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Abstract

Previous literature has focused on predicting a diagnostic label from structural brain imaging. 

Since subtle changes in the brain precede a cognitive decline in healthy and pathological aging, 
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our study predicts future decline as a continuous trajectory instead. Here, we tested whether 

baseline multimodal neuroimaging data improve the prediction of future cognitive decline in 

healthy and pathological aging. Nonbrain data (demographics, clinical, and neuropsychological 

scores), structural MRI, and functional connectivity data from OASIS-3 (N = 662; age = 46–

96 years) were entered into cross-validated multitarget random forest models to predict future 

cognitive decline (measured by CDR and MMSE), on average 5.8 years into the future. The 

analysis was preregistered, and all analysis code is publicly available. Combining non-brain 

with structural data improved the continuous prediction of future cognitive decline (best test-set 

performance: R2 = 0.42). Cognitive performance, daily functioning, and subcortical volume drove 

the performance of our model. Including functional connectivity did not improve predictive 

accuracy. In the future, the prognosis of age-related cognitive decline may enable earlier and 

more effective individualized cognitive, pharmacological, and behavioral interventions.

Keywords

Biomarker; Machine learning; Predictive modeling; Cross-validation; Open science

1. Introduction

Cognitive decline, such as worsening memory or executive functioning, occurs in healthy 

and pathological aging. Crucially, the noticeable decline may be preceded by subtle changes 

in the brain. It is this sequence that enables using brain imaging data to predict the current 

cognitive functioning of a person or related surrogate markers. For example, structural 

brain imaging has been used to predict patients’ current cognitive diagnosis (Rathore et al., 

2017), or brain age (Cole and Franke, 2017), a surrogate biomarker related to cognitive 

impairment (Liem et al., 2017). Together, these findings demonstrate the clinical potential of 

neuroimaging data used in combination with predictive analyses.

While predicting current cognitive functioning enables insight into related brain markers, 

predicting future cognitive decline from baseline data poses a greater challenge with more 

substantial clinical relevance (Davatzikos, 2019). Using current brain imaging data to 

predict a current diagnostic label (such as dementia), targets a label that can fairly easily 

be determined via other means such as clinical assessments (and usually with less cost 

than brain imaging). When predicting future cognitive change, however, brain imaging 

might aid a prognosis with greater clinical utility that cannot be easily obtained otherwise. 

Most previous studies that predicted future change restricted their analysis to whether 

patients with mild cognitive impairment (MCI) converted to Alzheimer’s disease (AD) (e.g., 

Eskildsen et al., 2015; Korolev et al., 2016; Gaser et al., 2013; Davatzikos et al., 2011) 

or predicted membership in data-driven trajectory-groups of future decline (Bhagwat et al., 

2018). See Table 1 for a comparison. Predicting future cognitive decline on a continuum 

(instead of forming distinct diagnostic labels from cognitive data) better characterizes the 

underlying change in abilities on an individual level. This approach can also be used to 

widen the scope of applications by including healthy aging. Brain data is a rich source of 

information that might help us better understand and even reorganize diagnostic syndromes 

or categories.
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While most previous predictive studies used structural brain imaging alone, integrating 

structural and functional imaging has been shown to improve predictions. Since both brain 

structure (Oschwald et al., 2019) and brain function (Liem et al., 2020) change in aging, 

the most accurate predictions of brain age have come from combining them (Liem et al., 

2017; Engemann et al., 2020; Schulz et al., 2022). Multimodal gains have also been shown 

in more complex predictions such as current diagnosis in AD (Rahim et al., 2016) and 

conversion from MCI to AD (e.g., Hojjati et al., 2018; Dansereau et al., 2017; Tam et 

al., 2019). Therefore, integrating multiple brain imaging modalities enables more complete 

characterization of brain aging and provides increased predictive power.

Demographic, health, and clinical variables, which are straightforward to obtain and non-

invasive, were demonstrated to reliably predict the conversion to cognitive impairment 

in elders over a 2-year period (Na, 2019) in the absence of any brain imaging data, 

demonstrating the value of nonbrain data. Likewise, nonbrain data pertaining to mood, 

demographics, lifestyle, education, and early-life factors were shown to be on par with brain 

imaging data in the prediction of intelligence and neuroticism, but not brain-age delta (Dadi 

et al., 2021).

The present study aimed to predict future cognitive decline from baseline data in healthy and 

pathological aging. We combined nonbrain data, such as scores from clinical assessments 

and demographics, with multimodal brain imaging data to test whether adding brain imaging 

to nonbrain data improves predictive performance, and whether multimodal imaging 

outperforms single imaging modalities. We showed that structural imaging in particular 

improved continuous prediction of future cognitive decline. An early prognosis of future 

cognitive decline might enable earlier and more effective pharmacological or behavioral 

treatments to be tailored to the individual, resulting in more efficiently allocated medical 

resources.

2. Methods

The analysis presented here was preregistered (Liem et al., 2019). We largely followed 

this preregistration and deviations are described in the supplement (6.1.2 Deviation from 
preregistration). The deviations concern minor details in data analysis and do not affect 

the qualitative conclusions we draw. Additionally, we performed nonpreregistered validation 

analyses that were suggested by the main results.

