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ABSTRACT

The ILHBN is funded by the National Institutes of Health to collaboratively study the interactive dynamics of behavior, health, and the environ-
ment using Intensive Longitudinal Data (ILD) to (a) understand and intervene on behavior and health and (b) develop new analytic methods
to innovate behavioral theories and interventions. The heterogenous study designs, populations, and measurement protocols adopted by the
seven studies within the ILHBN created practical challenges, but also unprecedented opportunities to capitalize on data harmonization to provide
comparable views of data from different studies, enhance the quality and utility of expensive and hard-won ILD, and amplify scientific yield.
The purpose of this article is to provide a brief report of the challenges, opportunities, and solutions from some of the ILHBN's cross-study data
harmonization efforts. We review the process through which harmonization challenges and opportunities motivated the development of tools
and collection of metadata within the ILHBN. A variety of strategies have been adopted within the ILHBN to facilitate harmonization of ecolog-
ical momentary assessment, location, accelerometer, and participant engagement data while preserving theory-driven heterogeneity and data
privacy considerations. Several tools have been developed by the ILHBN to resolve challenges in integrating ILD across multiple data streams
and time scales both within and across studies. Harmonization of distinct longitudinal measures, measurement tools, and sampling rates across
studies is challenging, but also opens up new opportunities to address cross-cutting scientific themes of interest.
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Lay Summary

Health behavior changes, such as prevention of suicidal thoughts and behaviors, smoking, drug use, and alcohol use; and the promotion of
mental health, sleep, and physical activities, and decreases in sedentary behavior, are difficult to sustain. The ILHBN is a cooperative agreement
network funded jointly by seven participating units within the National Institutes of Health to collaboratively study how factors that occur in
individuals’ everyday life and in their natural environment influence the success of positive health behavior changes. This article discusses how
information collected using smartphones, wearables, and other devices can provide helpful active and passive reflections of the participants’
extent of risk and resources at the moment for an extended period of time. However, successful engagement and retention of participants also
require tailored adaptations of study designs, measurement tools, measurement intervals, study span, and device choices that create hurdles
in integrating (harmonizing) data from multiple studies. We describe some of the challenges, opportunities, and solutions that emerged from
harmonizing intensive longitudinal data under heterogeneous study and participant characteristics within the ILHBN, and share some tools and

recommendations to facilitate future data harmonization efforts.
Keywords ILHBN, Location, Sensor, EMA, Health behavior changes

Implications

Practice: Understanding and maintenance of healthy lifestyles can benefit from harmonizing intensive longitudinal data (ILD) across studies
that may show heterogeneity in study design, device choices, and data types.

Policy: Policymakers who want to increase and maintain positive health behavior changes should support ILD harmonization initiatives under
heterogeneous designs to enhance the quality and utility of expensive and hard-won ILD.

Research: Future research should explore ways to integrate and harmonize ILD across studies under heterogeneous designs to provide
comparable views of data from different studies and amplify scientific yield.

Data harmonization provides tremendous opportunity for
advancing research. Across disciplines, several harmonization
efforts are underway to integrate data across scientific contexts
and the lifespan [1, 2]. Recent initiatives [3] have also under-
scored the importance of using big data, especially intensive
longitudinal data (ILD), with innovative computational and
modeling approaches to develop dynamic health behavior theo-
ries. However, harmonizing ILD poses unique challenges. In this
article, we discuss some of the data harmonization opportuni-
ties, challenges, and solutions from the ILHBN.

Established through support of the National Institutes
of Health, the ILHBN sought to use ILD to collectively: (a)
understand and intervene on behavior and health and (b)
develop new analytic methods to innovate behavioral the-
ories and interventions. The ILHBN’s seven study projects
were served by a Research Coordinating Center (RCC) and
differed in their target health behaviors, study designs, popu-
lations, and participant inclusion criteria (see Table 1)

At its inception, the ILHBN engaged in discussions to find
opportunities and consensus for data harmonization. Interest
and success have been fueled by two key motivators: unique
problems posed by use of distinct longitudinal measures, mea-
surement tools, and sampling rates by different studies; and
shared scientific interests in cross-cutting themes of interest
to multiple projects. Next, we describe some of the harmo-
nization opportunities and solutions that emerged from the
network’s collaborative efforts.

