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The framing of time‑dependent 
machine learning models improves 
risk estimation among young 
individuals with acute coronary 
syndromes
Luiz Sérgio Fernandes de Carvalho 1,2,3,4,5*, Gustavo Alexim 4,5, 
Ana Claudia Cavalcante Nogueira 1,2,4,5, Marta Duran Fernandez 3,6, Tito Barbosa Rezende 3,7, 
Sandra Avila 7, Ricardo Torres Bispo Reis 3,8, Alexandre Anderson Munhoz Soares 2,4 & 
Andrei Carvalho Sposito 2,3,9

Acute coronary syndrome (ACS) is a common cause of death in individuals older than 55 years. 
Although younger individuals are less frequently seen with ACS, this clinical event has increasing 
incidence trends, shows high recurrence rates and triggers considerable economic burden. Young 
individuals with ACS (yACS) are usually underrepresented and show idiosyncratic epidemiologic 
features compared to older subjects. These differences may justify why available risk prediction 
models usually penalize yACS with higher false positive rates compared to older subjects. We 
hypothesized that exploring temporal framing structures such as prediction time, observation 
windows and subgroup-specific prediction, could improve time-dependent prediction metrics. Among 
individuals who have experienced ACS (nglobal_cohort = 6341 and nyACS = 2242), the predictive accuracy 
for adverse clinical events was optimized by using specific rules for yACS and splitting short-term and 
long-term prediction windows, leading to the detection of 80% of events, compared to 69% by using a 
rule designed for the global cohort.

In the last four decades, a major concern has arisen from the progressive increase in the incidence rates of acute 
coronary syndrome (ACS) among young individuals (yACS, i.e. before 55 years of age)1,2 and the high recurrence 
rate of these events3. In addition to amplifying ACS-related reduction in quality of life and life expectancy, yACS 
also carries a heavy economic burden by reducing work capacity in early adulthood3–5.

Young individuals with ACS are more likely to be men, smokers, obese, sedentary or to present familial-
combined hyperlipidemia, and they more frequently consume cocaine or androgenic anabolic steroids than older 
ACS patients6,7. Furthermore, compared with older individuals, those with yACS have a higher proportion of 
traditional cardiovascular risk factors out of control7,8.

This setting of frequent uncontrolled risk factor among yACS triggers a relevant economic impact8. How-
ever, there is no easy path to prevent recurrent events among yACS as adherence to risk factor modification 
measures is typically low in real-world conditions8. Strategies to improve adherence with intensified multifac-
torial intervention effectively reduced the risk of death and cardiovascular events9,10, but these approaches are 
economically unfeasible in a large population. On the other hand, a health policy tied to risk prediction and 
multifactorial intervention directed to high-risk individuals could represent a cost-effective solution5. Despite 
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the clear distinction in the recurrence of coronary events, the prevalence of risk factors and economic burden 
among yACS, effective risk prediction tools specific to individuals with yACS remain an unmet need.

In clinical research, risk prediction tools infrequently explore the role of the observation window, i.e., the 
moment when predictors are captured, and the forecast window, i.e., the period from which the event is surveyed 
or sampled. As reviewed recently, the match between the clinical problem and these temporal framing structures is 
essential for high-quality predictive models11. This indicates that some “acute phase” information captured during 
ACS hospitalization may be useful to predict short-term outcomes but may not be useful to predict long-term 
outcomes12,13. We therefore hypothesized that splitting predictive rules into two (short- and long-term) would 
allow more accurate risk prediction.

While for short-term outcomes it is commonly accepted that binary classification rules are reasonable, for 
instance major adverse cardiovascular events [MACE] vs non-MACE12, long-term predictive models need to 
consider time-to-event with competing events to minimize censoring bias14,15. To develop and validate models, 
we used interpretable and state-of-the-art algorithms for tabular data to predict in-hospital outcomes16 and used 
survival analysis with competing risks14 to predict long-term clinical events in a large cohort of yACS individu-
als. Furthermore, we studied the differences in risk factors and optimal prediction rules for yACS compared to 
ACS in older subjects.

Results
The study population had a mean age of 48 ± 6 years, and 66% were male. Table 1 depicts the characteristics of 
yACS subjects (n = 2242) compared to older individuals with ACS (n = 4099). A total of 170 deaths (11.4 per 
1000 patients-years), 132 STEMI (8.8 per 1000 patients-years) and 421 NSTEMI (28.2 per 1000 patients-years) 
occurred after a median follow-up of 6.67 years (95% confidence interval [CI] of 5.59–7.24) among yACS indi-
viduals. As described in Supplemental Table S1, in-hospital MACEs occurred in 180 individuals, and postdis-
charge MACEs occurred in 454 subjects with yACS. Among subjects older than 55 years old, in-hospital MACEs 
occurred in 493 individuals, and postdischarge MACEs occurred in 881.

Younger subjects were more frequently smokers and obese and had a more frequent family history of prema-
ture CAD and personal history of alcohol or cocaine use (Table 1). Although type 2 diabetes mellitus (T2DM) was 
less frequently found and the global mean for HbA1c was lower among yACS, among subjects with T2DM, those 
with yACS presented a higher HbA1c (9.08 ± 0.92%) than their older counterparts (8.12 ± 1.09%; p < 0.0001). 
Younger subjects were more frequently admitted due to STEMI, but the severity was generally lower than that 
in older subjects with ACS, as cardiac arrest before admission and Killip scores III or IV were less frequent. As 
expected, the burden of coronary artery disease was also lower among yACS individuals (Table 1).

As shown, the yACS subgroup shows a highly distinctive epidemiologic profile compared with older ACS 
subjects. Therefore, we explored which are the key risk factors for MACEs in the short- and long-term among 
the two subgroups and found different patterns.

