Table 2.
The confirmed plastic-degrading insects and their ability to degrade diverse plastic materials.
| Insect species | Types of plastic | Degradation efficiency | Mechanisms | References |
|---|---|---|---|---|
| Tenebrio molitor | PE, PS | 49.0 ± 1.4% loss of PE and PS weight for 32 days | Gut microbiome- Citrobacter sp. and Kosakonia sp. | Brandon et al., 2018 |
| PS | / | Gut Microbiome- eight unique bacterial species | Brandon et al., 2021 | |
| Polyether-PU foam | 67% loss of PE-PU foam for 35 days | Gut Microbiome- the families Enterobacteriaceae and Streptococcaceae | Liu et al., 2022 | |
| PE | 1.818 g PE of loss on the 58th day | Gut microbiome | Bulak et al., 2021 | |
| PS | 0.07 mg PE/larvae/day | Gut Microbiome- Enterococcus, Enterobacteriaceae, Escherichia-Shigell, and Lactococcus. | Jiang et al., 2021a | |
| PS | 22.0 ± 0.5 g PS loss in 2 weeks | Cronobacter sakazakii and Lactococcus garvieae | Bae et al., 2021 | |
| PVC | 65.4% loss of ingested PVC for 16 days | Gut microbiome | Peng et al., 2020a | |
| Zophobas atratus | PS foam | 36.7% loss of PS weight for 28 days | Gut microbiota | Yang et al., 2020 |
| PS | / | Gut Microbiome-Pseudomonas sp. EDB1, Bacillus sp. EDA4 and Brevibacterium sp. EDX | Arunrattiyakorn et al., 2022 | |
| PS | 2.78 mg PS/larvae/day | Gut Microbiome-Enterococcus, Enterobacteriaceae, Kluyvera, and Lactococcus NDa | Jiang et al., 2021b | |
| PS, LDPE | 43.3 ± 1.5 mg PS/100 larvae per day, 52.9 ± 3.1 mg LDPE/100 larvae per day | Gut microbiota and microbial functional enzymes | Peng et al., 2022 | |
| LDPE, EPS | 58.7 ± 1.8 mg/100 larvae per day, 61.5 ± 1.6 mg EPS/100 larvae per day | Gut microbiota | Peng et al., 2020b | |
| Galleria mellonella | PE, PS | 0.88 and 1.95 g loss of PE and PS weight for 21days | Intestinal bacteria- Bacillus and Serratia | Lou et al., 2020 |
| LDPE | / | Gut Microbiome-Acinetobacter, Cloacibacterium, Corynebacterium, Curvibacter, Enhydrobacter and Staphylococcus genera | Latour et al., 2021 | |
| LDPE | / | Gut microbiome | Réjasse et al., 2021 | |
| PS | / | Gut microbiota | Wang et al., 2022 | |
| PS | 12.97 ± 1.05% loss weight of PS for 30 days | Intestinal bacteria-Massilia sp. FS1903 | Jiang et al., 2021b | |
| Plodia interpunctella | PE | 6.1 ± 0.3% and 10.7 ± 0.2% loss of PE weight for 28 days | Two bacterial strains-Enterobacter asburiae YT1 and Bacillus sp. YP1 | Yang et al., 2014 |
| PE | 15.87% loss of PE weight for 60 days | Meyerozyma guilliermondii ZJC1 (MgZJC1) and Serratia marcescens ZJC2 (SmZJC2) | Lou et al., 2022 | |
| Tribolium castaneum | PS | 12.14% loss of mass weight and 13%/25% (Mw/Mn) reduction of molecular weight for 60 days | An intestinal bacterium- Acinetobacter bacterium | Wang et al., 2020 |
| Tenebrio obscurus | PS | 32.44 ± 0.51 mg/100 larvae per day | Intestinal bacteria- Enterobacteriaceae, Spiroplasmataceae, and Enterococcaceae | Peng et al., 2019 |
| Tribolium confusum | PS, PE, and EVA (Ethyl vinyl acetate) | 51.92, 46.84, and 2.9% loss of PS, PE, and EVA, respectively, for 30 days | / | Abdulhay, 2020 |
| Achroia grisella | HDPE (high-density polyethylene) | Loss weight of PE- (43.3 ± 1.6%) and PE + wax (69.6 ± 3.2%) for 8 days | / | Kundungal et al., 2019 |
| Spodoptera frugiperda | PVC | 19.57% loss of PVC weight for | Intestinal bacterium -Strain EMBL-1 | Zhu et al., 2022 |
| Alphitobius diaperinus | PS | / | Intestinal bacteria- Pseudomonas sp. 2 m/c | Cucini et al., 2022 |
| Uloma sp. | PS | 37.14 mg of PS per day per 100 larvae | Gut microbiota | Kundungal et al., 2021 |
| Corcyra cephalonica (Stainton) | LDPE | Weight loss: without antibiotic feeding - 25% with antibiotic feeding - 21% | Gut microbiota | Kesti and Sharana, 2019 |
| Plesiophthalmus davidis | PS | 34.27 ± 4.04 mg PS loss/larva | Gut microbiota | Woo et al., 2020 |