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Abstract 

Background  Parameters from maximal expiratory flow-volume curves (MEFVC) have been linked to CT-based 
parameters of COPD. However, the association between MEFVC shape and phenotypes like emphysema, small air-
ways disease (SAD) and bronchial wall thickening (BWT) has not been investigated.

Research question  We analyzed if the shape of MEFVC can be linked to CT-determined emphysema, SAD and BWT 
in a large cohort of COPDGene participants.

Study design and methods  In the COPDGene cohort, we used principal component analysis (PCA) to extract pat-
terns from MEFVC shape and performed multiple linear regression to assess the association of these patterns with CT 
parameters over the COPD spectrum, in mild and moderate-severe COPD.

Results  Over the entire spectrum, in mild and moderate-severe COPD, principal components of MEFVC were impor-
tant predictors for the continuous CT parameters. Their contribution to the prediction of emphysema diminished 
when classical pulmonary function test parameters were added. For SAD, the components remained very strong pre-
dictors. The adjusted R2 was higher in moderate-severe COPD, while in mild COPD, the adjusted R2 for all CT outcomes 
was low; 0.28 for emphysema, 0.21 for SAD and 0.19 for BWT.

Interpretation  The shape of the maximal expiratory flow-volume curve as analyzed with PCA is not an appropriate 
screening tool for early disease phenotypes identified by CT scan. However, it contributes to assessing emphysema 
and SAD in moderate-severe COPD.
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Introduction
Chronic obstructive pulmonary disease (COPD) is 
often diagnosed after significant loss of lung function, 
as symptoms can remain mild to absent, and are often 
neglected by patients in the early disease stages. COPD 
is presumed to start as a smoldering disease, with small 
airways and parenchymal damage accumulating for many 
years without being noticed by patients or physicians [1, 
2]. The ability to identify COPD in the early stage is key 
in the appropriate management of the disease aimed at 
improving patient outcomes, as well as reducing overall 
costs [3]. Spirometry is currently put forward as the most 
appropriate diagnostic tool, as it is non-invasive, easy to 
perform, and implementable at low cost. The spirom-
etry diagnosis of COPD is based on a post-bronchodila-
tor forced expiratory volume in one second/forced vital 
capacity (FEV1/FVC) ratio below the lower limit of the 
reference population in a clinical context of exposure to 
noxious particles [4].

A reduced forced expiratory flow between 25 and 75% 
of FVC (FEF25-75) has been proposed as a sign of small 
airways disease, in smokers only at risk of developing 
COPD [5, 6]. Moreover, recent large population studies 
in smoking individuals demonstrate that early pathologi-
cal changes visualized on CT may also occur in subjects 
with ‘normal’ spirometry [7]. Normal, if not only defined 
by the FEV1/FVC ratio, is outlined by spirometry param-
eters varying within the range of a healthy non-smoking 
reference group [8, 9]. Even within the range of normal-
ity, the shape or contour of the maximal expiratory flow-
volume curve (MEFVC) has been of continuous interest 
[10]. The concavity of the curve, often referred to as the 
kink, has been associated with emphysema and attrib-
uted to airway collapse and loss of elastic recoil [11]. 
Topalovic et al. proposed the angle of collapse of MEFVC 
to quantify airway collapse and detecting CT-defined 
emphysema in heavy smokers [12]. Dominelli et al. quan-
tified the shape of MEFVC with the slope ratio index 
[13]. Bhatt et  al. later proposed the parameter D which 
describes lung volume as an exponential function of 
time and the peak index, modeling the number of peaks 
adjusted for lung size [14, 15]. An overview of all indices 
can be found in the comprehensive review by Hoesterey 
et al. [16]. In this review, it has been postulated that fur-
ther analysis on the shape of MEFVC yields the potential 
to discover parameters that can help detect early airway 
obstruction [16].

