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Machine learning identifies T cell receptor
repertoire signatures associated with
COVID-19 severity
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T cell receptor (TCR) repertoires are critical for antiviral immunity. Determining the TCR

repertoire composition, diversity, and dynamics and how they change during viral infection

can inform the molecular specificity of host responses to viruses such as SARS-CoV-2. To

determine signatures associated with COVID-19 disease severity, here we perform a large-

scale analysis of over 4.7 billion sequences across 2130 TCR repertoires from COVID-19

patients and healthy donors. TCR repertoire analyses from these data identify and char-

acterize convergent COVID-19-associated CDR3 gene usages, specificity groups, and

sequence patterns. Here we show that T cell clonal expansion is associated with the upre-

gulation of T cell effector function, TCR signaling, NF-kB signaling, and interferon-gamma

signaling pathways. We also demonstrate that machine learning approaches accurately

predict COVID-19 infection based on TCR sequence features, with certain high-power models

reaching near-perfect AUROC scores. These analyses provide a systems immunology view of

T cell adaptive immune responses to COVID-19.
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Much of the ongoing COVID-19 vaccination strategies
have focused on targeting B cells for eliciting neu-
tralizing antibodies (nAbs) against SARS-CoV-21,2.

However, SARS-CoV-2 nAb levels after infection or vaccination
have been found to decrease over time3, and recently emerging
variants of concern (VOC) have been associated with antibody
escape4. Strategies that solely focus on nAbs may not be sufficient
for managing the pandemic in the long term. Thus, there has
been increasing interest in studying the role of T cell immunity in
response to COVID-19 infection5,6.

Functional T cell responses are crucial for the control and
clearance of many respiratory viral infections7, including for
SARS-CoV and MERS-CoV8,9. Studies from transgenic mouse
models suggest that T cells are also crucial for disease resolution
after infection with SARS-CoV-210, and SARS-CoV-2-specific
CD4+ and CD8+ T cells have been associated with milder dis-
ease in human patients11, suggesting roles for coordinated
adaptive immune responses in protective immunity against
COVID-19. T cells contribute to viral control through numerous
mechanisms, including supporting the generation of antibody-
producing plasma cells (T follicular helper cells), production of
effector cytokines such as IFN-gamma and TNF, and cytotoxicity
against infected cells. Generation of memory T cells can provide
life-long protection against pathogens12, and a recent study
showed that SARS-CoV-2-specific memory T cell responses were
sustained for 10 months in COVID-19 convalescent patients13.
Moreover, there is mounting evidence that SARS-CoV-2 VOCs
rarely escape T cell reactivity14, perhaps partly due to a broader
distribution of T cell epitopes across the entire viral proteome,
unlike nAb target limitation to the viral surface. Due to the
importance of T cells in long-term and broad immune reactivity,
there has been an increase in diverse vaccine strategies to expand
targets beyond the spike protein and induce T cell responses5.

T cells recognize viral antigens presented on major histo-
compatibility complex (MHC) molecules through an enormously
diverse assembly of T cell receptors (TCRs)15. Ligation of the
TCR by peptide-loaded MHC molecules leads to T cell activation
and clonal expansion, causing a shift in repertoire specificity
towards the antigen. Therefore, TCR repertoires represent a
functional signature of the adaptive immune response. The
development of high-throughput DNA sequencing methods has
enabled highly quantitative investigation into the diversity and
composition of immune repertoires16. As TCRs are cell-specific
and represent a type of molecular tag of T cells, TCR sequencing
is increasingly becoming an essential tool in informing clinical
understanding of disease via monitoring the dynamics of T cells
in diseases. Other studies have used tracking of TCR repertoires
in cancer patients over time to identify correlations between
clonal dynamics and clinical features such as immunotherapy
treatment response17,18. TCR-seq data thus has great potential for
gaining quantitative insight into the patterns of adaptive immune
responses, which has been particularly well demonstrated in
studies for cancer immunology.

In the context of COVID-19, T cell studies have revealed
preliminary insights into the adaptive immune response to
COVID infection. One study reported a decrease in CD4+ and
CD8+ T-cell counts and decreased T-cell clonal expansion in
early recovery stage patients compared to healthy controls19,
while another study reported that there were increased propor-
tions of active state T cell subsets in COVID-19 patients20. The
disease-severity-dependent clonal expansion was proposed in
another study, which showed increased CD8+ T cell clonal
expansion in moderate COVID-19 patients compared to severe
COVID-19 patients21. Clonality and skewing of TCR repertoires
were linked to Type I and Type III interferon responses, early
CD4+ and CD8+ T cell activation, and nonconventional Th1 cell

polarizations22. In severe COVID-19 patients, profound immune
exhaustion with skewed T cell receptor repertoire and broad T
cell expansion was observed, while in moderate patients, an
intensive expansion of highly cytotoxic T cell subsets was
observed, suggesting that the expansion of appropriate T cell
subsets is impaired in severe COVID-19 patients20.

We sought to develop a systems immunology approach for
investigating TCR repertoires from COVID-19 patients to help
decode patterns of the adaptive immune response during SARS-
CoV-2 infection. While there have been several studies on dif-
ferent aspects of TCR-seq analysis for COVID-1919,20,22,23, there
have been limited studies that incorporate motif-based analysis,
transcriptomics, and machine learning in a large-scale, compre-
hensive investigation into the immune responses during disease
course of varying severity. We anticipate that our approach here
can provide sets of COVID-19-associated sequences and motifs
that may help guide the development of prognostic and diag-
nostic markers and potentially help design therapeutic interven-
tions that better harness the power of T cell immunity.

