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Abstract

Summary: The increasing availability of single-cell multi-omics data allows to quantitatively characterize gene
regulation. We here describe scMEGA (Single-cell Multiomic Enhancer-based Gene Regulatory Network Inference)
that enables an end-to-end analysis of multi-omics data for gene regulatory network inference including modalities
integration, trajectory analysis, enhancer-to-promoter association, network analysis and visualization. This enables
to study the complex gene regulation mechanisms for dynamic biological processes, such as cellular differentiation
and disease-driven cellular remodeling. We provide a case study on gene regulatory networks controlling
myofibroblast activation in human myocardial infarction.

Availability and implementation: scMEGA is implemented in R, released under the MIT license and available from
https://github.com/CostaLab/scMEGA. Tutorials are available from https://costalab.github.io/scMEGA.

Contact: ivan.costa@rwth-aachen.de

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Single-cell RNA sequencing (scRNA-seq) and ATAC-seq (scATAC-
seq) techniques provide an unprecedented opportunity to under-
stand gene regulation at the single-cell level by capturing orthogonal
molecular information (Li et al., 2021; Zhu et al., 2020). Applying
both assays on the same biological samples generates single-cell
multi-omics data, which allow to computationally infer gene regula-
tory networks (GRNs) for different cellular systems, such as fly
brain development (Janssens et al., 2022) and human myocardial in-
farction (Kuppe et al., 2022).

However, such analysis is usually based on complex bioinfor-
matic pipelines that require different tools for each of the steps,
such as Seurat for scRNA-seq analysis and data integration
(Stuart et al., 2019), ArchR for scATAC-seq analysis and trajec-
tory inference (Granja et al., 2021), chromVAR for TF activity
estimation (Schep et al., 2017) and igraph (Csardi and Nepusz,
2006) for network analysis. Currently, three computational tools
(Pando, Fleck et al., 2022; CellOracle Kamimoto et al., 2020;
FigR Kartha et al., 2022) are available for GRN inference based
on single-cell multi-omics profiles. Pando focuses on the identifi-
cation of regulatory networks limited to TF-TF interaction and

does not provide methods for modality integration or trajectory
analysis. CellOracle performs analysis of ATAC-seq and RNA-
seq data independently. It cannot, therefore, explore gene expres-
sion for the delineation of gene-to-peak enhancer links and does
not consider TF activity scores at a single-cell level to select rele-
vant transcription factors. FigR, which includes modules for
multimodal data integration, peak-to-gene link prediction and
trajectory inference, is one of the most comprehensive methods
so far. However, it does not support direct operation on Seurat
objects and offers few functionalities to explore information
from the GRNs.

We here developed scMEGA as a general framework to quantita-
tively infer enhancer-based GRN by taking single-cell multi-omics
profiles as input. scMEGA, which builds upon expertise on the ana-
lysis of multimodal single-cell data of myocardial infarction (Kuppe
et al., 2022), enables an end-to-end analysis of multi-omics data for
GRN inference including modalities integration, trajectory analysis,
enhancer-to-promoter association, network analysis and visualiza-
tion (Fig. 1). For this, it provides new functionalities and combines
some existing methods from Seurat, ArchR, chromVAR and igraph.
It is implemented as an R package and is compatible with the Seurat
ecosystem.
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2 Methods

There are three major steps in scMEGA namely, (i) multimodal data
integration, (ii) identification and filtering of candidate TFs and
genes and (iii) GRN assembly and analysis.

2.1 Single-cell multimodal data integration
To build the GRNs, it is crucial to have a mapping between cells at
distinct modalities (RNA and ATAC), so that one can find associa-
tions between the expression of TF/genes and the activity and acces-
sibility of genes/TFs at the single-cell level. For this, scMEGA first
projects the cells into a shared co-embedding space by using the ca-
nonical correlation analysis (CCA) implemented by Seurat (Stuart
et al., 2019). Here, features are gene expression from scRNA-seq
and gene activity scores from scATAC-seq data. In case of batch
effects are present, the method Harmony (Korsunsky et al., 2019)
can be applied for batch correction. Next, scMEGA performs cell
pairing to obtain one-to-one matching between scRNA-seq and
scATAC-seq using OptMatch pairing (Kartha et al., 2022).
Altogether, these steps build a pseudo-multimodal dataset and a low
dimensional representation of the data (Fig. 1a). In the case of
single-cell multimodal data with paired cells [e.g. SHARE-seq (Ma
et al., 2020) and 10� Multiome], this integration step can be
skipped. Here, users only need to create a joint embedding of cells
by using for example the CCA integration from MOJITOO (Cheng
et al., 2022).

2.2 Identification of candidate TFs and genes
scMEGA next identifies candidate TFs and genes based on both
multimodal or pseudo-multimodal data from the previous step.
First, for the given cells of interest, a pseudotime trajectory charac-
terizing the underlying dynamic process is inferred by using the
supervised approach as implemented by the R package ArchR

(Granja et al., 2021) (Fig. 1b). Here, the user needs to indicate root
and terminal cells, i.e. by their characterization via marker genes.