2.1. Sample and session selection

The present analysis aimed to predict future cognitive decline from baseline nonbrain (e.g., 

age and clinical scores) and brain imaging data (regional brain volume and functional 

connectivity). We used data from the publicly available, longitudinal OASIS-3 project, a 

collection of data from several studies at the Washington University Knight Alzheimer 

Disease Research Center (LaMontagne et al., 2019). OASIS-3 acquired data in different 

types of sessions (clinical sessions: nonbrain data describing personal characteristics, 

cognitive and everyday functioning, health; neuropsychological sessions: nonbrain data 

from neuropsychological tests; MRI sessions: structural and functional MRI). The count 

and spacing between sessions varied between participants. To predict future cognitive 
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decline, baseline sessions were used as input data and follow-up sessions as targets. The 

study design required a matching approach to select: (1) baseline sessions (from clinical, 

neuropsychological, and MRI sessions) to be used as input data, and (2) follow-up clinical 

sessions to estimate the future cognitive decline.

First, baseline data were established by matching sessions from the different types (clinical, 

neuropsychological, MRI). We matched each MRI session that had at least 1 T1w and 

1 fMRI scan with the closest clinical session. For each participant, the first MRI-clinical-

session pair with an absolute time difference of < 1 year was selected as the baseline session. 

If no such pair was available, the participant was excluded from the analysis. Additionally, 

the closest neuropsychological session (within 1 year of the MRI baseline session) was also 

considered as baseline data. Baseline information from neuropsychological testing, however, 

was considered optional, and not finding a matching neuropsychological session was not a 

criterion for exclusion. All data preceding the selected baseline sessions were disregarded 

for the analysis.

Second, all clinical sessions after the baseline clinical session were included as follow-up 

sessions to estimate cognitive decline. To reliably estimate decline, participants were only 

included if they had at least 3 clinical sessions (baseline plus 2 follow-up sessions). This 

matching approach reduced the sample (Ntotal = 1098) to 662 participants (302 male; Table 

2).1 The majority were cognitively healthy at baseline (509 healthy controls, 12 were 

diagnosed with MCI, and 111 with dementia; for 30 no diagnosis was available for the 

baseline session).

MRI data was downloaded in BIDS format (K. J. Gorgolewski et al., 2016) via scripts 

provided by the OASIS project.2 Nonbrain data was downloaded via XNAT central.3

2.2. Data

2.2.1. Nonbrain data—Non-brain data described personal characteristics at baseline, 

such as demographics, cognitive, and everyday functioning, genetics, and health (Table 3 

shows the abbreviations of tests). For further information on the measurements, see relevant 

publications by the OASIS team (LaMontagne et al., 2019; Morris et al., 2006; Weintraub et 

al., 2009).

The specific measures included:

1. Demographic information: sex, age, education

2. clinical scores: MMSE (Folstein, Folstein, and McHugh, 1975), CDR (Morris, 

1993), FAQ (Jette et al., 1986), NPI-Q (Kaufer et al., 2000), GDS (Geriatric 

Depression Scale, Yesavage et al., 1982)

1The selected participants and session can be found here: https://github.com/fliem/cpr/tree/0.1.2/info.
2https://github.com/NrgXnat/oasis-scripts.
3https://central.xnat.org/.
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3. neuropsychological scores: WMS-R (Elwood, 1991), Word fluency, TMT 

(Bucks, 2013), WAIS-R (Franzen, 2000), BNT (Borod, Goodglass, and Kaplan, 

1980)

4. APOE genotype

5. a cognitive diagnosis (healthy control, MCI, dementia)

6. health information: cardio/cerebrovascular health, diabetes, 

hypercholesterolemia, smoking, family history of dementia

7. the number of clinical sessions conducted before the selected baseline session 

(for instance sessions without a matching MRI session) to account for retest 

effects

2.2.2. MRI data—MRI data were acquired on Siemens 3T scanners, with the majority 

coming from a TrioTim model (622 of 662 participants), and the rest from the combined 

PET/MRI Biograph mMR model. Each participant had between 1 and 4 T1w scans (1.7 on 

average). In total, the sample had 1′119 T1w images. The parameter combination most used 

(in over 1′070 scans) was voxel size = 1 × 1 × 1 mm3, echo time (TE) = 0.003 second, 

repetition time (TR) = 2.4 seconds. Where available, T2w images were also used to aid 

surface reconstruction. In total, 618 participants had a T2w image. The parameters for the 

T2w images were voxel size = 1 × 1 × 1 mm3, TE = 0.455 second, TR = 3.2 seconds.

Each participant had between 1 and 4 functional resting-state scans (M = 2.0). In total, the 

sample had 1′327 functional images. The parameter combination most used (in over 1′300 

scans) was voxel size = 4 × 4 × 4 mm3, TE = 0.027 second, TR = 2.2 seconds, scan duration 

= 6 minutes. For further information regarding the imaging data see (LaMontagne et al., 

2019).