Results
TCR repertoires from COVID-19 patients and healthy donors
reveal trends in CDR3 gene usage and diversity. To determine if
there were any global patterns that distinguish the immune
repertoires of COVID-19 patients, we systematically compiled
and analyzed TCR-seq samples (total n= 2130) from COVID-19
patients and healthy donors (Fig. 1A, Supplementary Dataset S1).
TCR repertoire datasets were obtained from studies by Adaptive
Biotechnologies (AB, n= 1574), ISB-Swedish COVID-19 Bio-
banking Unit (ISB-S, n= 266), PLA General Hospital (PLAGH,
n= 20), and Wuhan Hankou Hospital (WHH, n= 15), and then
uniformly processed for downstream analysis (see Methods). The
individual datasets underwent separate but standardized proces-
sing using identical bioinformatic pipelines, as opposed to com-
bining the data into one pooled set prior to analysis. All
comparisons between COVID-19 and healthy donor controls
were made within the individual dataset, and any reference to the
findings in multiple datasets in the manuscript refers to the
consensus findings of within-dataset comparisons. The analyses
for the ISB-S dataset were further stratified by cell type (CD4 vs
CD8), separated into ISB-S CD4 and ISB-S CD8 datasets, both of
which contain TCR sequences of healthy donors and COVID-19
patients. Clonality analyses revealed that COVID-19 patient
samples from the ISB-S CD4, ISB-S CD8, and WHH datasets had
fewer total unique clonotypes compared to healthy donor con-
trols in these respective datasets, demonstrating the consistency
of this observation in multiple sources of TCR data (Fig. S1A).
Moreover, repertoire diversity metrics, including Chao1 estima-
tors (a measure of species richness), Gini-Simpson indices
(probability of interspecific encounter), and inverse Simpson
indices, were decreased for COVID-19 samples compared to
healthy donor samples, notably for the AB, ISB-S CD4, and ISB-S
CD8 datasets (Fig. 1B, C, S1B). The decrease in clonal diversity
measures is consistent with the increase in the relative abundance
of the top clonotypes in the repertoire space for COVID-19
samples (Fig. 1F, S3D, Supplementary Dataset S2), which suggests
the expansion of a small number of functional clones after anti-
gen exposure. These results together reveal global shifts in
immune repertoire clonality and diversity in patients with
COVID-19 compared to healthy donors. However, one intrinsic
limitation to assessing TCR diversity is the fact that the dataset’s
size influences the diversity measurements, as the distribution of
TCR frequencies is not linearly scalable. The higher variance in
clonal diversity of COVID patients observed in the AB dataset
(Fig. 1B, C, Supplementary Dataset S4) illustrates this limitation.
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The larger spread in clonal diversity in the COVID group in the
AB dataset reflects a greater heterogeneity in T cell repertoire
changes upon COVID infection compared to other datasets, but
the general directionality of this change is a decrease in diversity.

To determine the specific gene usage preferences and dynamics
in COVID-19 patients, we performed comparative analyses of the
V(D)J gene and complementarity-determining region 3 (CDR3)

gene usage for the AB and ISB-S datasets. While we observed
selective V and J gene usage differences between the TCR samples
of COVID-19 patients and healthy donors from the AB dataset
(Fig. S1D, E, Supplementary Dataset S5, S6), fewer differences in
these gene usages were observed from the ISB-S datasets
(Fig. S2A–D). Moreover, there were no differences in clonotype
frequencies by CDR3 length across the datasets (Fig. S1C,
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Supplementary Dataset S3). By comparison, the top CDR3 se-
quences of healthy donors, mild COVID patients, moderate
COVID patients, and severe COVID TCR patients’ repertoires
were different within the AB dataset, as well as within the ISB-S
datasets (Fig. 1D, S3A, B). To identify COVID-19-associated
CDR3 sequences that are conserved across disease conditions and
datasets, we performed a series of set analyses using sequences
above a proportion threshold (0.0001 for ISB-S samples, 0.00001
for AB samples, where the different proportion thresholds were
applied to account for the AB dataset’s relative size compared to
the ISB-S dataset) for each condition. We found that the
CDR3 sequences enriched in COVID patients had overlap
among mild, moderate, and severe patients, while there was
almost no overlap in CDR3 enrichment between healthy donors
and COVID-19 patients in both CD4 T cell (Fig. 1E) and CD8 T
cell datasets (Fig. S3B). Moreover, we observe 42 conserved
CDR3 sequences when comparing the union set of disease-
associated CDR3 sequences for ISB-S CD4 samples, the union set
of disease-associated CDR3 sequences for ISB-S CD8 samples,
and COVID-19 CDR3 sequences for the AB samples (Fig. 1H). In
order to determine enriched CDR3 sequences for each dataset
and disease conditions, we plotted the difference in mean CDR3
proportions between samples of interest and healthy donors
(Fig. 1G, S3E–J). Although the identified sequences may not be
definitively specific, we provide here a set of systematically
processed COVID-19-associated convergent and enriched CDR3
gene usages.

K-mer and motif analyses reveal patterns associated with dis-
ease conditions. Sequence convergence of immune repertoires
can also occur at the level of motifs, or sequence substrings, in
addition to that of clones. One approach to decomposing
CDR3 sequences into motifs is by using overlapping k-mers, or
amino acid sequences of length k, which provide a functional
representation of the repertoires with increased compatibility for
statistical analyses and machine learning methods24. We created
3-mer, 4-mer, 5-mer, and 6-mer frequency matrix representations
of ISB-S CD4 and ISB-S CD8 datasets and performed principal
components analysis (PCA) to see whether samples cluster by
disease severity (Fig. 2A, C, S4A–F, Supplementary Dataset S7).
We found that while the majority of samples clustered together, a
number of mild and moderate samples were separated from the
central cluster across all analysis permutations, while severe
samples are generally associated with the central cluster of sam-
ples including healthy donors. Because there are general rules that
define many CDR3 amino acid sequences, such as the CASS motif
commonly found at the beginning of many CDR3 sequences, it
was expected that most of the data would cluster together

regardless of COVID infection status. The homogenous signal of
shared CDR3 characteristics was likely to dominate the hetero-
genous CDR3 k-mers that differentiate individuals’ repertoires.
However, the outliers in the PCA that failed to fall into the large
central cluster, which came from mild and moderate COVID
samples, possibly indicated that the PCA is detecting high-
variance data features that differentiate them from other CDR3 k-
mers, while all severe COVID samples were found within the
homogenous central cluster. Machine learning is a broadly useful
tool to detect and identify these fine differences in biological
signal. The outliers from mild and moderate COVID patient
samples may suggest that T cell repertoires may be undergoing
changes that selectively enrich certain clones that harbor specific
TCR motifs, in response to COVID infection, which is being
captured in the PCA plot. No such changes were detected in
severe COVID patients’ TCR motifs in the PCA. These results are
consistent with emerging data that patients with severe COVID-
19 have substantial immune dysregulation in comparison to those
with less severe disease. Studies have shown that T cell poly-
functionality is increased in patients with moderate disease but
reduced in those with severe disease25, and there have been
proposed models of TCR clonality whereby the response in mild
disease includes detection of dominant clones while the response
in severe disease do not26. Moreover, heatmaps of 3-mer abun-
dances reveal some shared motifs between mild and moderate
samples such as YNE, NEQ, EQF, and QFF for repertoires ran-
domly sampled from the ISB-S CD4 dataset and TEA, EAF, and
AFF for repertoires randomly sampled from the ISB-S CD8
dataset (Fig. 2B, D). In aggregate, these results suggest that there
are sequence features that distinguish COVID-19 TCR repertoires
from healthy donors to various degrees based on disease
condition.