Short‑term MACE.  STWm has shown that there are significant differences in key predictors and model 
accuracy both by using stepwise LR (sLR) and more complex predictive algorithms. While the sLR model within 
the global cohort (training/validation with n = 4439) showed an accuracy in the yACS test set (n = 673) of 0.82 
(95% CI of 0.79–0.84) and a C-statistic of 0.79 (95% CI of 0.77–0.81), an sLR developed specifically within the 
yACS individuals showed a significantly higher C-statistic of 0.87 (95% CI of 0.85–0.89, p for C-statistic com-
parison < 0.001) in the yACS test set (Table 2). Supplementary Tables S2 and S3 show that the most important 
predictor variables in sLR to explain at least 90% of model variance were different in yACS and the global cohort. 
In yACS subjects, the odds ratios for MACE compared to the global cohort were higher for blood glycemia, prior 
chronic kidney disease (CKD), Killip class and syncope at ACS onset and lower for myocardial blush grade 
(MBG) and presence of dyskinesia (any wall). Increasing duration of catheterization (cath) was highly associated 
with MACEs in yACS and linked to intraprocedural complications such as coronary artery dissections (3.02% of 
yACS) and coronary rupture (0.1% of yACS). Late catheterization (12 h after symptom onset for STEMI and 24 h 
after symptom onset for UA/NSTEMI) was also an independent risk factor for MACE only in yACS.

The sLR model trained in the yACS cohort performed as well as the random forest and XGBoost algorithms 
(p for C-statistic comparisons of 0.68 and 0.77, respectively), and sLR was superior to the GRACE score-based 
model (p = 0.031) (Table 2). However, with a C-statistic of 0.92 (95% CI 0.89–0.95), the TabNet algorithm trained 
in the yACS cohort was superior to sLR (p for C-statistic comparisons < 0.001) and superior to TabNet trained in 
the global cohort (C-statistic of 0.90 (95% CI 0.88–0.92), p for C-statistic comparisons 0.011).

As shown in Fig. 1, 28 variables are included in the TabNet algorithm for the global cohort, and 20 are respon-
sible for 91% of the model variance. In the yACS cohort, 24 variables were recruited, and 20 were responsible for 
93% of the model variance. Among the top predictor variables that explain at least 90% of the model variance, 
Fig. 2 shows very different patterns for the TabNet algorithm trained in yACS subjects and TabNet trained in 
the global cohort. Risk models share three variables in common (blood glycemia, BMI and right ventricular 
akinesia), and the algorithm trained in yACS contains characteristics related to microvascular thrombosis and 
intraprocedural complications of catheterization.

Long‑term MACE with competing risks.  Here, the clinical question is whether LTWm would be better 
suited for global follow-up (observation window of the first 48 h) or whether it would perform better for postdis-
charge (from index ACS) risk prediction (observation window including in-hospital stay). Postdischarge models 
had 47 noncardiovascular deaths and 454 MACEs, while the global follow-up models had 92 noncardiovascular 
deaths and 631 MACEs among individuals with yACS.
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ACS > 55 years-old ACS ≤ 55 years-old p

n 4099 2242

Age (mean (SD)) 68.47 (8.11) 47.63 (5.84)  < 0.001

Male gender (%) 60.8 66.1  < 0.001

Diagnoses

Index diagnosis (%)  < 0.001

     STEMI 60.9 74.0

      NSTEMI 20.1 15.5

      UA 19.0 10.5

T2DM (%) 34.0 27.5  < 0.001

T2DM on insulin (%) 9.4 8.1 0.177

Smokers (%) 34.7 41.2  < 0.001

Dyslipidemia (%) 20.2 19.3 0.550

Hypertension (%) 74.7 66.9  < 0.001

Obesity (%) 5.2 7.9 0.001

Family history of prCAD (%) 9.8 16.6  < 0.001

Prior ethylic habit (%) 9.7 14.1  < 0.001

Prior drug abuse (%) 1.3 6.9  < 0.001

Prior AMI (%) 8.5 7.1  < 0.001

Prior stroke (%) 4.1 2.2 0.003

Prior PAD (%) 4.3 2.9 0.025

Prior CKD (%) 8.5 2.5  < 0.001

Prior PCI (%) 8.9 6.2 0.002

Prior CABG (%) 5.6 3.7 0.007

Prior cocaine abuse (%) 0.1 1.3  < 0.001

Prior marijuana abuse (%) 0.1 0.8 0.027

Atrial fibrillation (%) 3.7 0.8  < 0.001

Drugs prescribed at discharge

Nitrate (%) 45.1 42.5 0.123

Statin (%) 83.0 81.9 0.385

Betablockers (%) 64.9 66.6 0.293

ARB or ACEi (%) 58.4 61.7  < 0.001

CCB (%) 20.0 18.5 0.278

ASA (%) 91.0 89.4 0.153

Clopidogrel (%) 62.5 64.4 0.244

Prasugrel (%) 21.8 22.0 0.941

Ticagrelor (%) 3.5 4.0 0.422

Anticoagulant (%) 3.3 3.5 0.816

Spironolactone (%) 11.7 7.9  < 0.001

Furosemide (%) 15.2 9.4  < 0.001

Severe coronary artery lesions

1-vessel with proximal LAD (%) 4.8 8.8  < 0.001

1-vessel with LAD (%) 8.5 9.9  < 0.001

1-vessel with RCA (%) 10.4 12.6  < 0.001

2-vessels without LAD (%) 13.1 11.2 0.133

3-vessels with LAD (%) 13.3 8.9  < 0.001

3-vessels without LAD (%) 16.1 10.6  < 0.001

3-vessels with LCA and LAD (%) 1.8 0.4  < 0.001

3-vessels with LCA/without LAD (%) 1.2 0.3 0.007

PCI—index coronarography

LAD (%) 13.5 18.5  < 0.001

MINOCA (%) 2.4 1.7 0.223

Number of new stents (mean (SD)) 1.38 (0.72) 1.44 (0.70)  < 0.001

Echocardiography

Apical dyskinesia 3.5 1.1  < 0.001

Apical akinesia 29.6 23.7  < 0.001

LV function at 3rd to 5th day (%) 0.005

Continued
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Table 1.   Baseline characteristics and clinical outcomes of individuals with premature acute coronary 
syndrome (ACS, ≤ 55 years old) and older subjects with ACS (> 55 years old). CABG Coronary artery bypass 
graft, CKD Chronic kidney disease, GFR Glomerular filtration rate (CKD-EPI), GPIIbIIIa Glycoprotein IIbIIIa, 
HbA1c Glycosylated hemoglobin, LDL-C Low-density lipoprotein cholesterol, LV Left ventricle, BMI Body 
mass index, NSTEMI Non-ST-elevation myocardial infarction, PCI Percutaneous coronary intervention, 
STEMI ST-elevation myocardial infarction, SBP Systolic blood pressure, DBP Diastolic blood pressure, HR 
Heart rate, CV Cardiovascular.

