaluation of the safety and efficacy of a picosecond alexandrite laser with DLA for acne scars in Chinese patients. Lasers Surg Med. 2020;52:176–181. doi: 10.1002/lsm.23177. [DOI] [PubMed] [Google Scholar]
- 33.Manuskiatti W, Punyaratabandhu P, Tantrapornpong P, Yan C, Cembrano KAG. Objective and long-term evaluation of the efficacy and safety of a 1064-nm picosecond laser with fractionated microlens array for the treatment of atrophic acne scar in Asians. Lasers Surg Med. 2021;53:899–905. doi: 10.1002/lsm.23368. [DOI] [PubMed] [Google Scholar]
- 34.Kaewkes A, Manuskiatti W, Cembrano KA, Wanitphakdeedecha R. Treatment of abdominal striae distensae in Fitzpatrick skin types IV to V using a 1064-nm picosecond laser with a fractionated microlens array. Lasers Surg Med. 2022;54:129–137. doi: 10.1002/lsm.23471. [DOI] [PubMed] [Google Scholar]
- 35.Tanghetti MdE, Jennings J. A comparative study with a 755 nm picosecond Alexandrite laser with a diffractive lens array and a 532 nm/1064 nm Nd:YAG with a holographic optic. Lasers Surg Med. 2018;50:37–44. doi: 10.1002/lsm.22752. [DOI] [PubMed] [Google Scholar]
- 36.Manuskiatti W, Yan C, Tantrapornpong P, Cembrano KAG, Techapichetvanich T, Wanitphakdeedecha R. A prospective, split-face, randomized study comparing a 755-nm picosecond laser with and without diffractive lens array in the treatment of melasma in Asians. Lasers Surg Med. 2021;53:95–103. doi: 10.1002/lsm.23312. [DOI] [PubMed] [Google Scholar]
- 37.Kwon HH, Yang SH, Cho YJ, Shin E, Choi M, Bae Y, et al. Comparison of a 1064-nm neodymium-doped yttrium aluminum garnet picosecond laser using a diffractive optical element vs. a nonablative 1550-nm erbium-glass laser for the treatment of facial acne scarring in Asian patients: a 17-week prospective, randomized, split-face, controlled trial. J Eur Acad Dermat Venereol: JEADV. 2020;34:2907–2913. doi: 10.1111/jdv.16643. [DOI] [PubMed] [Google Scholar]
- 38.Chayavichitsilp P, Limtong P, Triyangkulsri K, Pratumchart N. Comparison of fractional neodymium-doped yttrium aluminum garnet (Nd:YAG) 1064-nm picosecond laser and fractional 1550-nm erbium fiber laser in facial acne scar treatment. Lasers Med Sci. 2020;35:695–700. doi: 10.1007/s10103-019-02891-5. [DOI] [PubMed] [Google Scholar]
- 39.Sirithanabadeekul P, Tantrapornpong P, Rattakul B, Sutthipisal N, Thanasarnaksorn W. Comparison of fractional picosecond 1064-nm laser and fractional carbon dioxide laser for treating atrophic acne scars: a randomized split-face trial. Dermatol Surg. 2021;47:e58–e65. doi: 10.1097/dss.0000000000002572. [DOI] [PubMed] [Google Scholar]
- 40.Wang JV, Albornoz CA, Anolik R, Geronemus RG. Single-session treatment with botulinum toxin and 755-nm picosecond laser with diffractive lens array: a 5-year safety review. Dermatol Surg. 2021;47:1302–1303. doi: 10.1097/dss.0000000000003112. [DOI] [PubMed] [Google Scholar]
- 41.Wang JV, Christman MP, Feng H, Pomerantz H, Lederhandler M, Geronemus RG. Paired facial treatment with 755nm picosecond laser with diffractive lens array and 1060nm laser lipolysis of the submentum: an open-label prospective trial. J Cosmet Dermatol. 2021;20:3492–3497. doi: 10.1111/jocd.14397. [DOI] [PubMed] [Google Scholar]
- 42.Wang JV, Ugonabo N, Anolik R, Geronemus RG. Pairing facial fillers with 755-nm picosecond laser with diffractive lens array: a 5-year safety evaluation of single-session treatments. Dermatol Surg. 2021;47:1305–1307. doi: 10.1097/dss.0000000000003109. [DOI] [PubMed] [Google Scholar]
- 43.Chalermchai T, Rummaneethorn P. Effects of a fractional picosecond 1,064 nm laser for the treatment of dermal and mixed type melasma. J Cosmet Laser Ther. 2018;20:134–139. doi: 10.1080/14764172.2017.1376098. [DOI] [PubMed] [Google Scholar]
- 44.Sirithanabadeekul P, Vongchansathapat P, Sutthipisal N, Thanasarnaksorn W, Suwanchinda A. Outcomes of 1064-nm picosecond laser alone and in combination with fractional 1064-nm picosecond laser in tattoo removal. J Cosmet Dermatol. 2022;21:2832–2839. doi: 10.1111/jocd.15031. [DOI] [PubMed] [Google Scholar]
- 45.Kim JE, Hong JY, Lee HJ, Lee SY, Kim HJ. Picosecond-domain fractional laser treatment over hyaluronic acid fillers: in vivo and clinical studies. Lasers Surg Med. 2020;52:928–934. doi: 10.1002/lsm.23254. [DOI] [PubMed] [Google Scholar]
- 46.Feng H, Wu Y, Jiang M, Luo X, Yan S, Lu Z. The efficacy and safety of fractional 1064 nm Nd:YAG picosecond laser combined with intense pulsed light in the treatment of atrophic acne scar: a split-face study. Lasers Surg Med. 2021;53:1356–1363. doi: 10.1002/lsm.23428. [DOI] [PubMed] [Google Scholar]
- 47.Rho N, Chung ST. Treatment of a full-thickness laceration scar on the forehead using a 1,064-nm fractional picosecond laser and polynucleotide gel injection. Medical Lasers. 2018;7:88–90. doi: 10.25289/ML.2018.7.2.88. [DOI] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
The data used to support the findings of this study are available from the corresponding author upon request.