Recent sequence similarity approaches have been developed to
determine TCR specificity clusters for motif-based prediction of
antigen specificity and identification of key conserved residues that
drive TCR recognition27–29. We used the Grouping of Lymphocyte
Interactions by Paratope Hotspots version 2 (GLIPH2) algorithm29

to cluster the TCR sequences based on predicted antigen specificity
for motifs associated with different disease conditions in the ISB-S
datasets. We also used the Optimized Likelihood estimate of
immunoGlobulin Amino-acid sequences (OLGA) algorithm30 to
calculate the generation probability (pGen) of the clonotypes
contained in the clusters identified from the GLIPH2 analysis. Low
pGen clonotypes are considered private and not shared widely in the
population, while high pGen clonotypes are considered public and
shared in a large proportion of the population due to convergent
recombination22,31. We found that the mild and moderate disease
conditions had both relatively lower pGen scores and higher median
frequency clusters compared to the severe disease and healthy donor

Fig. 1 Analysis of TCR repertoires from COVID-19 patients and healthy donors reveal trends in CDR3 gene usage and diversity. a Schematic
detailing curation and analysis of TCR repertoire datasets from healthy donors and COVID-19 patients. Sequencing data was obtained from Adaptive
Biotechnologies (AB, n= 1574), ISB-Swedish COVID-19 Biobanking Unit (ISB-S, n= 266, CD4 and CD8 repertoires), PLA General Hospital (PLAGH,
n= 20), and Wuhan Hankou Hospital (WHH, n= 15). Created with BioRender.com. b Boxplot of Chao1 indices for COVID-19 patients and healthy donors
for each repertoire dataset. P-values were obtained using the two-sided Wilcoxon rank sum test. c Boxplot of Gini-Simpson indices for COVID-19 patients
and healthy donors for each repertoire dataset. P-values were obtained using the two-sided Wilcoxon rank sum test. d Bar plots showing the top 15 mean
CDR3 usages for patients in the ISB-S CD4 dataset grouped by disease severity (healthy donor= 16, mild= 108, moderate= 93, severe= 49). e Venn
diagram showing overlap of top mean CDR3 usages (proportion threshold= 0.0001) for patients in the ISB-S CD4 dataset grouped by disease severity.
The CDR3 sequences enriched in the COVID patients have overlap among mild, moderate, and severe patients, while minimal overlap is observed between
healthy donors and COVID-19 patients. f Bar plot depicting relative abundance for groups of top clonotypes for a random sample of repertoires (healthy
donors= 32, COVID-19= 32) from AB dataset, with relative overrepresentation of specific clonotypes in COVID-19 patients. g Dotted waterfall plot of
CDR3 gene usage differentials between COVID-19 patients and healthy donors (delta mean proportion) in AB dataset. Purple dots are CDR3 sequences
enriched in COVID-19; light blue dots are CDR3 sequences enriched in healthy donors; gray dots are all other CDR3 sequences. h Venn diagram showing
overlap of COVID-19 enriched CDR3 sequences for patients in the ISB-S CD4, ISB-S CD8, and AB datasets (thresholds 0.0001 for ISB-S samples, 0.00001
for AB samples). P-values for overlap significance calculated using hypergeometric test.
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conditions for both the ISB-S CD4 and CD8 datasets (Fig. 2E, S4G,
Supplementary Dataset S8–S10). Visualization of individual clusters
revealed that the mild and moderate disease conditions had
clonotypes with the highest proportional representation, including
motifs AGQGA%E, S%AAG, SL%AG, and SLQGA%YE (the %
character corresponds to a wildcard amino acid) for the ISB-S CD4
dataset (Fig. 2F) and motifs SEG%NTDT, SLDSGGA%E, SL%

SGGANE, SLAA% for the ISB-S CD8 dataset (Fig. S4H). Using set
analysis within the ISB-S CD4 dataset, we found that the motif-based
clustering of T cells via GLIPH2 algorithm successfully identified 677
CD4 T cell clusters that are common across all levels of severity of
COVID-19 (Fig. 2G). Among these 677 CD4 T cell clusters, 474 were
exclusive to COVID-19 and not found in healthy donors (Fig. 2H).
Similarly, for the ISB-S CD8 dataset, we found 51 consensus clusters,

SP%GQGSNTE SIQG%GNT SL%AGANE RRTG%GE RRTGT%E RR%GTGE SL%GDT SLQG%T

S%VSGE SLVSG% SLV%GE SLVS%E GA%GYNE GAGGY%E %AGGYNE G%GGYNE

SSG%G S%GSG SRGG%GSNQPS%TSGRARET S%GAGG SGGA%G S%GYG SL%SGE

SLSG%DT SLEG%PYNE SL%GTVNTE SR%GQGSNQPS%GGQGSNQP SPTG%NTE SPT%MNTE S%TGMNTE

AGQGA%E S%AAG SL%AG SLQGA%YE S%SGTDT SL%GTDT SLS%TDT S%AGNQP
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35 of which were exclusively found in COVID-19 (Fig. S4I, J). We
provide here all identified clusters and motifs with associated
CDR3 sequences, V gene usage, and J gene usages, along with
clonotype pGen scores and the identified COVID-19-associated
clusters.