See Table S1 for complete information about T1w, T2w and fMRI scans acquisitions.

2.3. MRI preprocessing

Functional and structural MRI data were preprocessed using the standard processing 

pipeline of fMRIPrep 1.4.1 (Esteban et al. 2018), which also includes running FreeSurfer 
6.0.1 on the structural images (Fischl, 2012). A detailed description of the preprocessing 

can be found in the supplement (6.1.1 Details on MRI preprocessing). Except for basic 

validity checks in a random subset of participants, data quality of the preprocessed data was 

not rigorously assessed. Notably fMRIPrep has been shown to robustly work across many 

datasets (Esteban et al. 2018).

2.4. Feature extraction

Input data from nonbrain and brain imaging modalities at baseline were used to predict 

future cognitive decline (predictive targets). In the following sections we provide further 

details on the features that entered the predictive models.

2.4.1. Input data—Input data for the predictive models came from 3 modalities: non-
brain, global and subcortical structural (structGS), and functional connectivity (func; Fig. 
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1A). Modalities were entered into the models on their own and in combination. For instance, 

nonbrain + structGS models received horizontally concatenated input features from the 

nonbrain and structGS modalities (Fig. 1 and 2). This allowed testing whether combining 

nonbrain with structural data improved predictive accuracy as compared to nonbrain data 

alone. The following paragraphs describe the input data modalities and Table S2 gives an 

overview of features entered into the models.

2.4.1.1. Nonbrain data.: Nonbrain features included demographics, scores of clinical and 

neuropsychological instruments, APOE genotype, and health information. For a detailed list 

see Table S2. In total, 66 features entered the models from the nonbrain modality.

2.4.1.2. Structural MRI (structGS).: For the structGS modality (global and subcortical 

structure), anatomical markers were extracted from the FreeSurfer-preprocessed anatomical 

scans. Following our previous work (Liem et al., 2017), we extracted global structural 

markers (volume of cerebellar and cerebral GM and WM, subcortical GM, ventricles, 

corpus callosum, and mean cortical thickness) and the volumes of 7 subcortical regions 

(accumbens, amygdala, caudate, hippocampus, pallidum, putamen, thalamus; for each 

hemisphere separately). Most markers were extracted from the aseg file, except for mean 

cortical thickness, which was extracted from the aparc.a2009s parcellation (Desikan et al., 

2006). To account for head-size effects, volumetric values were normalized by estimated 

total intracranial volume. In total, 35 features entered the models from the structGS 
modality.

2.4.1.3. Functional MRI (func).: Functional connectivity was computed from the 

fMRIPrep-preprocessed functional scans. Denoising was performed using the 36P model 

(Ciric et al., 2017), which includes signals from 6 motion parameters, global, white matter, 

and CSF signals, derivatives, quadratic terms, and squared derivatives. Time series were 

extracted from 300 cortical, cerebellar, and subcortical coordinates of the Seitzman atlas 

(Seitzman et al., 2020) using balls of 5 mm radius. The signals were band-pass filtered 

(0.01–0.1 Hz) and linearly detrended. Connectivity matrices were extracted by correlating 

the time series using Pearson correlation and applying Fisher-z-transformation. If multiple 

fMRI runs were available, the z-transformed connectivity matrices were averaged within 

participants. The vectorized upper triangle of this connectivity matrix was entered into 

the predictive pipeline and was further downsampled to 100 PCA components within cross-

validation (see below). Denoising and feature extraction was performed with Nilearn 0.6.0 

(Abraham et al., 2014).

Due to the dimensionality of connectivity matrices, we opted to perform PCA-based 

dimensionality reduction on the fMRI data. In its raw form, the fMRI connectivity has 

44,850 unique features, a prohibitive amount that eclipses the other modalities. Because 

trees are grown sampling both data points and variables, this number would complicate the 

training of Random Forests, requiring an increase in the number of trees to reliably expose 

the different modalities to the model. This problem is alleviated by reducing this feature set 

to 100 components. Because the degrees of freedom are greatly decreased, it also reduces 

the risk of overfitting. This solution has been successfully applied in many examples in 
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the literature. Schulz et al., (2022), for example, use PCA so that comparisons between 

modalities and modality combinations use the same number of features.

2.4.2. Predictive targets—To quantify future cognitive decline, trajectories of 2 clinical 

assessments, the CDR (Clinical Dementia Rating, Sum of Boxes score) and the MMSE (sum 

score of the Mini-Mental State Examination) were estimated using an ordinary least squares 

linear regression model for each participant and assessment independently (Fig. 1–3; for 

information on the count and timing of sessions, see Table 2). A linear slope was fitted 

through the raw scores of the follow-up session with the intercept fixed at the raw score of 

the baseline session (score foll ow–up, assessment ~ score baseline, assessment + βslope, assessment 

× time). This approach was chosen over a linear mixed-effects model, as the mixed-effects 

model requires data from multiple participants, making cross-validation more convoluted. 