ACS > 55 years-old ACS ≤ 55 years-old p

      > 45% 22.3 24.4

      < 45% 77.7 75.6

Admission metrics (STEMI individuals only; n = 4042)

Cardiac arrest before admission (%) 2.3 0.3  < 0.001

Time pain-primary hospital, minutes (mean (SD)) 164.51 (142.39) 153.66 (131.44) 0.043

Time door-needle, minutes (median [IQR]) 70.00 [43.00, 120.00] 68.00 [43.00, 110.50] 0.269

Time pain-needle, minutes (median [IQR]) 225.00 [150, 335] 210.00 [140, 315] 0.005

Time tnk-coronarography, minutes (mean (SD)) 1195.82 (1269.01) 1270.69 (1137.35) 0.114

Coronarography duration, minutes (median [IQR]) 55.00 [40.00, 75.00] 50.00 [40.00, 65.00]  < 0.001

Pharmacoinvasive strategy (%) 88.9 90.2 0.698

Primary PCI (%) 11.1 9.8 0.452

SBP at admission, mmHg (mean (SD)) 121.86 (26.01) 143.43 (25.22)  < 0.001

DBP at admission, mmHg (mean (SD)) 75.46 (17.19) 88.18 (17.21)  < 0.001

HR at admission, beats/minute (mean (SD)) 81.00 (19.47) 77.40 (15.44)  < 0.001

Killip score (%)  < 0.001

      I 43.5 84.0

      II 25.9 14.2

      III 16.2 0.9

      IV 14.4 0.9

TIMI flow pre-PCI (mean (SD)) 2.05 (1.22) 2.20 (1.18) 0.003

TIMI flow post-PCI (mean (SD)) 2.58 (0.81) 2.69 (0.75) 0.002

MBG pre-PCI (mean (SD)) 1.61 (1.45) 1.84 (1.42)  < 0.001

MBG post-PCI (mean (SD)) 1.86 (1.35) 2.18 (1.22)  < 0.001

Clinical scores

TIMI score (mean (SD)) 5.15 (2.35) 2.46 (1.56)  < 0.001

GRACE in-hospital death (mean (SD)) 150.80 (32.75) 89.47 (18.19)  < 0.001

GRACE score (6 months) (mean (SD)) 141.49 (24.28) 91.61 (15.96)  < 0.001

CRUSADE (mean (SD)) 35.75 (13.87) 19.44 (11.29)  < 0.001

Laboratory exams

Troponin (peak) (mean (SD)) 9999 (10,399) 6838 (6465)  < 0.001

Glycemia, mg/dL (mean (SD)) 159.51 (81.38) 137.86 (62.80)  < 0.001

HbA1c, % (mean (SD)) 6.87 (2.03) 6.63 (2.01) 0.014

Total cholesterol, mg/dL (mean (SD)) 194.74 (48.58) 204.71 (46.58)  < 0.001

LDL-cholesterol, mg/dL (mean (SD)) 122.82 (39.59) 132.19 (40.23)  < 0.001

Triglycerides, mg/dL (mean (SD)) 152.54 (133.41) 166.06 (118.62) 0.009

Creatinine clearance, ml/min/1.73m2 (mean (SD)) 74.52 (28.94) 107.10 (33.94)  < 0.001

BMI, kg/m2 (mean (SD)) 26.65 (4.57) 27.15 (4.51) 0.005

Clinical outcomes (considering competing risks)

In-hospital deaths (%) 5.7 3.9  < 0.001

Post-discharge deaths (%) 9.6 4  < 0.001

Global deaths (%) 15.3 7.6  < 0.001

Global CV deaths (%) 5.2 3.5 0.018

Global non-CV deaths (%) 10.1 4.0  < 0.001

MI during follow-up (%)  < 0.001

      STEMI 12.8 5.9

      NSTEMI 15.5 18.8

Follow-up time, days (median [IQR]) 2331 [2030, 2625] 2436 [2039, 2644]  < 0.001

CABG (in-hospital) (%) 4.7 2.8 0.017

CABG during long-term follow-up (%) 13.3 10.9 0.026
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In the postdischarge models (available in Table 3), CS-Cox and Fine-Gray yielded the lowest Ctd indexes in the 
test set, 0.602 (95% CI 0.556–0.649) and 0.612 (95% CI 0.564–0.663), while DMGP and DeepHit reached 0.685 
(95% CI 0.639–0.725) and 0.722 (95% CI 0.678–0.760), respectively. Global follow-up models (Table 3) produced 
generally lower concordance indexes in the test set, 0.597 (95% CI 0.552–0.643), 0.601 (95% CI 0.559–0.660), 
0.687 (95% CI 0.640–0.728) and 0.681 (95% CI 0.654–0.703) for CS-Cox, Fine-Gray, DMGP and DeepHit, respec-
tively. DeepHit in the postdischarge horizon yielded the highest Ctd index and the lowest IBS (0.0579), suggesting 
the highest accuracy. The CIFs of 12 random yACS individuals are depicted in Fig. 3. Ctd-indexes for the global 
cohort were similar to yACS both in postdischarge and global follow-up horizons.

Among the algorithms, only CS-Cox is easily interpretable; therefore, it was used to acquire a glance at the 
risk components for long-term MACE. As seen in Supplementary Tables S3 and S4, most short- and long-term 

Table 2.   Accuracy and C-statistics for short-term window models in predicting in-hospital death or 
recurrent ischemic events in 2242 individuals with premature ACS (55 years old or younger), total number of 
events = 180 (in-hospital CV deaths = 39, and MI = 141).

Accuracy (95% confidence interval) C-statistics (95% confidence interval)

Logistic regression with GRACE score risk factors

Validation set (mean of 5-folds) 0.841 (0.819–0.866) 0.834 (0.819–0.866)

Test set (n =  673,75 events) 0.820 (0.784–0.856) 0.819 (0.782–0.853)

Logistic regression (top 20 predictors)

Validation set (mean of 5-folds) 0.889 (0.867–0.904) 0.883 (0.867–0.904)

Test set (n =  673,75 events) 0.880 (0.854–0.896) 0.872 (0.851–0.894)

Random Forests (top 20 predictors)

Validation set (mean of 5-folds) 0.901 (0.870–0.928) 0.908 (0.879–0.933)

Test set (n =  673,75 events) 0.892 (0.852–0.930) 0.888 (0.846–0.927)

XGBoost (top 20 predictors)

Validation set (mean of 5-folds) 0.894 (0.870–0.929) 0.898 (0.872–0.931)

Test set (n =  673,75 events) 0.876 (0.859–0.903) 0.861 (0.835–0.891)

TabNet (top 20 predictors)

Validation set (mean of 5-folds) 0.951 (0.924–0.979) 0.936 (0.904–0.955)

Test set (n =  673,75 events) 0.946 (0.917–0.975) 0.921 (0.889–0.953)

a.

b.