Transcriptional signatures of clonal expansion and associa-
tions with disease severity. In order to investigate the relation-
ship between the enriched clonotypes and their transcriptomes,
we performed dimensionality reduction on 137,075 CD4 T cell
single-cell RNA sequencing samples that had CDR3 sequences
associated with identified GLIPH2 clusters. The transcriptomes
were projected to a two-dimensional space by uniform manifold
approximation and projection (UMAP) (Fig. S5A). Clustering
was performed using the Louvain algorithm, revealing 12 clusters
with differentially expressed gene signatures (Fig. 3A, S5C).
Overall, a stark contrast was observed in the clustering patterns of
cells from healthy donors and COVID-19 patients in the UMAP,
where cells from healthy donors were concentrated in clusters 3
and 4, while the cells from COVID patients were mainly found in
cluster 6. Cluster 6 contained the proliferating subset of T cells
with high degrees of clonality (Fig. 3A, S5B), suggesting pheno-
typic correlates of clonal expansion. Moreover, a high density of
cells in cluster 6 contained the top COVID-enriched TCR
sequence motifs identified from GLIPH2 motif analysis, such as
AGQGA%E, S%AAG, SL%AG, SLQGA%YE, S%SGTDT, SL%
GTDT, SLS%TDT, and S%AGNQP (Figs. 2F, 3C). These clonally
expanded cells containing COVID-enriched TCR sequence motifs
highly expressed the gene GNLY, which encodes the cytotoxic
granules of T cells, indicating that the cells in cluster 6 are pri-
marily activated, proliferating cytotoxic T cells. We also found a
correlation between clonotype expansion and COVID infection,
with cells from COVID-19 patients exhibiting the highest density
in effector phenotype-associated cluster 6, while healthy donor
cells exhibited density in the naïve phenotype-associated clusters
(Fig. 3B). We also found a higher association of lower pGen score,
or private, clonotypes with cluster 6 compared to the high pGen
score clonotypes (Fig. 3D, Supplementary Dataset S10), suggest-
ing that these clones may be specific. However, a comparison of
the proportion of cells for each disease condition in cluster 6 with
healthy donors revealed cell proportion increases only for the
moderate condition (Fig. 3E), despite increasing trends for all
conditions. In contrast, the naïve cell subset in the UMAP plots
indicated by the gene markers TCF7 and LEF1, were most
abundant among healthy donors’ T cells in clusters 3 and 4,
whereas few naïve T cells were observed in cluster 6 (Fig. 3B,
S5D). Altogether, these results demonstrate relationships between
clonal expansion, disease status, and cell phenotype, which can be
extended to subsequence motifs.

We extended this analysis to the CD8 dataset to see if the
associations between clonal expansion and disease severity are

maintained. UMAP projection of 70,237 CD8 T cell single-cell
transcriptomes and clustering revealed 15 clusters with differen-
tially expressed gene signatures (Fig. 4A, S6A, S6C, Supplemen-
tary Dataset S11–S13). As with the CD4 dataset, we found
clustering of cells with high degrees of clonality, distributed here
across the clusters 0, 2, 3, 5, 7, 9, 10, 13, and 14 (grouped together
as Expanded for further analysis) (Fig. 4A, S6B). We also found
high density of top enriched GLIPH2 motifs in the Expanded
group, including SEG%NTDT, SLDSGGA%E, SL%SGGANE,
SLAA%, SQT%STDT, SP%SGSYE, SPGT%GYNE, and S%
RQGAGGE (Fig. 4C, S4H). We observe a relatively higher
density of cells from COVID-19 disease conditions in the
Expanded group as compared to the healthy donors (Fig. 4B),
with a low density of disease-associated cells in the non-
Expanded clusters. Likewise, we found a more exclusive
association between lower pGen score clonotypes and the
Expanded group, particularly cluster 9 (Fig. 4D). A comparison
of the proportion of cells for each disease condition in the
Expanded group with healthy donors reveals cell proportion
increases for all conditions (Fig. 4E). These results highlight the
relationship between clonal expansion and disease severity, which
is comparable to the results from the CD4 dataset.

To investigate the gene expression changes that occur with
clonal expansion, we performed differential expression (DEX)
analysis between cluster 6 cells versus all other cells for the CD4
dataset (Fig. 3F) and the Expanded group cells versus all other
cells for the CD8 dataset (Fig. 4F, Supplementary Dataset S14,
S15). Using a threshold of q-value < 1e-4, we found 512
downregulated genes and 959 upregulated genes for the CD4 T
cell DEX, as well as 600 downregulated genes and 859
upregulated genes for the CD8 T cell DEX. Volcano plots for
both T cell types revealed upregulation of cytotoxicity-associated
transcripts such as granzymes and granulysin and downregula-
tion of naïve phenotype associated markers such as TCF7 and
LEF1. Comparison of UMAPs of the individual subpopulation
phenotype markers also showed a correlation between cluster 6 or
the Expanded group clusters and effector-related markers such as
GZMA, PRF1, NKG7, and GNLY, with downregulation of naïve-
related markers such as TCF7 and LEF1 (Figs. S5D, S6D).
Functional gene annotation analysis with DAVID32 revealed
enriched pathways terms such as TCR signaling pathway,
regulation of immune response, NF-kB signaling, IFN-gamma
mediated signaling, and TNF-mediated signaling pathways were
upregulated in clonally expanded clusters (Figs. 3H, 4H,
Supplementary Dataset S16) while terms such as translational
initiation, viral transcription, translation, and ribosomal subunit
assembly were downregulated (Figs. 3G, 4G) for both CD4 and
CD8 differential expression analyses. Therefore, we find that
clonally expanded CDR3 sequences and motifs are highly
associated with effector T cell phenotypes at both the individual
gene and functional pathway levels while downregulating a
number of mRNA processing-related programs.