The resulting 2 parameters (βslope, CDR and βslope, MMSE) were the 2 targets that were 

simultaneously predicted in the predictive analysis using a multitarget approach (Rahim et 

al., 2017). Slopes were estimated with Statsmodels 0.10.1 (Seabold and Perktold, 2010). The 

distribution of the estimated targets is plotted in Figure S1.

Two factors were fundamental to the adoption of the CDR and MMSE slopes as predictive 

targets. First, the number of participants with CDR and MMSE baseline scores is slightly 

higher than the number of participants with FAQ and NPI-Q scores. See Table 2. Second, 

both the CDR and MMSE are widely regarded as reliable tests for the clinical assessment 

and staging of dementia. FAQ, for example, is a questionnaire designed for bedside 

assessment and research based on instrumental activities of daily life (Pfeffer et al., 1982), 

which entails a degree of subjectivity, and NPI-Q is a brief informant-based questionnaire 

for general neuropsychiatric assessment (Kaufer et al., 2000). We believe the CDR and 

MMSE were the best candidates as specific measures of cognitive status for these 2 reasons.

2.5. Predictive analysis

The predictive pipeline (Fig. 1–4) consisted of a multivariate imputer (Scikit-learn’s 
IterativeImputer) (Buck, 1960) and a multitarget random forest (RF) regression model 

(Breiman, 2001). Multivariate imputation has recently been shown to work in combination 

with predictive models in different missingness scenarios (Josse et al., 2019). It comprises 

using all other input variables to estimate missing values in each input variable vector. The 

procedure is then repeated now including the previously imputed values as inputs for a 

number of iterations. RF is a nonparametric machine-learning algorithm based on ensembles 

of decision trees. Trees are trained in parallel over bootstrap samples, also including the 

sampling of input variables. The final output is obtained by aggregating the outputs of a 

predetermined number of trees.

Predictive models were trained using nested cross-validation via a stratified shuffle-split 

(1000 splits, 80% training, 20% test participants, stratified by the targets). In the inner 

loop, the RF’s hyperparameters were tuned via grid search on the training participants 

(the tree depth was selected among [3, 5, 7, 10, 15, 20, 40, 50, None], where None leads 

to fully grown trees; the criterion to measure the quality of an RF-split was tuned with 

‘mean squared error’ and ‘mean absolute error’). The best estimator was carried forward 
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to determine its out-of-sample performance on the test participants. To derive an estimate 

of chance performance, null models were also trained and evaluated with permuted target 

values. For each cross-validation split, we calculated the coefficient of determination (R2) 

on the test predictions. All predictive analyses were performed using Scikit-learn 0.22.1 

(Pedregosa et al., 2011).

Model comparison was used to determine whether 1 model offered better prediction 

accuracy than another (for instance, to check whether a given model outperformed the 

null model, or whether a model with added brain imaging data improved accuracy as 

compared to a model using only nonbrain data). Model comparison in cross-validation needs 

to take the dependence between splits into account, complicating statistical tests (Bengio 

and Grandvalet, 2004). Thus, instead of calculating a formal statistical test, we calculated 

the number of splits for which the model in question outperformed the reference model, 

resulting in a percent value, with numbers close to 100% denoting models which robustly 

outperformed the reference model (Engemann et al., 2020).

To inspect which features contributed to a prediction, permutation importance was 

calculated (Breiman, 2001). Permutation importance evaluates the effects of features on 

the predictive performance by permuting feature values. If shuffling a feature does decrease 

performance, it is considered important for the model. It must be noted that this approach 

might underestimate the importance of correlated features. This is attributable to the fact 

that when one of the features is permuted, the second 1 retains some of the information that 

both shared. For example, this might happen with baseline MMSE and CDR-SOB scores, 

which are correlated in the general population (Balsis et al., 2015), and are both used in the 

nonbrain data. Furthermore, learning curves were estimated to assess whether the number of 

participants in the analysis was sufficient. For these comparisons, models were trained with 

increasing sample size while observing the test performance.

We performed additional analyses to diagnose the predictive pipeline and present our results 

in context. First, to validate the pipeline and analysis code, the same predictive methodology 

was used to predict age, a strong and well-established effect (Liem et al., 2017). For this 

validation, age was removed from the input data and the approach followed in the main 

analysis was repeated using a ridge regression model and 200 cross-validation splits. All 

features were normalized for this analysis since ridge regression is sensitive to the variance 

of individual features. Ridge regression was selected for this analysis because research 

shows that linear models tend to perform on par with nonlinear models in age prediction 

(Schulz et al., 2020, 2022) and other benchmarks (Dadi et al., 2019), especially in the 

current sample size.

Second, to better compare our results with previous work that predicted decline using class 

labels, we repeated the original pipeline to classify extreme groups of participants that are 

cognitively stable vs. participants with cognitive decline using random forest classifiers and 

200 cross-validation splits. Participants with CDR-SOB slopes > 0.25/y were labeled as 

declining (N = 156), and a randomly drawn equal number of participants without change in 

CDR-SOB (N = 366) were labeled as stable. The threshold of 0.25/y was selected based on 

statistical considerations: it is the mean of CDR-SOB slopes, as shown in Table 2 and it also 
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corresponds to the 80th percentile, so choosing a higher threshold would result in a much 

smaller number of cases available.