Then, scMEGA estimates binding activity for each TF in each
cell based on chromatin accessibility profiles (Fig. 1c). To identify
active TFs, scMEGA calculates the correlation between TF binding
activity (estimated with chromVAR; Schep et al., 2017) and TF ex-
pression. A high correlation indicates that the TF is both highly
expressed and the motif is more accessible than the average profiles
(Janssens et al., 2022). This step is crucial, as TF-binding activity
alone cannot differentiate between TFs of the same family sharing
similar motifs. Next, scMEGA computes the expression variation of
each gene along the pseudotime trajectory and picks up the top 10%
(this cutoff can be adjusted by the user) most variable genes as
trajectory-relevant genes. scMEGA next associates the selected genes
to peaks based on the correlation of gene expression and peak acces-
sibility at the single-cell level using functions from ArchR (Granja
et al., 2021). Among other features, scMEGA provides functions to
allow to directly operate Seurat objects.

2.3 GRN construction and visualization
Next, scMEGA builds a quantitative GRN by estimating the correl-
ation of binding activity of all the selected TFs and expression of all
the selected genes as described above (Fig. 1d). To link a TF to its
target gene, scMEGA first subsets the predicted peak-to-gene links
to obtain enhancer-to-gene links where the enhancers are defined as
peaks that are at least 2k base pairs (bp) from the transcription start
site of a gene (Fig. 1e). It then considers the TF-binding sites as pre-
dicted by chromVAR. A gene is only considered the target of a TF if
this gene is associated with at least one enhancer and this TF is
bound to one of the associated enhancers, which creates an
enhancer-based GRN. By combining the quantitative GRN and the
enhancer-based GRN, i.e. we only consider TF–gene regulations in
both networks, scMEGA produces a final enhancer-based GRN
(eGRN). TF–gene interactions are weighted by their correlation.

(a)

(b) (c) (d) (e)

Fig. 1. Overview of scMEGA. (a) First, scMEGA integrates the single-cell multi-omics profiles to obtain a paired dataset through modality integration built on the R package

Seurat and cell pairing built on the approach OptMatch. (b) Next, scMEGA infers a pseudotime trajectory to characterize the underlying dynamic process of a given cell type

using ArchR. (c) It then filters TFs, which are selected based on correlation analysis between binding activity (chromVAR) and expression along the trajectory, and genes,

which are selected based on correlation analysis between peak accessibility and gene expression along the trajectory. (d) Based on the selected TFs and genes, scMEGA gener-

ates a quantitative GRN by estimating the correlation of selected TF and gene expression. (e) scMEGA uses enhancer-to-gene links and motif matching to find enhancer-based

TF-to-gene interactions. These are used to filter the previously defined quantitative GRN as shown in (d)
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The directed (from TF to gene) and weighted (as measured by
the correlation) GRNs are modeled as a graph by the R package
igraph (Csardi and Nepusz, 2006). scMEGA provides eGRN visual-
ization by exploring layout algorithms, such as Fruchterman–
Reingold. This layout allows finding major regulatory modules by
plotting TFs sharing similar target genes together. Alternatively,
users can use the focus layout, which allows for the centralization of
the network regarding certain relevant genes/TF. scMEGA also
explores network statistics to depict important TFs by computing
the page-rank index (Page et al., 1999) or betweenness score
(Freeman, 1978) for all TFs or targets. Betweenness scores find regu-
lators (TFs), which bridge distinct modules of the GRN (Zaoli et al.,
2021). The page rank detects important TFs, TFs regulating directly
or indirectly other genes (Ghoshal and Barabási, 2011). scMEGA
allows for visualization of the gene expression of targets of TFs to
understand the regulation activity in spatial coordinates.

3 Results

3.1 Benchmarking the robustness of scMEGA
The integration of multimodal single-cell data is an important step
of scMEGA for unpaired single-cell data. To test the impact of this
step, we obtained single-cell multimodal data generated by using
10� Multiome protocol from human healthy peripheral blood
mononuclear cells. We recovered 10 504 cells and identified four-
teen cell types (Supplementary Fig. 1a). Next, we integrated the data
and performed cell pairing. We observed that only a few true pairs
were correctly recovered (n¼41), indicating that cell matching is in-
deed a difficult task at the single-cell level. However, most of the
cells were matched with the correct cell types (71.8%) and mis-
matching generally represented similar sub-populations, such as
non-classical and intermediate monocytes (Supplementary Fig. 1b).

These numbers are competitive with a recent benchmarking study
(Lance et al., 2022). We next predicted eGRN for CD4 T cells using
the true or predicted pairs between scRNA-seq and scATAC-seq
data (Supplementary Fig. 1c). Indeed, more than 75% TFs, 83%
genes and 60% TF–gene regulations inferred from OptMatch pre-
dicted pairs were also supported by the true pairs, indicating that
most interactions could be recovered by scMEGA (Supplementary
Fig. 1d–f).