Fig. 2 K-mer and motif analyses reveal patterns associated with disease condition. a Principal components analysis of 3-mer representations of TCR
repertoires from the ISB-S CD4 dataset (n= 266). b Heatmaps of 3-mer abundances of a random sample of repertoires from the ISB-S CD4 dataset by
disease condition (healthy donor= 16, mild= 16, moderate= 16, severe= 16). c Principal components analysis of 3-mer representations of TCR
repertoires from the ISB-S CD8 dataset (healthy donor= 16, mild= 108, moderate= 93, severe= 49). d Heatmaps of 3-mer abundances of a random
sample of repertoires from the ISB-S CD8 dataset by disease condition (healthy donor= 16, mild= 16, moderate= 16, severe= 16). e Median frequency
and pGen scores of COVID-19 and healthy donor associated T cell clusters from GLIPH2 analysis of the ISB-S CD4 dataset, grouped by disease condition.
f Detailed view of frequencies and pGen scores of specific clonotypes associated with high frequency T cell clusters from CD4 dataset. Clonotypes are
colored by patient disease condition. g Venn diagram showing COVID-19-associated T cell clusters for patients in the ISB-S CD4 dataset grouped by
disease condition. 677 TCR specificity clusters were found in common across different severities of COVID-19. h Venn diagram showing overlap between
consensus COVID-19-associated T cell clusters (taken from intersection of disease conditions in Fig. 1G) and healthy donors for repertoires in the ISB-S
CD4 dataset. Among the 677 T cell clusters commonly found across all levels of COVID-19 severity, 474 clusters were exclusive to COVID-19 patients and
not found within healthy donors.
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Machine learning models for disease severity. To determine
whether the constitutive sequence motifs in the CDR3 sequence
of the TCR contain sufficient information to be predictive of
COVID-19 infection, we trained several classical supervised
machine learning (ML) algorithms on the repertoires from the
ISB-S CD4 and ISB-S CD8 datasets. We implemented Random

Forests (RF), Support Vector Machines (SVM), Bernoulli Naïve
Bayes (BNB), Gradient Boosting Classifiers (GBC), and K-Nearest
Neighbors (KNN) on frequency matrices of overlapping 3-mer or
6-mer amino acids adapted from the TCR repertoires. ML models
were trained as binary classification tasks to predict mild, mod-
erate, or severe COVID-19 TCR repertoires from healthy donor

Fig. 3 Single-cell transcriptional signatures of clonal expansion of CD4 T cells. a UMAP visualization of 137,075 CD4 T cell single-cell transcriptomes
from the ISB-S CD4 dataset pooled across samples and conditions. 12 clusters identified using the Louvain algorithm. b Two-dimensional density plot of
cells from each disease condition (healthy donor, mild, moderate, severe) by UMAP coordinates. Red represents areas of high density of cells of a given
condition; blue represents areas of low density. c UMAP visualization with cells labeled by top eight most frequent CD4 TCR clusters identified by the
GLIPH2 analysis. d Two-dimensional density plot of cells with high or low pGen score clonotypes by UMAP coordinates. Yellow represents areas of high
density of cells; black represents areas of low density. e Boxplots of clonally expanded cell proportions (in cluster 6) for each disease condition (cell count
healthy donor= 544, mild= 3568, moderate= 5012, severe= 2336). Comparison between groups performed with two-sided Wilcoxon rank-sum test.
f Volcano plot of differentially expressed genes between clonally expanded cells and all other cells in the ISB-S CD4 dataset (Cluster 6 cells= 5000, all
other cells= 5000). Differential gene expression was performed with Seurat using the two-sided Wilcoxon rank-sum test; the Bonferroni corrected
adjusted p-values and log fold-change of the average expression were used for visualization. g Bar plot of biological processes (BP) pathway terms
associated with downregulated genes (clonally expanded cells vs all other cells, q-value < 1e-4) by DAVID analysis. h Bar plot of biological processes (BP)
pathway terms associated with upregulated genes (clonally expanded cells vs all other cells, q-value < 1e-4) by DAVID analysis.
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repertoires for either CD4 or CD8 ISB-S datasets. A total of 12
models were trained, with the permutations varying in (1) clas-
sifying different levels of COVID severity (HD vs Mild, HD vs
Moderate, HD vs Severe), (2) CD4 vs CD8 T cell receptors, and
(3) 3mer vs 6mer representation of the TCR data. Training and

testing sets were partitioned with an 80:20 ratio, then for 500
iterations, the algorithms were trained on a random 80% of the
training set and evaluated for performance on the test set. We
found that RFs, GBCs, and SVMs generally had strong classifi-
cation performance across the board, compared to KNNs or BNB.

Fig. 4 Single-cell transcriptional signatures of clonal expansion of CD8 T cells. a UMAP visualization of 70,237 CD8 T cell single-cell transcriptomes
from the ISB-S CD8 dataset pooled across samples and conditions. 15 clusters identified using the Louvain algorithm. b Two-dimensional density plot of
cells from each disease condition (healthy donor, mild, moderate, severe) by UMAP coordinates. Red represents areas of high density of cells of a given
condition; blue represents areas of low density. c UMAP visualization with cells labeled by top eight most frequent CD8 TCR clusters identified by the
GLIPH2 analysis. d Two-dimensional density plot of cells with high or low pGen score clonotypes by UMAP coordinates. Yellow represents areas of high
density of cells; black represents areas of low density. e Boxplots of clonally expanded cell proportions (in Expanded group) for each disease condition (cell
count healthy donor= 2579, mild= 18,622, moderate= 15,743, severe= 7159). Comparison between groups performed with two-sided Wilcoxon rank-
sum test. f Volcano plot of differentially expressed genes between clonally expanded cells and all other cells in the ISB-S CD8 dataset (Expanded group
cells= 5000, all other cells= 5000). Differential gene expression was performed with Seurat using the two-sided Wilcoxon rank-sum test; the Bonferroni
corrected adjusted p-values and log fold-change of the average expression were used for visualization. g Bar plot of biological processes (BP) pathway
terms associated with downregulated genes (clonally expanded cells vs all other cells, q-value < 1e-4) by DAVID analysis. h Bar plot of biological processes
(BP) pathway terms associated with upregulated genes (clonally expanded cells vs all other cells, q-value < 1e-4) by DAVID analysis.
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Particularly strong classification performance was observed in the
models trained on the CD8 T cell dataset’s 6mer representation,
with certain predictors approaching near-perfect scores
(AUROCs= 0.93–0.99) (Fig. 5A, S7A, Supplementary Data-
set S17). Notably, the ML models had a higher performance for
classifying moderate COVID repertoires from HD than for
classifying severe COVID repertoires from HD. This is consistent
with the increased separation of the moderate repertoires
observed in the PCA analysis. Model performance in classifying
HD from COVID repertoires was much stronger overall in the
CD8 T cell subset compared to the CD4 T cell subset, suggesting
that immune signatures of COVID infection are much more
salient in CD8 T cells’ repertoires compared to CD4 T cells’

repertoires (Fig. 5A, Fig. S7A). Overall, these results demonstrate
that ML-based methods can identify with high classification
accuracy samples from COVID-19 patients of varying severity
based on CDR3 sequences features, particularly for moderate
disease conditions; however, it should be noted that the perfor-
mance of these methods have only been demonstrated using the
ISB-S datasets and may not be generalizable to other TCR
repertoire datasets or for COVID-19 patients more broadly.