2.6. Open science statement

All data used in the analysis are publicly available via the OASIS-3 project (LaMontagne 

et al., 2019). The analysis plan was preregistered (Liem et al., 2019). All preprocessing 

and analyses were performed in Python using open-source software and the code for 

preprocessing and predictive analysis is publicly available (Liem, 2020).4 Furthermore, a 

docker container that includes all software and code to reproduce the preprocessing and 

predictive analysis is also provided.5

3. Results

3.1. Predicting cognitive decline

A combination of nonbrain and structural data gave the best predictions of future cognitive 

decline. Adding structural data improved the prediction for both the CDR (median test 

performance R2 increased from 0.36 to 0.42; Fig. 2, red vs. orange; for a scatter plot 

showing true vs. predicted values, see Figure S3) and the MMSE (0.32–0.34), as compared 

to predictions from nonbrain data alone. This increase occurred in a large majority of 

splits (91% of splits for CDR, 78% for MMSE; Table S3). In contrast, adding functional 

connectivity features to non-brain features, or to nonbrain + structGS features, slightly 

decreased predictive performance.

To tune the RF models to the given problem, hyperparameters were optimized in a grid 

search approach. Tuning curves showed the results to be robust across a wide range of 

hyperparameter settings (Figure S4). Furthermore, learning curves demonstrated a sufficient 

sample size in the current setting (Figure S5).

The models consistently outperformed null models. Comparing the predictions against a null 

model with permuted predictions showed that most modalities outperformed chance-level 

in 100% of splits (Table S4). The predictions based on functional connectivity were an 

exception and outperformed null-models to a lesser degree (91% of splits for CDR, 73% for 

MMSE).

3.2. Features that predict cognitive decline

We used permutation importance to characterize the most predictive features of the best 

performing modality (nonbrain + structGS). Within the top-15 features, nonbrain included 

memory scores, the baseline scores of the targets (CDR, MMSE), and scores from the 

FAQ (functional assessment questionnaire). The structural features predominantly included 

subcortical regions (left and right hippocampus and amygdala, left accumbens; Fig. 3).

4http://github.com/fliem/cpr.
5https://hub.docker.com/r/fliem/cpr.

Vieira et al. Page 9

Neurobiol Aging. Author manuscript; available in PMC 2023 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://github.com/fliem/cpr
https://hub.docker.com/r/fliem/cpr


3.3. Validation analyses

Although functional connectivity models predicted cognitive decline poorly, functional 

data improved accuracy when predicting brain-age. Since functional connectivity alone 

did not predict cognitive decline well and did not increase the predictive accuracy of 

the nonbrain model (Figure S2), we conducted a validation analysis to ensure that our 

functional connectivity models were able to predict brain-age, a well-established surrogate 

biomarker. Here, we predicted age from the same input data as in the main analysis after 

first removing age from the input features set. In line with our expectations, functional 

connectivity increased predictive performance when combined with other modalities (e.g., 

in combination with non-brain, performance increased from 0.45 to 0.53; Fig. 4), and 

functional connectivity alone could predict age reasonably well (median R2 = 0.33, Figure 

S6), suggesting that its negligible contribution to decline prediction cannot be attributed to 

general methodological or data quality issues.

In the main analysis, the predictive target of cognitive decline was quantified as a continuous 

score. To compare our analysis to previous work that predicted classes of cognitive decline, 

we performed a further analysis that predicted extreme groups of cognitive decline (stable 

vs decline). Overall, extreme groups could be accurately predicted from the input data (most 

F1-scores [harmonic mean of the precision and recall] in the range of 0.8–0.9; Figure S7).

4. Discussion

In the present study, we found that combining baseline structural brain imaging data with 

nonbrain data improved the prediction of future cognitive decline. In contrast, functional 

connectivity features did not improve prediction. By predicting future cognitive decline 

as a continuous trajectory, rather than a diagnostic label, our study broadens the scope 

of applications to cognitive decline in healthy aging. It also allows for more nuanced 

predictions on an individual level. In the future, these continuous measures may facilitate 

dimensional approaches to pathology (Cuthbert, 2014).

The benefit of combining structural with nonbrain data found in the present study is well 

in line with previous work that predicted conversion from MCI to AD (Korolev et al., 

2016), and classes of cognitive decline (Bhagwat et al., 2018). Nonbrain data alone predicted 

cognitive decline and the model was robustly improved by adding structural data (R2 

increased from 0.36 to 0.42 for CDR and from 0.32 to 0.34 for MMSE). These findings are 

consistent with prior work (Korolev et al., 2016; Bhagwat et al. 2018). In general, the range 

of accuracies reported in our study is well in line with previous work predicting a related 

continuous target (time to symptom onset in AD) (Vogel et al. 2018), as well as with work 

predicting diagnostic labels (e.g., Eskildsen et al., 2015; Korolev et al., 2016; Gaser et al., 

2013; Davatzikos et al., 2011). After having established that a combination of nonbrain and 

structural data gives predictions worthy of consideration, next, we assessed which features 

drove the predictions.