Figure 1.   Feature importance masks (indicating feature selection at the ith step) and the aggregate feature 
importance mask (mask 0) showing the global instancewise feature selection on the global cohort (a) and young 
subjects with ACS (b). Brighter colors show higher values. Legend: The x axis represents each feature used in 
B-CaRe:QCO dataset; and the y axis represents the first 50 test samples. Features shown in vivid/bright colors 
were more intensely recruited, and features shown in dark colors were less intensely recruited. In the global 
cohort, 28 variables are recruited by TabNet algorithm, and 20 are responsible for 91% of the model variance. In 
the yACS cohort, 24 variables were recruited by TabNet algorithm, and 20 were responsible for 93% of the model 
variance.
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MACE predictors differ significantly. Only the Killip class and prior CKD stood as predictors in both long-term 
CS-Cox and short-term sLR. The CS-Cox model in yACS individuals showed that drugs prescribed at discharge 
from index ACS, such as anticoagulants, furosemide and ticagrelor/prasugrel, are independently associated with 
MACEs. The atherosclerotic burden (Synthax score) and low ejection fraction were also linked to MACEs, but in 
yACS individuals, STEMI in index ACS showed reduced long-term risk compared to NSTEMI, and CABG as a 
treatment of index ACS was also associated with lower risk compared to PCI. Finally, the occurrence of non-fatal 

a

b

Figure 2.   Predictive importance of key variables in TabNet model for in-hospital MACE. Legend: The most 
important predictors are listed in the y axis and explain at least 90% of variance in TabNet model for in-hospital 
MACE; the x axis represents the relative importance to the model. (a) the global cohort and (b) young 
individuals with ACS (≤ 55 years old). Prothrombin_time: prothrombin time; Akynesia_RV: right ventricular 
akinesia; number_conventional_stents: number of conventional stents; rescue_PCI: treatment with recue PCI 
due to absent reperfusion sygnals after thrombolysis in STEMI; PCI: percutaneous coronary interventions; 
severe_3_vessels: 3-vessel disease; no_indication_for_PCI: absent coronary artery lesions eligible for PCI; 
EKG_3AVB: 3rd degree AV block; BMI: body mass index; Hypokinesia_RV: right ventricular hypokinesia; 
Akinesia_apical: left ventricular apex akinesia; Hypokinesia_absent: no left ventricular wall showing 
hypokinesia; LVEF: left ventricular ejection fraction; PAD: peripheral artery disease; Dyskinesia_absent: no 
left ventricular wall showing dyskinesia; PCI_bifurcation: PCI in coronary forked segment; prior_AMI: past 
medical history of acute myocardial infarction; Killip_III: Killip class III; Killip_IV: Killip class IV; MBG_1_
post_PCI: myocardial blush grade after PCI = 1; time_ACS_onset_cath: time between ACS symptoms onset and 
catheterization; PCI_D1: PCI of diagonal coronary artery; HDL_c: high density lipoprotein cholesterol; BMI: 
body mass index; EKG_neg_Twave_4_6leads: negative T waves in 4 to 6 leads; MBG_0_post_PCI: myocardial 
blush grade after PCI = 0; prior_smoking: past medical history of smoking; No_reflow_post_PCI: no-reflow 
phenomena observed after PCI; Hypokinesia_septal: left ventricular septal wall hypokinesia; Akynesia_RV: 
right ventricular akinesia; number_des: number of drug-eluting stents implanted during index PCI; sodium: 
blood sodium levels at admission; MBG_3_post_PCI: myocardial blush grade after PCI = 3; Glycemia: blood 
glucose levels at admission; Hypokinesia_inferior: left ventricular inferior wall hypokinesia; Recurrent_ST_
elevation_cath: recurrent ST segment elevation during catetherization; Hemoglobin: blood hemoglobin levels at 
admission; Typical_pain_at_MI_onset: presence of typical pain pattern at the onset of myocardial infarction.
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MACE during index ACS hospitalization was associated with an increased risk of long-term MACE. We did 
not observe differences in risk components for the global cohort and yACS individuals in the CS-Cox model.

Combined models.  In order to compare one-step models (full length follow-up) and two-step models 
(combination of short- and long-term predictive models), it was necessary to develop a mechanism to estimate 
the combined accuracy to predict MACE in the whole follow-up using the best short-term model and the best 
long-term model. Although Ctd-index and C-statistics are not comparable metrics, we generated a weighted 
score considering the number of events observed in the short-term (to weight the model with the best C-statis-
tic) and the number of events observed in the long-term (to weight the model with the best Ctd-index). Combin-
ing TabNet algorithm in in-hospital horizon and DeepHit in the postdischarge horizon, this compound strategy 
led to the detection of 80% of events, compared to 69% in the Global follow-up using DMGP algorithm.

Table 3.   Time-dependent C-statistics (Ctd-index) for predicting long-term noncardiovascular deaths or 
MACEs (cardiovascular deaths and recurrent ischemic events) with competing risks occurring (i) after 
discharge in 2161 individuals with premature ACS (55 years old or younger), total number of postdischarge 
events: 47 noncardiovascular deaths and 454 MACEs; (ii) 48 h after index ACS hospital admission (global 
follow-up models), total number of events: 92 noncardiovascular deaths and 631 MACEs.

Ctd-index (95% confidence interval)

Post-discharge horizon

CS-Cox 0.602 (95% CI 0.556–0.649)

Fine-Gray 0.612 (95% CI 0.564–0.663)

DMGP 0.685 (95% CI 0.639–0.725)

DeepHit 0.722 (95% CI 0.678–0.760)

Global follow-up horizon

CS-Cox 0.597 (95% CI 0.552–0.643)

Fine-Gray 0.601 (95% CI 0.559–0.660)

DMGP 0.687 (95% CI 0.640–0.728)

DeepHit 0.681 (95% CI 0.654–0.703)

Figure 3.   Estimated cumulative incidence functions (CIFs) for 12 random individuals with premature acute 
coronary syndrome (yACS) by using the DeepHit algorithm in the postdischarge horizon. Legend: zero (0) 
denotes CIF for noncardiovascular death, while one (1) means CIF for major cardiovascular adverse events 
(MACEs, cardiovascular deaths and recurrent ischemic events) occurring after discharge from index ACS 
hospitalization.
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Discussion
In this study, we found that individuals with yACS present different demographic characteristics and suscep-
tibility to risk factors for MACEs compared to older subjects. We also identified that risk prediction models 
are optimized by using a compound strategy: (i) specific risk prediction rules for yACS individuals rather than 
targeted to the overall population; (ii) short-term predictions are highly efficient; and (iii) long-term prediction 
models should incorporate competing events and should be optimized by including in-hospital clinical data in 
the observation window. Roughly, the best model using this compound strategy led to the detection of 80% of 
events, compared to 69% by using general rules.