Discussion
T cells are increasingly being recognized as key mediators of viral
clearance and host protection in COVID-19, and are subjects of

Fig. 5 Predictive performance of machine learning models for disease severity. a AUROC curves for five machine learning models (gradient boosting
trees, support vector machines, random forests, Bernoulli Naïve Bayes, and k-nearest neighbors) using 6-mer (left) and 3-mer (right) representations of
TCR repertoire data. Models were trained to predict disease severity (moderate, severe) vs healthy donors for CD8 samples. Training and evaluation were
performed using 500 iterations per model, average performance +/− 1 standard deviation shown on individual plots.
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active investigation33–35. However, the rules governing SARS-
CoV-2 responsive T cell specificity are still incompletely under-
stood. We provide here a comprehensive, systems immunology
approach to analyzing COVID-19 TCR repertoires to discover
these rules in an unbiased and systematic manner. By analyzing
immune sequencing data from multiple cohorts with TCR-seq
data, we found that antigen exposure during the course of
COVID-19 decreased the diversity of repertoires and reshaped
clonal representation. We identified and characterized enriched
CDR3 sequences, k-mer motifs, and patterns associated with
disease severity, and found convergent CDR3 gene usages and
clusters that have the potential for clonal tracking studies.
Comparison of COVID-19-associated motifs and single T cell
transcriptomes revealed associations between clonal expansion,
disease severity, and cell phenotypes such as effector T cell
function. Finally, we established several ML methods for pre-
dicting disease phenotypes of varying severities from TCR
repertoires, demonstrating high performance for several models
and the potential of using ML for prognostication in COVID-19
patients.

Recent studies have started to report on the differences
between T cell responses during varying severities of the COVID-
19 disease course. Notably, severe COVID-19, albeit having an
increase in activated effector cell populations as seen with other
disease severities, is associated with lymphopenia and profound
functional impairment of CD4 and CD8 T cells26,36–40. These
results are consistent with our PCA and motif analyses, we
observe a stronger signal for the mild and moderate disease
repertoires distinguishing them from healthy donors as compared
to severe disease repertoires. Moreover, our ML-based methods
had higher performance for predicting moderate repertoires,
further demonstrating that CDR3 sequence and subsequence
features for moderate disease conditions have higher dis-
criminative capacity than for severe conditions. Nevertheless, all
of the disease conditions were well differentiated from healthy
donors across all analyses suggesting that consensus disease-
associated features can be identified, including correlations
between clonal expansion in the setting of COVID-19 with
effector T cell functions at the transcriptomic level.

With further validation studies, these motifs present in clonally
expanded T cells may serve as prognostic and diagnostic bio-
markers in COVID infection. Sequence motif studies can be of
great clinical significance in broad contexts. Immune cell receptor
motif-based investigations are increasingly becoming high-utility,
where systematic investigations of specific CDR3 motifs have
identified T cell clones associated with specific immune functions
like gluten hypersensitivity in celiac disease41, hyperinflammation
in ankylosing spondylitis42, and reactivity to cancer
neoepitopes43. As longitudinal studies further uncover physiolo-
gical and immunological effects of long COVID, where patients
experience long-term adverse effects from past COVID infection,
it is potentially of great interest to compare the TCR repertoire
profiles of these patients to the TCR repertoire features
identified here.

Broadly, immune repertoire analysis has become a funda-
mental tool to understand the biology of immune-mediated dis-
eases as well as immune responses to therapies44. T cell receptor
motifs have been used as prognostic and diagnostic biomarkers.
For example, TCR repertoire studies have shown that improved
TCR diversity is linked to better prognostic outcomes for cancer
patients who receive immunotherapies45–47. This analysis is
similar to the analysis we have conducted in our manuscript,
where we show the effect of COVID-19 infection on the clonal
diversity of T cells. Moreover, TCR repertoire sequencing
revealed an increase in hyperexpanded TCR clonal frequencies

following the administration of a neoantigen vaccine, elucidating
the role of T cell dynamics in tumor immunology47. In light of
these findings, similar TCR studies in the context of COVID-19,
with a particular emphasis on convalescent patients upon treat-
ment with investigational COVID therapies are of potential
interest, to characterize post-treatment T cell dynamics.

Some limitations of this study, however, include the imbal-
anced nature of the TCR datasets included in the data analyses,
the differences in the sizes of datasets that are represented, and
the bioinformatics analyses that were carried out independently
on each dataset, as opposed to conducting pooled analyses as
typical in a meta-analysis. We approach the issue of imbalanced
data in our machine learning models by random resampling,
specifically by randomly oversampling the minority class in the
training dataset. However, limitations to this approach remain, as
random oversampling is a naïve technique for rebalancing the
class distribution and can result in overfitting in some models.
Additionally, the diversity measurements of the TCRs in COVID
patients and healthy donors (Fig. 1B, C) are influenced by the
sizes of the TCR repertoires in each dataset, as the distributions of
T cell receptor frequencies are not linearly scalable. Finally, while
a pooled integrative analysis approach is preferable in a meta-
analysis to show the generalizability of findings across datasets,
this approach was impractical for our study due to the lack of
baseline comparability including variations in sequencing mod-
alities, patient populations, and sample sizes. Furthermore, due to
differences in data collection protocols among the four datasets, a
pooled analysis approach would have likely introduced batch
effects that obscure the true biological signal. Instead, separate
bioinformatics analysis pipelines were conducted on individual
datasets, which allowed all analyses to remain free of batch effects.
Despite these limitations, this study offers several insights about
the T cell response to COVID-19 infection and employs systems-
level approaches to interrogate immunological big data.