3.2 Case study on myocardial infarction
We here provide a case study using scMEGA to infer a GRN to
study fibrogenesis in human hearts after myocardial infarction
(Kuppe et al., 2022). We integrated the snRNA-seq and snATAC-
seq data and identified four sub-populations of fibroblasts
(Supplementary Fig. 2a). Detection of marker genes indicated that
cluster 2 highly expressed SCARA5 which was recently reported as
a marker for myofibroblast progenitors in the human kidney (Kuppe
et al., 2021) (Supplementary Fig. 2b). Cluster 1 was marked by
POSTN, COL1A1 and COL3A1, suggesting that these cells are dif-
ferentiated myofibroblasts. Based on these, we built a pseudotime
trajectory from cluster 2 to cluster 1 to study the myofibroblasts dif-
ferentiation process (Supplementary Fig. 2c).

Next, we selected 79 candidate TFs and 2207 genes as input for
inferring GRN (Supplementary Fig. 2d and e). Correlation between
the binding activity of the TFs and expression of the genes revealed
two major regulation modules with each one corresponding to a dis-
tinct fibroblast sub-cluster (Supplementary Fig. 2f). For example, we
identified NR3C2 as a regulator of the SCARA5þ fibroblasts (mod-
ule 1—fibroblast progenitors) with a decreased binding activity, TF
expression and target gene expression along the trajectory (Fig. 2b).
Regarding the myofibroblasts, we detected several fibrosis-relevant
TFs as TEAD (Liu et al., 2017) and RUNX family genes. Of note,

Fig. 2. Inferred GRN for myofibroblast differentiation. (a) Visualization of the inferred GRN for myofibroblasts differentiation. Each node represents a TF (regulator) or gene

(target). TFs are colored by the pseudotime point at which the TF has the highest activity score as estimated by chromVAR. (b) Line plots showing the TF binding activity, TF

expression and target expression along the myofibroblasts differential trajectory for NR3C2 and RUNX1. The x-axis represents the pseudotime points and the y-axis repre-

sents the z-score transformed values. (c) Visualization of the spatial distribution of fibroblast proportion estimated by cell2location in the ischemic zone of the human heart

after myocardial infarction. (d) Left: spatial distributed gene expression of NR3C2 and RUNX1. Right: spatially distributed gene expression of all targets of NR3C2 and

RUNX1
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we have recently characterized the role of RUNX1 as playing an es-
sential role in kidney (Li et al., 2021) and heart (Kuppe et al., 2022)
fibrogenesis.

Visualization of the inferred network and regulator properties
(between and page-rank scores) pinpointed RUNX1 as the factor
with higher importance during myofibroblast differentiation
(Supplementary Fig. 3a). A visualization of the eGRN centered
around RUNX1 highlights the fact that RUNX1 is predicted to
regulate many other genes including other fibrosis-related transcrip-
tion factors as TEAD2 and TEAD3 (Supplementary Fig. 3b). As an-
other example of downstream analysis allowed by eGRNs, we
inspected the expression of target genes of NR3C2 and RUNX1 in
space. We could not detect clear expression patterns of the TFs in
space due to sparsity and low expression values of these TFs in spa-
tial transcriptomics (Fig. 2c and d). By exploring the regulomes (tar-
get genes) of NR3C2 and RUNX1, we observed gradients and
mutually exclusive spatial expression in defined cardiac regions of fi-
brotic responses, highlighting the power of scMEGA in delineating
TF regulome expression in sparse spatial transcriptomics data.

4 Conclusion

We present scMEGA to infer enhancer-based GRN using single-cell
multiomics/multimodal profiles. scMEGA is built upon several R
packages for single-cell data analysis. It enables users to perform
end-to-end GRN inferences and to prioritize important TFs and
genes for experimental validation and the use of regulomes to ana-
lyze spatial transcriptomics. We exemplify the use of scMEGA to
study gene regulation of myofibroblasts activation in human hearts
after myocardial infarction (Kuppe et al., 2022). The data set ana-
lyzed here has at least 63 000 and 20 000 cells of snRNA-seq and
snATAC-seq, respectively, which demonstrates the scalability of
scMEGA. In addition, the data can be generated from different plat-
forms or protocols as batch effects will be corrected computationally
using Harmony (Korsunsky et al., 2019). However, the trajectory
analysis assumes that cells are part of a differentiation or activation
process. Moreover, benchmarking of the single-cell matching prob-
lem presented here and by others (Lance et al., 2022) indicates that
this is an extremely difficult problem. Future work includes the im-
plementation of additional cell matching algorithms, as top-
performing methods reported in (Lance et al., 2022). Altogether, we
believe that scMEGA is an important framework for understanding
complex gene regulation mechanisms of various biological processes
from single-cell multi-omics data.
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