As mentioned, risk prediction rules are improved by the optimal selection of observation windows. This 
issue was recently reviewed by Lauritsen et al.11 and suggested that temporal framing structures are critical for 
successful risk prediction. In models for predicting sepsis, the authors suggested not only implementing optimal 
selection of observation/prediction windows but also including a sequential evaluation by using predictions made 
until the current timestep17. Indeed, Wong et al.18 suggested that a hospitalization-level risk score for sepsis based 
on the entire trajectory of predictions may enable more realistic evaluations. However, in clinical cardiology, risk 
scores are typically less dynamic and employ temporal framing suboptimally. By setting a short-term endpoint, 
we could identify important predictors of in-hospital MACE with a set of data gathered from the first two days 
of index ACS onset. In parallel, long-term risk prediction taking into account competing risks was optimized by 
including predischarge information, including prescription at discharge and in-hospital clinical events.

Another argument in favor of splitting two prediction windows is that we showed large differences between 
key predictors of MACE in the short term and the long term. In short-term models, the most important predic-
tors of MACEs are symptoms at ACS presentation, microvascular thrombosis and intraprocedural complications 
of catheterization. Instead, in long-term models, the top predictors of worse clinical outcomes are mostly related 
to in-hospital outcomes, discharge medications, past medical history and severity of coronary artery lesions. In 
addition, splitting two prediction windows permits a flexible and dynamic way of dealing with clinical problems17.

It is important to mention that binary classification can provide predictions for a predetermined duration 
(e.g., in-hospital stay), useful for short-term outcomes where time to event is not an issue. Binary classification 
typically provides predictions for one predetermined duration, losing the interpretability and flexibility provided 
by modeling the event probabilities as a function of time. Hence, in clinical problems with a substantial amount 
of censoring, the use of survival models tends to be advantageous19. On the other hand, if censoring bias is not 
accounted for or the context can neutralize censoring, binary classification tends to maximize accuracy compared 
to survival models11. Therefore, the way to better fit a real-world scenario was to combine short-term classifica-
tion with long-term survival.

For in-hospital MACE prediction, TabNet yielded the best results. The algorithm has been recently described 
and couples a deep neural network architecture and gradient descent-based optimization designed specifically for 
tabular data16. Together with the great predictive capacity, it also enables interpretability. Although no causality 
can be attributed to top predictors, they are consistent with the most prevalent risk factors for MACEs among 
yACS4,20. As seen by others20, we observed that variables of interest for predicting MACEs in individuals with 
premature ACS differed from the top predictors among the global cohort and older subjects. In addition, our 
findings for in-hospital MACE prediction suggest both a strategy to predict events in a specific subset and a better 
predictive model. To exemplify this quote, the GRACE score was slightly better among older subjects compared 
to yACS to predict the risk of in-hospital MACE with AUC of 0.829 (95% CI 0.792–0.867) (data not shown), 
but still lower than Tabnet algorithm. As the GRACE score was designed to predict in-hospital death or cardio-
vascular events at 6 months, its performance in long-term risk prediction (> 2-year follow-up) is very limited5.

Among the long-term models, DeepHit was the most accurate. DeepHit is a multitask network that makes 
no linear assumptions during the predictive process, allowing for the possibility that the relationship between 
covariates and risks changes over time14. Although such architecture improves predictive ability and flexibility 
to deal with competing risks compared to CS-Cox and Fine-Gray models, it is not possible to interpret which 
variables are recruited at each step. However, among the long-term predictors of MACEs using CS-Cox, we 
identified that yACS may be at higher risk when prescribed at discharge drugs such as ticagrelor or prasugrel 
than clopidogrel. These observations contradict the findings from major clinical trials such as PLATO21 and 
TRITON-TIMI-3822 but should be explored in other real-world scenarios with appropriate techniques for neu-
tralizing any potential selection bias.

There are limitations in this study that should be acknowledged. First, the observational and retrospective 
design of this study limits any potential causal conclusions. Second, the definition of yACS is not consensus; while 
some consider an age threshold of 55 years old, others consider 50 or 45 years old4,6,23. Third, guideline-specific 
medication and ongoing management of risk factors are of unquestionable importance. Unfortunately, data 
on medical therapy beyond discharge was not available and this represents an important limitation. Forth, our 
models were trained in a relatively small cohort. Although the B-CaRe:QCO yACS cohort is among the largest 
cohorts of yACS, some algorithms, such as DeepHit, DMGP, and TabNet, were originally developed in datasets 
of > 10,000 individuals14,16,24. Our results suggest that these algorithms also perform well in smaller datasets, and 
we did our best to maximize external validity by using cross-validation and resampling techniques. The main 
advantage of our cohort is that we systematically included all subjects admitted due to ACS in public hospitals 
from Brasília (Brazil).

In summary, we found that individuals with premature ACS share considerable morbidity and show unique 
epidemiologic features compared to those of older subjects. In this study, we also identified that risk prediction 
models are optimized by using specific risk prediction rules for yACS individuals in two windows: a short-term 
window and a long-term window that incorporate competing events and in-hospital clinical data within the 
observation window. It is critical to better understand risk factors within this subgroup to allow public health 
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initiatives that mitigate the economic burden aroused by yACS4,6. Risk prediction-enhanced clinical care could 
turn into a framework for intensified clinical surveillance in individuals predicted to be high risk5.

Methods
Study design and participants.  The set of individuals was selected from the B-CaRe:QCO (Brasilia 
Cardiovascular Registry for Quality of Care and Outcomes), a retrospective registry of 6341 subjects with ACS 
(n = 2242 with yACS). The B-CaRe:QCO study included consecutive individuals admitted to public hospitals in 
Brasília (DF) with ACS who underwent coronarography up to 48 h after hospital admission from January 2011 
to February 2020. At that time, all coronarographies were carried out in Hospital de Base (Brasília-DF, Brazil) 
and Instituto de Cardiologia (Brasília-DF, Brazil). We excluded 17 individuals who died within the first 48 h.