We found that clinical and neuropsychological assessments and subcortical structures drove 

the performance of our model. Measurements of memory, verbal fluency, executive function, 

and a wide set of cognitive and daily functions (MMSE, CDR, and FAQ) were the most 
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informative nonbrain features for predicting cognitive decline. This matches well with 

Korolev et al., (2016) who found memory scores and clinical assessments (ADAS-Cog, 

FAQ) to be among the most informative nonbrain features. On the other hand, hippocampus 

and amygdala volume were the most informative structural features in our analysis, which 

is well in line with previous work predicting conversion from MCI to AD (Korolev et al., 

2016; Eskildsen et al., 2015). In contrast, risk factors (such as age, APOE, or health risks) 

and markers that quantify general brain atrophy and regional cortical brain structure did 

not add markedly to model performance. It should be noted that features were assessed 

using permutation importance, which underestimates the importance of correlated features. 

Baseline MMSE and CDR-SOB scores are substantially correlated in the general population 

(Balsis et al., 2015) and are thus susceptible to this attenuation. We note, however, that 

both still figure among the top 15 features in Fig. 3. Alternative approaches, such as mean 

decrease impurity, might complement the permutation-based approach in future studies to 

improve the sensitivity (Engemann et al., 2020). Nevertheless, taken together, our results 

suggest that memory, everyday functioning, and subcortical features better predict future 

cognitive decline at the individual level than risk factors or global brain characteristics.

Functional connectivity, in contrast to brain structure, did not improve predictions when 

added to other modalities, nor did it predict cognitive decline on its own. While many 

previous studies predicted cognitive performance or decline based on structural imaging, 

studies using functional connectivity are rare and contain widely varying estimates of its 

predictive power (Dansereau et al., 2017; Hojjati et al., 2018; Vogel et al., 2018). Although 

functional connectivity in our study did not predict future cognitive decline, it did predict 

brain age. Assuming that functional connectivity is at least somewhat predictive of future 

cognitive decline, our analysis may suggest that the processing of functional connectivity 

data was not a good fit for the cognitive targets. Furthermore, data with better spatial and 

temporal resolution might be able to better capture decline. This calls for future studies that 

benchmark different processing options as these can severely impact predictive accuracy 

(Dubois et al., 2018).

In the following, we will sketch possible future developments along 4 themes: implications 

of and possible improvements to the continuous targets of cognitive decline, multimodal 
input data, predictive models, and the importance of generalization to new datasets.

Quantifying cognitive decline continuously rather than discretely enables a more fine-

grained and robust prediction, but also requires methodological choices. By predicting 

a diagnostic label, previous studies were often restricted to MCI patients and aimed to 

distinguish stable from converting patients. Considering decline as a continuum better 

characterizes the underlying change in abilities and allows for capturing changes that occur 

in healthy aging. Overcoming the scarcity of diagnosed conditions, widens the scope of 

applications and has methodological advantages: the resulting increased sample size yields 

more robust models, which is critical to avoiding optimistic bias in estimating prediction 

accuracy (Woo et al., 2017; Varoquaux, 2018). Furthermore, our approach also does not 

require assigning a diagnostic label, which entails subjective clinical judgment and arbitrary 

cut-off values. Considering cognitive decline as a continuous target does, however, require a 

model to aggregate multiple longitudinal measurements. Here, we used participant-specific 
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linear slopes estimated through longitudinal data from clinical assessments. Since cognitive 

decline also shows nonlinear trajectories (Wilkosz et al., 2010), one could argue that 

accounting for nonlinearity is called for when extracting the predictive targets. However, 

robustly estimating nonlinearity requires more longitudinal measurements per participant 

and more complex models. In contrast, linear trajectories can robustly be estimated with 3 

measurements, hence, they provide a useful approximation of cognitive decline. Notably, the 

baseline values of the clinical assessments used to define the slopes have a special role: they 

are input features and the slopes are defined relative to them. This might result in a bias 

due to regression to the mean (Barnett, van der Pols, and Dobson, 2005), where unusually 

extreme baseline values (due to noise) might result in unusually extreme slopes (returning 

to the mean). This issue is relevant as well when defining diagnostic labels where it might 

result in patients switching between labels due to noise. Future studies should consider 

more complex models that can better account for these effects. Taken together, quantifying 

cognitive decline continuously allows for a more nuanced representation of decline and 

widens the scope of applications. However, while refining the definition of cognitive decline 

is warranted, it requires more complex analytical approaches and appropriate data.

In this study, we quantified cognitive decline using 2 clinical assessments (CDR and 

MMSE), which measure a heterogeneous set of cognitive and everyday life functions. 

While these clinical assessments have the advantage of being used in practice, they lack 

the specificity to target single cognitive constructs. Measuring cognitive constructs more 

homogeneously might potentially improve accuracy, especially if those constructs are 

strongly linked to specific brain regions or networks. This could be achieved by additionally 

employing neuropsychological assessments. The multitarget approach outlined in this study 

is well-suited to including these additional targets.