To our knowledge, this is the largest scale investigation into
TCR specificity groups for COVID-19 to date, spanning
4,730,447,888 clones across 2130 repertoires. Though many stu-
dies have sought to identify factors predictive of COVID-19
clinical course and outcomes48, few have leveraged TCR-seq data
and adaptive immune profiles to their full capacity. We provide
high-confidence convergent COVID-19-associated signatures
with potential prognostic value, including the successful imple-
mentation of machine learning models for predicting disease
severity. In addition, the use of next-generation sequencing of
immune repertoires provides a deeper and more quantitative
understanding of the adaptive immune response to COVID-19
and may guide patient risk stratification, vaccine design, and
improved clinical management.

Methods
Sequence data collection. TCR repertoire data was obtained from datasets pub-
lished by Adaptive Biotechnologies49, ISB-Swedish COVID-19 Biobanking Unit25,
Fifth Medical Center of PLA General Hospital20, and Wuhan Hankou Hospital
China19. For COVID-19 patients sequenced with Adaptive Biotechnologies
immunoSEQ assays, TCR-seq data were obtained from the ImmuneCODE data-
base at https://doi.org/10.21417/ADPT2020COVID; for healthy donor patients,
TCR-seq data was obtained at https://doi.org/10.21417/ADPT2020V4CD. Single-
cell TCR-seq and gene expression (GEX) data for CD4+ and CD8+ T cell
repertoires from COVID-19 patients and healthy donors from the ISB-Swedish
COVID-19 Biobanking Unit25 was obtained from the ArrayExpress database50

(http://www.ebi.ac.uk/arrayexpress) using the accession number E-MTAB-9357.
Single-cell TCR-seq data from COVID-19 patients and healthy donors were also
obtained from the Fifth Medical Center of PLA General Hospital, accessed through
the supplementary tables of the associated publication20; and Wuhan Hankou
Hospital China, metadata accessed through the supplementary tables of the asso-
ciated publication19 and TCR-seq data obtained from the iReceptor platform51

(http://ireceptor.irmacs.sfu.ca). The Adaptive Biotechnologies dataset comprised
bulk TCR-seq data, while the ISB-S, PLAGH, and WHH datasets comprised single-
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cell TCR-seq data, with variations in sequencing modalities, patient populations,
and sample sizes. Due to the differences in wet lab protocols and the potential
presence of batch effects in each of these four datasets, all downstream analyses
were performed separately on each individual dataset, and the result from each
dataset as well as the consensus findings are reported.

Data pre-processing. All four TCR-seq datasets were individually but identically
pre-processed for standardized analysis with Immunarch v0.6.6 without pooling52.
Data obtained from the Adaptive Biotechnologies ImmuneCODE database were
used directly as inputs for Immunarch processing, with 1475 COVID-19 patient
samples and 88 healthy donor patient samples (1563 samples total) successfully
loaded and used for further analysis. For the ISB-Swedish cohort, patients were first
filtered by those who had sequencing data available as performed by 10X Geno-
mics. Sequence filtering and processing were performed as follows: for cells with
multiple TRA and TRB CDR3 sequences, the first instances, respectively, were
selected; only cells with paired TRA and TRB sequences were kept (column
chain_pairing= Single pair, Extra alpha, Extra beta or Two chains); sequence files
were converted to VDJtools format for input into Immunarch. COVID severity
scores were translated from the WHO Ordinal Scale (0–7) to four tiers: healthy
donor (0), mild (1–2), moderate (3–4), and severe (5–7). After pre-processing, the
CD4 and CD8 datasets were composed of 136,429 and 69,687 clones, represented
in a total of 16 healthy donors, 61 mild, 42 moderate, and 24 severe patients, 143
individuals total (16 healthy donors, 108 mild, 93 moderate, and 49 severe
repertoires when accounting for patients with samples from two time points,
266 samples total). For the PLA General Hospital and Wuhan Hankou Hospital
China cohort, cells with more than one TRA or TRB sequence had the chain with
the highest number of reads kept for further analysis, and sequence files were
converted to VDJTools format for input into Immunarch. The PLA General
Hospital aggregated patient dataset contained 31951 clones across 3 healthy donors
(two healthy donors from the original study were excluded for lack of TCR CDR3
amino acid data), 7 moderate, 4 severe, and 6 convalescent patients (of which 4
were the second time point collections of moderate patients—P01, P02, P03, and
P04). The Wuhan Hankou Hospital China aggregated patient dataset contained
42001 clones across 5 healthy donors, 5 moderate, and 5 severe patients. Metadata
was manually reformatted from supplementary tables.

Immune repertoire statistics. Clonotype statistics and diversity metrics were
calculated using Immunarch v0.6.652. For the total number of unique clonotypes,
the repExplore function was used with parameter.method= volume; for distribu-
tion of CDR3 sequence lengths, repExplore function with.method= len
and.col= aa; for the Chao1 estimator, repDiversity function with.method= chao1;
for Gini-Simpson index, repDiversity function with.method= gini.simp; for
Inverse Simpson index, repDiversity function with.method= inv.simp. Clonal
proportion estimates were calculated with the repClonality function with.-
method= top. CDR3, V gene, and J gene usage proportions were calculated and
aggregated directly from sample TCR data. Statistical significance testing com-
paring groups was performed using the two-sided Wilcoxon rank-sum test by the
wilcox.test in R.

K-mer analyses. For K-mer abundance calculations, each VDJtools formatted
sample was converted to a vector of CDR3 sequences. The vector was converted to
k-mer statistics using the getKmers function from Immunarch, then merged with
k-mer statistics of other samples using the R function merge with parameter
all= TRUE for full outer join. Empty cells were converted from NAs to 0 counts.
The 50,000 top variance unique k-mers were selected for downstream analyses
(PCA and machine learning pipelines) with the exception of 3-mers which had
6916 unique k-mers. The selection of 50,000 top variance k-mers was done to keep
the data dimensions consistent, increase the efficiency of the analysis pipelines, and
use data features that are the most likely to be the most biologically meaningful.
Low-variance k-mers, either due to lack of representation or due to conservation
between healthy and disease samples are unlikely to play an important role in the T
cell response to COVID given that the signature is not shared or enriched by
disease status. K-mer counts were normalized to sum to 1 for each sample prior to
downstream analyses. PCA was performed using the prcomp function in R with
parameter center= TRUE. All data shown in the PCA plots (Fig. 2A, C, S4A–F)
were generated from only the ISB-S dataset, all of whose samples were sequenced
under a uniform protocol, which ensured that clustering and separation in the
dimensionality reduction were attributable to intrinsic differences rather than
batch effects.