INCLUSION OF NEW ITEMS TO HARMONIZE
ECOLOGICAL MOMENTARY ASSESSMENT
DATA

The ILHBN studies targeted processes that unfolded across a
multitude of time scales (Fig. 1), with data collection spanning
3 months to 4 years. Ecological momentary assessment (EMA)
was a key component of all seven studies, with five studies
(Temporal Influences of Movement and Exercise [TIME],
Dynamic Models of Behavior [DMB], Mobile Assistance for
Regulating Smoking [MARS], Sensing and Mobile Assessment

in Real Time Study (SMART), and Mobile Assessment for the
Prediction of Suicide [MAPS]) using variations of the multiple
burst design [4]. Each burst period lasted between 4 to 10
days, with 5 to 6 measurements per day. Most ILHBN studies
also used “diary” designs, collecting daily or biweekly self-re-
pOrts Over one or more years.

Adopting similar measures at the inception of a new net-
work was challenging, but offered a more direct and efficient
method for data harmonization than other post-hoc alterna-
tives [5, 6]. However, full standardization of all study-related
measures was not always feasible. An alternative approach
the ILHBN adopted was to standardize when sites have over-
lap in planned measures. For example, affect was a common
construct across multiple studies. Participating Principal
Investigators (PIs) agreed to include seven common EMA
affect items (i.e., relaxed, tense, energetic, fatigue, happy, sad,
and stressed). Doing so allowed researchers to identify the
scales of common unobserved (latent) constructs (e.g., pos-
itive affect) and study-specific items relative to those of the
common items [2].

Despite the use of common EMA items, the instructions,
wording, and measurement scales were not standardized. For
instance, studies with multiple measurements within a burst
design asked participants, “Right now, how stressed do you
feel?” while studies adopting a daily or weekly design, asked
participants, “Ouwer the past day (week), how stressed did you
feel?” In addition, whereas most of the studies adopted a 5-point
ordinal scale (from 1 = not at all to § = extremely) for EMA
affect items, MAPS used a continuous sliding scale to increase
the variability of participants’ responses. Still, the availability of
common or parallel measures created opportunities to test the
constraints of data harmonization within the realm of ILD.

TOOLSTO FACILITATE WITHIN- AND CROSS-
STUDY INTEGRATION OF TIME SCALES
Effective observational and interventional research requires

understanding and consideration of the dynamic variations
of health behaviors [4]. Across studies, the differences in
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SMART: Sensing and Mobile Assessment in Real Time

6 per day for 3 months, then daily

Continuous
L 1 ]

0 3 6 months

MAPS: Mobile A t for the Prediction of Suicid
Daily over 7 days in 4 bursts
Daily (Affect items)

ul | ul I | I Iul | I I | I | l I |L Weekly acute event assessments
0 5

Baseline, 1, 3 & 6 mos

I ontinuous

0 3

Weekly

6 months

MARS: Mobile Application for Regulated Smoking
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TIME: Temporal Influences of Movement and Exercise
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B
i fl 1 /R —
3 6 9 12 24 36 months

Fig 1 | An overview of the designs of the seven network studies. Line or point density within the block arrow indicates response frequency. EMA =
Ecological momentary assessment; Exec func = Executive functioning tasks; MRT = Micro-randomized trial.

measurement intervals and total time lengths reflected the
studies’ distinct priorities in capturing the dynamics of relevant
phenomena while maintaining participant engagement over
the entire study span. For instance, in MARS, the micro-ran-
domized trial was employed 3 days prior to the participants’
quit date through 7 days post-quit to capture the period of high
risk for relapse [7]. In contrast, the TIME study interspersed 24
bursts throughout a year (i.e., approximately twice per month)
to obtain snapshots of momentary states for predicting partici-
pants’ physical activity and sedentary behavior [8].

To resolve between-study differences in measurement time
scales, we recommend recording precise timestamps and
anchoring the data to a common time zone to allow a stan-
dardized way of computing the time elapsed between succes-
sive occasions—a critical feature in most ILD. For instance,
individuals’ time scales of recovery from extreme affective
states can help distinguish normative from problematic health
outcomes [9]. To this end, continuous-time modeling tools,
such as software packages developed by members of the RCC
[10, 11], provide options to accommodate diversely and irreg-
ularly spaced data (see Table 2).