Enrolled subjects experienced therapies based on guidelines for the treatment of ACS25. Attending physi-
cians made all therapeutic decisions and were blinded to the study evaluations. Most individuals admitted 
due to STEMI (n = 1659 with premature ST-elevation myocardial infarction [STEMI]) were treated by primary 
percutaneous coronary intervention (pPCI) or pharmacoinvasive strategy.

The methods were performed in accordance with relevant guidelines and regulations, and approved by the 
Institutional Ethics Review Board from Instituto de Gestão Estratégica em Saúde do Distrito Federal (IGESDF) 
(study protocol approval number [CAAE] 28530919.0.1001.8153).

For predicting in-hospital MACE (defined as cardiovascular deaths or recurrent ACS) occurring 48 h after 
hospital admission, the observation window comprised the first 48 h after hospital admission. The yACS data-
set was divided into a training/validation set (70%, n = 1569) and a test set (30%, n = 673). Short-term models 
(STWm) were trained and validated in a fivefold cross-validation framework with upsampling to mitigate out-
come imbalance, a setting that usually produces classifier’s bias towards the majority class26,27. STWm was then 
evaluated in the test set.

To predict long-term outcomes with competing risks (noncardiovascular deaths vs MACE), two contexts were 
evaluated: (i) postdischarge, where an observation window included the whole period of index hospitalization 
(mean of 5 ± 2 days) and the outcomes were observed from hospital discharge to the end of follow-up (median 
of 6.67 years); (ii) global follow-up, where the observation window included only the first 48 h and the outcomes 
observation period began at 48 h and extended to the end of follow-up. A training/validation set (n = 1513) and 
test set (n = 648) included individuals alive at discharge and were used to train and validate long-term window 
models (LTWm). LTWm was repeated over five cross-validation folds and then assessed in the test set.

To better understand model accuracy and differences in key predictors for short-term MACE between the 
yACS and older subjects, we also created models using the global cohort (n = 6341) by splitting a training/valida-
tion set (n = 4439) and a test set including only 673 individuals in the yACS test set (remaining 1229 individuals 
older than 55 years were not included in the test set to prevent sampling imbalance). Again, we used fivefold 
cross-validation with upsampling for STWm and evaluated the model in the yACS test set (n = 673).

Clinical definitions and outcome assessment.  Current smokers were defined as those who had smoked 
at least 100 cigarettes during their lifetime and were smoking at least one year before ACS onset, according to 
the National Health Interview Survey (NHIS) definition28. Ex-smoking status was defined as smoking cessation 
for at least the last 6 months. Diabetes was defined as the use of antidiabetic medications, prior diagnosis of dia-
betes, or glycosylated hemoglobin (HbA1c) ≥ 6.5% at hospital admission. Patients were considered hypertensive 
if they were taking any antihypertensive medication or presented systolic blood pressure (SBP) ≥ 140 mm Hg 
or diastolic blood pressure (DBP) ≥ 90 mmHg. The anthropometric measurements obtained were body weight 
(kg), height (m), and waist circumference (cm). The Killip class and GRACE scores for in-hospital MACEs were 
evaluated in all enrolled patients29.

Clinical outcomes were assessed by checking electronic health records (EHRs). Information about the cause 
of death and clinical events was obtained from the death certificate or medical records. The following adverse 
cardiac events for both STWm and LTWm were considered: cardiovascular deaths and recurrent ACS (MACE). 
For STWm, those who had any event during follow-up were marked as 1, and those who did not were coded as 
0. For LTWm, we considered a competing event approach in survival analyses, i.e., individuals were followed 
until their deaths, the occurrence of recurrent ischemic events or the end of follow-up (last visit to the outpatient 
clinic registered in EHRs). Reinfarction was defined as the occurrence of new ischemic symptoms during the first 
28 days after index MI associated with a > 20% increase in cTn levels after a 3-to-6-h interval from symptoms30.

Models and variable selection.  A domain-knowledge-driven approach was first used to select vari-
ables. From 186 variables at baseline, we excluded variables with no potential causal link with the outcomes and 
included those proven as predictors in previous models, leaving the remaining 108 variables. Variables were 
included only if they were unambiguous in their interpretation and recorded in a structured (numeric/binary) 
format.

After this, a data-driven approach took place and consisted of an automated process based on actual data and 
the relevance of each variable to a specific outcome31. For most of the STWm and LTWm, we used a fully automated 
process incorporated into the algorithms. When selection could not be performed automatically, we followed 
guidelines as proposed by Belsley et al.32: in the case of high correlation between variables (partial R2 ≥ 0.5 in 
univariate regression with MACE[= 1] as the dependent variable or variance inflation factor [VIF] > 10), we 
dropped the variables with lower R2. Information-gain ranking was used to evaluate the worth of each variable 
by measuring the entropy gain with respect to the outcome, followed by ranking the attributes by their individual 
evaluations. Considering the tradeoffs between the cost of information and information gain, only attributes 
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resulting in information gain higher than 0.01 were subsequently used in STWm and LTWm. Variable selection 
was performed in the training/validation dataset.

Missing values (MVs) were relatively rare (2.7% of B-CaRe:QCO data). We handled MVs with multiple 
imputations directly in the training/validation dataset by using boosted trees. Real life datasets are likely to have 
horizontal data segments where records have higher similarity and attribute correlations than the similarity 
and correlations of the whole data set. Boosted trees can explore these segments and improves the imputation 
accuracy by taking a global approach in the sense that it imputes missing values using the whole dataset, instead 
of a horizontal segment of it, unlike the family of k-NN imputation techniques33,34. Only a few variables showed 
MV frequencies ≥ 10% (plasma TSH, free T4 and urea). Imputation using boosted trees fills each column by 
treating it as a regression problem. We did not impute missing values for the outcomes.