Motif analyses. TCR clustering and specificity group analysis was performed using
GLIPH229. Software executable for analysis was obtained from http://50.255.35.37:
8080/ and run with the human v2.0 reference on clonal data for each disease
condition and T cell type. Parameters include global_convergence_cutoff= 1,
local_min_OVE= 10, kmer_min_depth= 3, simulation_depth= 1000,
p_depth= 1000, ignored_end_length= 3, cdr3_length_cutoff= 8, motif_dis-
tance_cutoff= 3, all_aa_interchangeable= 1, kmer_sizes= 2,3,4, and
local_min_pvalue= 0.001000.

Generation probability calculations were performed using OLGA30. Software
installation and setup were performed as described in https://github.com/
statbiophys/OLGA and run on clonal data for each disease condition and T cell
type. Representative calculations with parameters are as follows: olga-
compute_pgen -i input.tsv–humanTRB -o out_pgens.tsv–v_in 1–j_in 2.

Single-cell transcriptome analyses. Single-cell transcriptome data from the ISB-S
dataset were processed using Seurat v4.0.4. The pipeline included log normalization
with a scale factor of 1,000,000, scaling and centering, PCA, nearest-neighbor graph
construction, clustering with the Louvain algorithm, UMAP, differential gene
expression, and generation of various visualizations. Parameters included: for the
FindNeighbors function, dims= 1:10; for FindClusters, resolution= 0.6; for
RunUMAP, dims= 1:10; for FindAllMarkers, only.pos= TRUE, min.pct= 0.25,
logfc.threshold= 0.25. Differential gene expression between clonally expanded
clusters and all other cells was performed using a downsampled cell subset (5000
cells per group) of the data and the FindMarkers function with parameters
logfc.threshold= 0.01 and min.pct= 0.1. P-value adjustment was performed using
Bonferroni correction. Upregulated or downregulated genes with significance q-
value < 1e-4 were then used for functional annotation with DAVID analysis. In
addition to default Seurat outputs, custom R scripts were used to generate visua-
lizations including UMAPs associated with CDR3 motifs and disease severity.

Training and evaluation of k-mer-based machine learning models. Five ML-
based approaches were trained on the k-mer frequency matrix generated from
amino acids in the CDR3 region in the T cell repertoires of healthy donors and
COVID-19 patients from the ISB-S datasets, using Python v3.8.6 and scikit-learn
v0.23.1. These algorithms were: Random Forests (RF), Support Vector Machines
(SVM), Bernoulli Naïve Bayes (BNB), Gradient Boosting Classifiers (GBC), and
K-Nearest Neighbors (KNN). The k-mer frequency matrix dataset was partitioned
into subsets to perform binary classification between the healthy donor and the
specified disease phenotype, such that models were trained for classification tasks
of healthy donor vs moderate disease and healthy donor vs severe disease. The
dataset was first partitioned into test and train sets with an 80:20 ratio. Following
this test-train partition, to address imbalanced data, healthy donor samples were
randomly resampled to be equal to the number of COVID-19 samples represented
in the dataset, prior to training. Hyperparameter selection was informed by
GridSearchCV, where optimal parameters found by the grid search were adopted
when empirical performance on the test set was improved from the default para-
meters. For the CD8 subset, RFs were trained with 100 estimators, the Gini
impurity criterion for measuring the quality of splits, minimum samples required
to split an internal node of 2, minimum number of samples required to be a leaf
node of 1, and bootstrapping to build trees. For the CD4 subset, RFs were trained
with 2000 estimators, Gini impurity criterion for measuring the quality of splits,
minimum samples required to split an internal node of 5, and bootstrapping to
build trees. For the CD8 subset, SVMs were trained with the polynomial kernel,
parameters C= 20, degree= 5. For the CD4 subset, the SVMs were trained with
the RBF kernel, C= 100 and gamma= 1. For the CD8 subset, NBs were trained
with alpha= 1.0, binarize= 0.0, fit_prior = True, and Class_prior=None. For the
CD4 subset, NBs were trained with alpha= 1e-8 (approximating zero), binar-
ize= 0.0, fit_prior= True, class_prior= [0.5, 0.5]. For CD8, GBCs were trained
with 100 estimators, a learning rate of 1.0, and a maximum depth of 1. For CD4,
GBCs were trained with 100 estimators, a learning rate of 1.0, and a maximum
depth of 20. For CD8, KNNs were trained with k= 3, leaf size of 30 and the
Minkowski distance metric. For CD4, KNNs were trained with k= 3, leaf size of 10
and the Minkowski distance metric. For five iterations per repeat and for 100
repeats (a total of 500 model evaluations), estimators were trained on a random
80% of the previously partitioned train set and subsequently evaluated on the test
set. Plotly v5.1.0 was used to generate ROC plots from performance results.

Statistics and reproducibility. Comprehensive information on the statistical
analyses used is included in various places, including the figures, figure legends and
results, where the methods, significance, p-values, and/or tails are described. All
error bars have been defined in the figure legends or methods. Standard statistical
calculations such as Spearman’s rho were performed in R with functions such
as cor.

Graphical illustrations. Certain graphical illustrations were made with BioRender
(biorender.com).

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors are committed to freely sharing all COVID-19-related data, knowledge, and
resources with the community to facilitate the development of new treatment or
prevention approaches against SARS-CoV-2/COVID-19 as soon as possible. All relevant
processed data generated during this study are included in this article and its
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supplementary information files, or have been deposited to Figshare at: https://figshare.
com/projects/COVID-TCR_Open_Data_Deposit/154308. Raw data are from various
sources as described above. Any additional data and resources related to this study are
freely available upon request to the corresponding author.

Code availability
Key code used for data analysis or generation of the figures related to this study have
been included in this article and its supplementary information files, and have been
deposited to Zenodo at https://doi.org/10.5281/zenodo.7359175. Additional scripts used
are also available upon request to the corresponding author.
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