Beside additional targets, future studies should also consider additional multimodal input 

data to characterize the brain in greater detail. The present study used data derived from 

structural and functional MRI (T1w and resting-state fMRI). These might be complemented 

by information from diffusion-weighted imaging, arterial spin labeling, or positron emission 

tomography (Rahim et al., 2016). Additionally, the presently used modalities could also be 

refined and alternative representations could be considered. For instance, different methods 

for quantifying brain structure (Pipitone et al., 2014) or brain function (Rahim, Thirion, 

and Varoquaux, 2019), and adding data on structural asymmetry (Wachinger et al., 2016) 

or dynamic functional connectivity (Filippi et al., 2019) could provide improved predictive 

performance. Furthermore, the influence of MR data quality on accuracy should be assessed 

in future studies. While our past work showed that brain-age prediction from multimodal 

neuroimaging is robust against in-scanner head motion (Liem et al., 2017), the present study 

has not assessed the influence of MR data quality on predictive accuracy. Addressing this 

issue would yield recommendations regarding the required data quality to predict cognitive 

decline.

The predictive approach could also be expanded to better accommodate high-dimensional 

data and the messiness of real-world data acquisition. The present study concatenated 

low-dimensional features across modalities and fed them into 1 random forest model. 

Including all features in 1 model allowed us to consider feature-level interactions across 
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modalities. Alternatively, prediction stacking could be used to facilitate the integration of 

multimodal data (Liem et al., 2017; Rahim et al., 2016; Engemann et al., 2020). While 

the stacking approach accounts for modality-level interactions it does not consider feature-

level interactions across modalities. However, it scales well to high-dimensional data and 

allows for block-wise missing data, for instance, a missing modality. The present work 

only included participants if data from all modalities (nonbrain, structural, functional) were 

available. In clinical practice, this is often not feasible. As we demonstrated previously, 

stacking can be used to include participants with missing modalities, which increases the 

sample size and the scope of application (Engemann et al., 2020).

In practice, the benefit of adding multimodal neuroimaging data to a set of clinical 

assessments needs to be considered against the additional costs. Its clinical utility also 

depends on the actionable insight that can be drawn from an earlier prognosis. Of course, 

this concern is not specific to this study; it applies broadly to almost every effort to 

incrementally predict clinically meaningful outcomes from brain-based measures. At the 

moment, no causal treatment for cognitive decline is available. However, an early prognosis 

might aid intervention studies and be even more helpful once effective treatments are 

available. Hence, future studies should further exploit the information yielded by the 

model to focus on participant-specific predictions. In general, predictive models don’t 

perform equally well in all circumstances. For some participants or sub-groups, a more 

confident prediction is possible. Recent work demonstrated a higher prediction accuracy 

in participants with certain characteristics, for example, older, female, etc. (Korolev et al., 

2016). This enables increased accuracy by focusing on high-confidence predictions (Tam 

et al., 2019) and might even suggest a participant-tailored clinical workflow depending 

on the prediction confidence (Bhagwat et al., 2018). While the present study has not yet 

investigated these effects, it is well set up to determine optimal conditions for model 

performance. A large number of cross-validation splits yields a distribution of predictive 

performance, not only a point estimate. This will also allow us to assess whether the 

predictions across sub-groups are driven by the same features.

For a predictive model to be useful in real-world applications, it needs to generalize well 

to datasets from different sites (Scheinost et al., 2019). While characteristics of our study 

facilitate generalization, a future study is required to empirically establish the generalization 

of our models to independent datasets. First, we have aimed to provide full transparency 

throughout this study to improve reproducibility and generalizability. We used data from 

a large, publicly available dataset, preprocessed them with well-established open-source 

tools, and inputted them into well-established models. The analysis code is publicly shared 

and after further developing this approach, trained models will also be shared. Importantly, 

the analysis was preregistered to avoid overfitting due to analytical flexibility (Carp, 2012; 

Hosseini et al., 2020). Second, the OASIS-3 project is set up heterogeneously regarding 

the number of sessions, the intervals between sessions, and the participants’ duration in the 

study. This heterogeneity is expected to provide less opportunity for an algorithm to overfit 

to dataset-specific idiosyncrasies, resulting in more generalizable models that also perform 

well in other settings.
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While a heterogeneous dataset and open/reproducible approaches certainly improve 

generalizability, we trained and tested models using only one dataset. Thus, the cross-

validated performance in our study provides a biased estimate of the generalizability to 

independent datasets. This bias might even be modality-specific, in that non-brain features 

might generalize better than brain imaging features (Bhagwat et al., 2018). Training 

predictive models on data from multiple sites has been shown to improve generalization 

(Abraham et al., 2017; Orban et al., 2018; Liem et al., 2017). Hence, future studies 

should use models trained and tested on data from multiple sites, which requires further 

suitable longitudinal and publicly available datasets (Varoquaux, 2018). This also provides 

an opportunity to take preregistration even further. After conducting experiments in an initial 

dataset, a trained model could be preregistered and applied to an independent dataset that 

hasn’t yet been analyzed.