Predictive algorithms.  For predicting short-term outcomes, we used XGBoost35, random forests36, and 
TabNet16. Random forests, based on decision trees, rank variable importance on the selection frequency of the 
variable as a decision node and generally show good performance for classification problems in tabular data 
with a single outcome5. XGBoost is also based on decision trees and uses gradient descent-based optimization35. 
TabNet has an interpretable canonical deep tabular data learning architecture, merging both deep learning and 
gradient descent-based optimization. The observation window was considered the first 2 days upon hospital 
admission and encompassed past medical history, emergency room data and coronarography. We compared 
models with the benchmark GRACE score37, recalibrated using regression coefficients of risk factors derived 
from logistic regressions (LR) as described elsewhere5 (details in below).

For long-term outcomes, we used the following survival algorithms with competing risks: cause-specific Cox-
proportional hazards model (CS-Cox)38, Fine-Gray proportional subdistribution hazards model (Fine-Gray)39, 
deep multitask Gaussian process (DMGP)24, and DeepHit14. CS-Cox and Fine-Gray assume linear proportional 
hazards, DMGP assumes the underlying stochastic process to follow the Gaussian process, and DeepHit employs 
a network architecture that makes no assumptions about the relationship between predictors and outcomes.

Each model’s hyperparameters were determined using the grid search method40 and fivefold cross-validation 
for STWm and LTWm. STWm were generated with upsampling to mitigate outcome imbalance. Performance in 
the validation set is reported as the mean of 5-folds. A full description of variable selection, hyperparameters 
and model architectures can be found below.

Model development process.  To develop the prognostic models, B-CaRe:QCO data were extracted into 
a labelled dataset containing the independent variables (using the patients’ clinical records at their baseline dates 
or during index hospitalization) and all dependent variables (occurrence of a composite endpoint of death due 
to cardiovascular causes and recurrent ACS following the baseline date).

We implemented a grid search for the hyperparameter optimization using the method reported by Bergstra 
and Bengio40. This requires the operator to specify a range of values for each hyperparameter, and all possible 
combinations of the hyperparameters are investigated, with the combination corresponding to the highest cross-
validation performance metric (in this case, maximization of the C-statistics being chosen for the final model). 
The justification for selecting the hyperparameters that maximise the C-statistics is that this is less affected when 
the labelled data are unbalanced compared to using accuracy as a metric. When the classes are unbalanced, it 
is also a common strategy to oversample the rare label data and undersample the common label data, as many 
machine learning models can be sensitive to unbalanced data41. Below, we describe in further detail the algo-
rithms used.

Short‑term predictive algorithms for classification.  Random forests. For the hyperparameter grid 
search, we investigated ntree = 50, 150, and 350; mtry from 5 up to the maximum number of variables in incre-
ments of 5; max depth = 2, 4, 6, 8, and 10; and row samples of 90%, 95% and 100%. The chosen (optimal) random 
forest model had the following hyperparameters: ntree = 350, mtry = 25, max depth = 5 (up to 5 variable interac-
tions were used by the model) and row sample fraction of 0.95 (95% of the data points were used to train each 
tree).

XGboost. The grid search for the hyperparameters investigated in our models were ntree = 25, 50, 75 and 
100; max depth = 2, 3, 4, 6 and 8; and the minimum observations per node was 5, 10, 20, and 40. The gradient 
boosting machine model was chosen to have a Bernoulli distribution, and the chosen model had the follow-
ing hyperparameters: ntree = 50, max depth = 3 (up to 3 variable interactions were used by the model), and the 
minimum number of observations per node was 10. XGBoost was implemented in Python.

TabNet. We used a canonical deep neural network (DNN) architecture for tabular data described by Arik 
et al.16. Briefly, TabNet is trained using gradient descent-based optimization and uses sequential attention to 
choose which features to reason from at each decision step, enabling (i) interpretability, (ii) more accurate and 
faster learning and (iii) flexible integration into end-to-end learning. Through sparse and instancewise selection 
(sparsemax is used for normalization of the coefficients) of features with the highest impact on outcomes, the 
learning capacity of a decision step is not wasted on irrelevant ones, and thus the model becomes more parameter 
efficient. TabNet also constructs a sequential multistep architecture, where each step contributes to a portion 
of the decision based on the selected features, improves the learning capacity via nonlinear processing of the 
selected features, and mimics ensembling via higher dimensions. The TabNet encoder is composed of a feature 
transformer, an attentive transformer and feature masking. A split block divides the processed representation 
to be used by the attentive transformer of the subsequent step as well as for the overall output. For each step, 
the feature selection mask provides interpretable information about the model’s functionality, and the masks 
can be aggregated to obtain global feature important attributions. The TabNet decoder is composed of a feature 
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transformer block at each step. Each feature transformer block is composed of a 4-layer network, where 2 are 
shared across all decision steps and 2 are decision step-dependent. Each layer is composed of a fully connected 
(FC) layer, ghost batch normalization (BN) and gated linear unit (GLU) nonlinearity. We used standard clas-
sification (softmax cross entropy) loss functions, and we trained the model until convergence using unsuper-
vised pretraining. The final TabNet model was implemented in a PyTorch environment and had the following 
configuration: Adam optimizer with a learning rate of 0.02 and a decay rate of 0.9 every 10 interactions, Glorot 
uniform initialization, batch size of 256, Max epoch 1000, workers at zero, momentum of 0.9, Nsteps = 8, γ = 2.0, 
and weight at 1 (automated sampling).

Logistic regression models. We built a series of stepwise logistic regression models to predict in-hospital 
MACEs.