The network has also developed tools that help visual-
ize and explore multiple streams of ILD (and hence, time
scales). The Deep/Digital Phenotyping Dashboard (DPdash;
[12]) is a web-viewable, customizable dashboard to facili-
tate visualization of continuously acquired data from mul-
tiple data streams (e.g., actigraphy, magnetic resonance
imaging data, missing data patterns, and other data collec-
tion issues).

Members of the TIME study [13, 14] have developed a
customized tool, Signaligner Pro, that can provide simulta-
neous visual display and algorithms that enable classification
of different types of physical activities, sleep/wear/non-wear

statuses [15], and segments of problematic data that warrant
closer investigation or possible data removal. Tools such as
DPdash and Signaligner Pro (see Table 2 for a full list) pro-
vide helpful exploratory information to identify appropri-
ate time scales for within- (and cross-) study harmonization
of time scales across data streams (e.g., EMA and passive
sensor data).

DATA PRIVACY, SPATIAL, AND TIME
HETEROGENEITY IN HARMONIZING
LOCATION DATA

Location data collected by phones and wearable devices using
Global Positioning System (GPS) and other technologies used
with mapping databases can provide rich contextual infor-
mation about neighborhood characteristics, as well as where,
when, and with whom individuals experience conditions that
may impact health-related outcomes. However, intensive,
timestamped geolocation data, even with other identifiers
removed, may still reveal potentially sensitive and identify-
ing information if the data were shared with other entities.
For instance, prolonged stays at specific locations at night-
time could expose individuals’ residential addresses; repeated
routes could allow reconstruction of the participants’ regular
travel trajectories and increase the participants’ vulnerability
for identity exposure. To avoid data privacy issues from shar-
ing raw geolocation data, the network opted to harmonize and
share derived measures such as distances and time spent at
categories of landmarks (e.g., recreation parks, tobacco retail
outlets); neighborhood characteristics such as crime rate; and
markers of mobility patterns, such as activity space, namely,
the typical mobility area of an individual over some specified
time frame [16].
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Table 2. Continued

Where to Access Tools

Solutions/Tools for Resolving Challenges

Challenges

https://github.com/dptools/dplocate

The Deep Phenotyping of Location (DPLocate) is an open-source GPS processing pipeline that securely reads

Challenges in extracting behav-

encrypted GPS coordinates, uses temporal filtering to detect temporal epochs with statistically acceptable data

ioral features/patterns from

points and then uses density-based spatial clustering algorithm to identify the most visited places by the indi-

GPS data without releasing/

vidual during the longitudinal study as points of interest (POI). Times of the day are allocated to the POIs with

relying on identifiable

emphasis on behaviorally meaningful Time-Bands for sleep, socializing, work/school and nightlife. The repeating

information

patterns of behavior help researchers identify phenotypes without getting direct access to the identifiable data.
The HeartSteps mobile app/dashboard [32] is a platform utilized by the DMB study to implement JITAIs that

https://heartsteps.net

Difficulties in implementing

encourage walking and breaks in sedentary activity, as well as monitoring adherence to the intervention designs.

sustainable JIT interven-

Currently paired with the Fitbit, the mobile app helps individuals set activity goals, and plan how they maintain

tions in everyday life

the motivation to remain physically active in their daily lives.

https://dynrr.github.io/

Dynamic Modeling in R (dynr) is an R package for modeling linear and nonlinear dynamics with possible sudden

Lack of tools for analysis of

(regime) shifts

ILD
Challenges in harmonizing

https://rdrr.io/cran/MIMSunit/

The MIMS-unit algorithm is developed to compute Monitor Independent Movement Summary Units, a measure-

ment to summarize raw accelerometer data while ensuring harmonized results across different devices.

accelerometer data collected

with different devices

https://github.com/dptools/dpsleep

The Deep Phenotyping of Sleep (DPSleep) is an open-source pipeline to translate raw accelerometer data to minute-based

Challenges in extracting sleep

activity scores, extract sleep epoch and sleep quality parameters, perform data visualizations to facilitate quality con-

parameters from raw longi-

trol and detection of idiosyncratic behaviors such as no sleep, time zone shift and disrupted sleep.

tudinal accelerometer data
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GPS2space (1) [17] is a free and open-source Python library
developed by the RCC to help facilitate the processing of GPS
data, integration with Geographical Information System data
to derive distances from landmarks of interest, and extraction
of individuals’ activity space and shared space—the propor-
tion of overlap in activity spaces between any two individuals.
The team used GPS2space with data from the CoTwins study
to explore seasonal changes in individuals’ activity space and
twin siblings’ shared space, and corresponding gender and
zygosity differences [18]. Thus, through use of shared tools
such as GPS2space, the network was able to harmonize a list
of derived spatial features.