Future research could investigate the impact of different preprocessing strategies on 

predictive performance. This encompasses everything from individual settings to the 

software used itself. For example, on the volumetry of subcortical structures, substantial 

differences are noted between different software (Mulder et al., 2014; Bartel et al., 2017).

5. Conclusions

In summary, we have shown that adding structural brain imaging data to nonbrain data (such 

as memory scores or everyday functioning) improves the prediction of future cognitive 

decline in healthy and pathological aging. Conversely, adding functional connectivity 

data, as used in the present approach, did not aid the prediction. Importantly, our work 

has potential for clinical utility by predicting future cognitive decline, rather than a 

current diagnosis. Future studies should include additional brain imaging modalities and 

independent datasets and should determine the potential of functional connectivity using 

alternative methodological approaches. Quantifying future decline continuously allows for 

more nuanced predictions on an individual level. In the future, these continuous measures 

may facilitate dimensional approaches to pathology (Cuthbert, 2014)

Increased personal and societal costs due to healthy and pathological age-related cognitive 

decline are one of the most pressing challenges in an aging society. An early and 

individually fine-grained prognosis of age-related cognitive decline allows for earlier and 

individually targeted behavioral, cognitive, or pharmacological interventions. Intervening 

early increases the chances to attenuate or prevent cognitive decline, which will alleviate 

both personal and societal costs. Importantly, our work targets applications to healthy aging, 

widening the scope beyond the pathological to the entire aging population.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of the predictive approach. (A) Features from non-brain, structGS (global and 

subcortical structural), and func (functional connectivity) modalities are extracted from 

baseline data. The number of features is provided in parentheses. (B) Feature concatenation 

produces sets of multimodal input features. For instance, red represents nonbrain features 

only, while orange represents a combination of nonbrain and structGS. (C) Extraction of 

slopes representing a cognitive change from CDR (Clinical Dementia Rating) and MMSE 

(Mini-Mental State Examination). (D) Models are trained to predict cognitive decline based 

on the input features. Here, we used a multitarget random forest model within a nested 

cross-validation approach to predict CDR and MMSE change simultaneously.
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Fig. 2. 
Adding structural data (orange) to nonbrain data (red) improved the prediction of cognitive 

decline. Test performance (R2, coefficient of determination, x-axis) across splits (Nsplits = 

1000) for the combinations of input modalities (y-axis). Targets: cognitive change measured 

via CDR (Clinical Dementia Rating, middle) and MMSE (Mini-Mental State Examination, 

right). Input modalities: non-brain, structGS (global and subcortical structural volumes), 

func (functional connectivity). The left panel represents combinations of input modalities 

(e.g., orange is nonbrain + structGS). The number represents the median, the dashed vertical 

line marks the median of the best-performing combination of modalities (within a target 

measure). For the full results that include single-modality brain imaging, see Figure S2.
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Fig. 3. 
Cognitive performance, daily functioning, and subcortical volume were among the most 

informative features. Permutation importance of the top 15 features of the nonbrain + 

structGS model (median across splits). Permutation importance is quantified as the decrease 

in test performance R2 with the feature permuted. Red: nonbrain features, light orange: 

structGS features. CDR, clinical dementia rating; FAQ, functional assessment questionnaire; 

L, left; MMSE, mini-mental state examination; LOGIMEM, Total number of story units 

recalled from this current test administration; MEMUNITS, Total number of story units 

recalled (delayed); R, right; REMDATES, difficulty remembering dates; SOB, sum of boxes; 

SOB, sum of boxes score; TRAIL B, trail making test B; WF, word fluency, WMS, Wechsler 

memory scale.
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Fig. 4. 
Multimodal imaging improves brain age prediction. Input modalities: non-brain, structGS 

(global and subcortical structural volumes), func (functional connectivity). The number 

represents the median, the dashed vertical line marks the median of the best-performing 

combination of modalities. For the full results that include single-modality brain imaging, 

see Figure S6.
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Table 3

List of abbreviations of clinical tests.

CDR-SOB Clinical Dementia Rating - Sum of Boxes

FAQ Functional Activities Questionnaire

GDS Geriatric Depression Scale

MMSE Mini-Mental State Examination

NPI-Q Neuropsychiatric Inventory Questionnaire

TMT Trail Making Test

WAIS-R Wechsler Adult Intelligence Scale-Revised

WMS-R Wechsler Memory Scale-Revised

BNT Boston Naming Test

Neurobiol Aging. Author manuscript; available in PMC 2023 January 20.


	Abstract
	Introduction
	Methods
	Sample and session selection
	Data
	Nonbrain data
	MRI data

	MRI preprocessing
	Feature extraction
	Input data
	Nonbrain data.
	Structural MRI (structGS).
	Functional MRI (func).

	Predictive targets

	Predictive analysis
	Open science statement

	Results
	Predicting cognitive decline
	Features that predict cognitive decline
	Validation analyses

	Discussion
	Conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Table 1
	Table 2
	Table 3