Long‑term predictive models – survival with competing risks.  Cause-specific Cox-proportional haz-
ards model (Cox) and Fine-Gray proportional subdistribution hazards model (Fine-Gray). The Cox model relates 
the covariates to the hazard function of the outcome of interest and not directly to the survival times themselves. 
The covariates have a relative effect on the hazard function because of the use of the logarithmic transformation, 
and the regression coefficients are interpreted as log-hazard ratios. The hazard ratio is equal to the exponential 
of the associated regression coefficient38. Competing risks imply that a subject can experience one of a set of 
different events or outcomes. In this case, two different types of hazard functions are of interest: the cause-
specific hazard function and the subdistribution hazard function. The cause-specific hazard function indicates 
the instantaneous rate of occurrence of the kth event in subjects who are currently event free (i.e., in subjects who 
have not yet experienced any of the different types of events). Considering two types of events, death attributable 
to cardiovascular causes and death attributable to noncardiovascular causes, the cause-specific hazard of cardio-
vascular death denotes the instantaneous rate of cardiovascular death in subjects who are still alive. It denotes 
the instantaneous risk of failure from the kth event in subjects who have not yet experienced an event of type k. 
There is a distinct cause-specific hazard function for each of the distinct types of events and a distinct subdis-
tribution hazard function for each of the distinct types of events. In settings in which competing risks are pre-
sent, two different hazard regression models are available: modeling the cause-specific hazard and modeling the 
subdistribution hazard function. The second model has also been described as a cumulative incidence function 
(CIF) regression model, which means that the subdistribution hazard model allows one to estimate the effect of 
covariates on the cumulative incidence function for the event of interest. However, it is recommended to use the 
Fine-Gray (FG) subdistribution hazard model when the focus is on estimating incidence or predicting prognosis 
in the presence of competing risks, since this model generally shows better accuracy than the Cox model. The 
(cause-specific) cumulative incidence function (CIF) expresses the probability that a particular event k* occurs on 
or before time t* conditional on covariates x*. Since true CIF is not known, the model utilizes estimated CIF to 
compare the risk of events occurring and to assess how models discriminate across cause-specific risks among 
patients. Model performance was calculated by using the time-dependent concordance index Ctd42 (Ctd-index). 
Cox and FG benchmarks were run using the R libraries survival and cmprsk. We estimated the time-dependent 
Ctd index for the survival analysis methods under consideration using the function cindex of the R package pec.

A deep multitask Gaussian process (DMGP)24 is a nonparametric Bayesian model for survival analysis that 
relies on a conception of the competing risks problem as a multitask learning problem; i.e., it models the cause-
specific survival times as the outputs of a random vector-valued function, the inputs to which are the patients’ 
covariates. This allows the model to learn a “shared representation” of survival times with respect to multiple 
related comorbidities. Inference of patient-specific posterior survival distribution is conducted via a variational 
Bayes algorithm. By using inducing variables to derive a variational lower bound on the marginal likelihood of 
the observed time-to-event data, which is maximized using the adaptive moment estimation algorithm (Adam). 
Hyperparameters ΘZ and ΘT were tuned using the offline B-CaRe:QCO dataset, and for any out-of-sample patient 
with all covariates, DMGP evaluates posterior probability density by direct Monte Carlo sampling. Hyperpa-
rameters were calibrated by maximizing the marginal likelihood of posterior probability density. DMGP was 
implemented in Python.

DeepHit trains a neural network to learn the estimated joint distribution of survival time and event while 
capturing the right-censored nature inherent in survival data14. The network is trained by using a loss func-
tion that exploits both survival times and relative risks. DeepHit makes no assumptions about the underlying 
stochastic process and allows for the possibility that the relationship between covariates and risks changes over 
time. DeepHit is a multitask network that consists of a shared subnetwork and K cause-specific subnetworks, 
differing from that of a conventional multitask network in two ways: (i) it utilizes a single softmax layer as the 
output layer of DeepHit to ensure that the network learns the joint distribution of K competing events, not the 
marginal distributions of each event; (ii) it keeps a residual connection from the input covariates into the input 
of each cause-specific subnetwork. To train DeepHit, a total loss function LTotal is specifically designed to handle 
censored data. This loss function is the sum of two terms LTotal = L1 + L2; L1 is the log-likelihood of the joint distri-
bution of the first hitting time and event; L2 incorporates a combination of cause-specific ranking loss functions 
that adapts the idea of concordance. The hyperparameters for LTotal were selected based on the discriminative 
performance on the validation set. Early stopping was performed based on the total loss. DeepHit is a 4-layer 
network consisting of 1 fully connected layer for the shared subnetwork and 2 fully connected layers for each 
cause-specific subnetwork and a softmax layer as the output layer. For hidden layers, the number of nodes was 
set as 3, 5, and 3 times the covariate dimension for layers 1, 2, and 3, respectively, with the ReLu activation func-
tion. The network was trained by backpropagation via the Adam optimizer with a batch size of 50 and a learning 
rate of 0.0001. A dropout probability of 0.6 and Xavier initialization were applied for all layers. DeepHit was 
implemented in a TensorFlow environment in Python.
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Statistical analysis.  STWm were compared using accuracy and C-statistics for their performance on the test 
and validation datasets. We calculated the median performance and 95% confidence intervals (CIs) for the C-sta-
tistics for each algorithm. We built models with the training/validation set and finally evaluated the model on the 
test set to estimate performance. STWm was compared to the C-statistics obtained by the recalibrated GRACE 
score37. LTWm evaluates each individual’s cumulative incidence function (CIF), also known as the subdistribu-
tion function. CIF is commonly used in settings with competing risks and refers to the probability of a particular 
event during follow-up. CIFs are used to evaluate the case-specific concordance, and this concept is used to 
derive a performance metric to compare LTWm, the time-dependent concordance index Ctd42. The Ctd-index 
measures the extent to which the ordering of actual survival times of pairs agrees with the ordering of their pre-
dicted risk (further information is available in Supplemental Methods). A confidence interval for the Ctd index is 
derived using the jackknife method on correlated one-sample U-statistics. Jackknife method was used because it 
is less computationally expensive than bootstrapping. The integrated Brier score (IBS) was also used as an LTWm 
evaluation measure. Normally distributed data are presented as the mean ± SD, and skewed data are presented as 
the median [interquartile range (IQR)]. Normality of distribution and variances were checked using histograms, 
Kolmogorov-Smirnoff test, normal probability plots and residual scatter plots. Chi-square or two-tailed t-tests 
were used for comparison of baseline data. P values < 0.05 were considered significant. Analyses were carried out 
using R[v4.0.1] and Python[v3.8], and the packages used are described in the Supplemental Methods.

IRB approval and patient consent.  The study proceedings are in accordance with the Helsinki Declara-
tion and the study was approved by the Institutional Ethics Review Board (IRB) from Instituto de Gestão Estra-
tégica do Distrito Federal (IGESDF) (study protocol approval number [CAAE] 28530919.0.1001.8153). Since this 
is a retrospective study, the IRB approved the waiver of participants informed consent as long as data is captured 
anonymously.

Data availability
Codes are available at https://​github.​com/​lserg​iocar​valho/​openw​indow​ACS. All requests for raw and analyzed 
data and related materials, excluding programming codes, will be reviewed by the Clarity Healthcare Intelligence 
legal department to verify whether the request is subject to any intellectual property or confidentiality obligations. 
Requests for patient-related data can be considered upon request (contact: contato@clarityhealth.com.br). Any 
data and materials that can be shared will be released via a Material Transfer Agreement.
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