In selecting an aggregation time scale to derive spatial sum-
mary measures, we recommend extracting spatial features
at the finest possible time intervals that can be afforded by
the study’s computational power and resources to preserve
nuanced changes. Aggregation to coarser time scales (e.g.,
from hourly to daily) can be pursued later as needed. We
also recommend that data processing procedures for pre-
paring derived measures be standardized whenever feasible,
and clearly documented to facilitate replicability of modeling
results. Examples of standardization considerations include
procedures for outlier identification and treatment, choice of
spatial reference system, procedures and tuning parameters
used to derive spatial features, and the time granularity of the
shared data.

HARMONIZING ACCELEROMETER DATA
ACCOUNTING FOR DEVICE-RELATED
HETEROGENEITY

Advances in wearable sensors have enabled lower costs and
greater use of accelerometer data in health behavior research.
However, raw acceleration data are only available in some
devices with most consumer devices providing metrics such
as steps inferred from accelerometer data using proprietary
algorithms. These devices rarely provide accurate estimates
of energy expenditure in free-living environments, showing
greatly reduced sensitivity (power) at detecting and differenti-
ating low-intensity daily activities [19].

Within the ILHBN, there was considerable variability in
the devices used (see Table 3). This variability presented chal-
lenges for direct harmonization and underscored the need
to explore device-independent summary statistics with good
sensitivity and specificity in physical activity. The Monitor-
Independent Movement Summary (MIMS) units is a mea-
sure found to yield less inter-device variability in controlled
laboratory settings [20]. Computation of MIMS begins with
interpolation and extrapolation of raw acceleration data to
circumvent device differences in dynamic g-range (the great-
est amount of acceleration that can be measured accurately
by a device, typically in +g) and sampling rate, followed by
bandpass filtering to remove data outside of the range of
meaningful human movement. Data aggregation is then
performed across a user’s specified time scale to produce a
measure of activity intensity. MIMS-units have been used
in large-scale studies to summarize accelerometer data and
derive population-based comparison metrics for overall activ-
ity levels, but properties of MIMS in free-living environments
are still an ongoing area of research [21]. The massive vol-
umes of accelerometer data collected in diverse and free-living
environments in the ILHBN gave rise to new harmonization
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opportunities and underscored the need for new methodolog-
ical innovations.

UNDERSTANDING AND SUSTAINING
PARTICIPANTS’ ENGAGEMENT IN ILD
STUDIES

Participant retention and instances of complete data almost
always decline over time in EMA studies, even when mone-
tary incentives are offered. To date, limited attention has been
given to understanding the concept and dynamics of engage-
ment in digital data collection [7, 22]. One cross-cutting theme
that has fueled harmonization efforts within ILHBN resided
in the studies’ shared interests in understanding characteristics
that shape engagement in EMAs. To address these questions,
the engagement subgroup, led by [MASKED], initiated a proj-
ect to evaluate the dynamics of self-report completion in the
network studies. Participating sites worked collaboratively to
select key constructs to clarify how past EMA history predicts
future EMA completion, as modulated by factors such as time
of day, day of week, in-study time length, observational ver-
sus intervention study, and study population. Harmonization
of paradata (data about when and how participants complete
self-report questions) is underway to delineate participants’
EMA completion patterns over time, and risk for non-ignor-
able missingness [23].

Other helpful solutions included Study Pay, an app devel-
oped by the SMART Study for monitoring and managing
participant compensation and engagement, with a customized
dashboard for visualizing and monitoring participants’ sum-
mary statistics (e.g., number of completed surveys), compen-
sation history, modality, and delivery (see Table 2).

CONCLUSION

There has been clear consensus within the ILHBN that
caution should be exercised when deciding whether and
how to homogenize data across studies and that harmo-
nization efforts should be guided by clear scientific ques-
tions. This vision facilitated the design and sharing of
tools to enhance the network’s ILD harmonization efforts.
The ILHBN has been sharing computational and modeling
resources, code, and tutorials at the network website at
[WEBSITE MASKED]. Preparations of machine-readable
metadata, protocol descriptions, data processing steps,
and well-annotated scripts are imperative to ensure suc-
cessful sharing and interpretations of results using the har-
monized data.
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