In a large subgroup of the Genetic Epidemiology of 
COPD study (COPDGene), we used principal compo-
nent analysis (PCA) to comprehensively characterize the 
shape of MEFVC and linked the PCA components to CT-
based parameters in subjects with mild and moderate-
severe airflow obstruction.

Study design and methods
Study subjects
We used subjects enrolled in the COPDGene study, 
which is a large US-based multicenter study includ-
ing current and former smokers aged 45–80  years 
(n = 10,198) with at least ten pack-years. Details of the 
study design have been reported previously [17]. The 
study was approved by local Institutional Review boards 
at each of the 21 clinical centers and all subjects provided 
written documentation of informed consent. The avail-
able data included raw spirometry and CT imaging data. 
For this analysis, we split the subjects on stages of the 
Global Initiative for Chronic Obstructive Lung Diseases 
(GOLD) guidelines according to FEV1, FVC and FEV1/
FVC. GOLD I subjects belonged to the mild stage group 
while GOLD II-III-IV subjects belonged to the moderate-
severe stage group.

Spirometry and CT imaging data
Using a standardized protocol [18] and spirometer (NDD 
EasyOne Spirometer), 9841 participants performed 
spirometry. Expiratory flow-volume curves and volume-
time curves were available. CT scans were obtained at 
total lung capacity (TLC) and at the end of normal expi-
ration (functional residual capacity, FRC) using multi-
detector CT scanners. CT densitometry was used to 
define the presence of emphysema and Small Airways 
Disease (SAD). Both %emphysema and %gas-trapping 
were computed using parametric response mapping 
(PRM) to identify the extent  of emphysema (PRMemph) 
and functional small airways disease (PRMfSAD) based on 
CT scans at TLC and FRC simultaneously [19, 20]. Bron-
chial Wall Thickening (BWT) was assessed by airway wall 
thickness at an internal perimeter of 10 mm (Pi10). Pi10 
was calculated by fitting a linear regression model on all 
airways of different internal perimeters with the square 
root of the wall area as dependent variable and perim-
eter as independent variable. Quantitative parameters of 
these scans were extracted using Thirona software.

Shape analysis
To focus purely on the shape of MEFVC, we scaled each 
curve in both axes by 1/FVC for each subject to normal-
ize on FVC and to preserve the shape of the curves. To 
perform a shape analysis, we applied PCA on the curves 
(flow over volume datapoints) to extract the most domi-
nant patterns ordered according to the proportion in 
shape variance they explain. Each MEFVC could then be 
accurately approximated as a linear combination of these 
principal components (PC) or patterns with the coef-
ficients describing how much each pattern contributed 
to the shape of the MEFVC. We computed these coeffi-
cients for all subjects in the dataset and linked these to 
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the continuous CT parameters. We denoted the PCs fol-
lowing their order, e.g., the first PC was denoted as PC1. 
A more extensive description of the PCA computation 
can be found in the online supplement.

CT‑based phenotypes
With the quantitative CT (QCT) values, we defined 
the presence of emphysema, SAD and BWT using the 
upper limit of normal (95th percentile, ULN) cut-offs 
based on never-smoked normal control subjects in the 
COPDGene dataset, 107 of such control subjects were 
enrolled in Phase 1. Based on these cut-offs, we defined 
eight CT-based phenotypes according to the presence 
of emphysema and/or SAD and/or BWT. For notation 
of the phenotypes, emphysema, SAD and BWT were 
denoted as E, S and B, respectively. A dash was used in 
the absence of a disease. An overview of all notations 
can be found in Table 1. We compared the PRM cut-offs 
with the ULN cut-offs when the %voxels < − 950 Houns-
field Units (Hu) and %voxels < − 856 Hu definitions for 
emphysema and SAD, respectively, were used on the 
same never-smoked normal subjects.

Data and statistical analysis
We performed descriptive statistics on demographic, 
spirometric and CT variables per GOLD stage and per 
CT-based phenotype. The data is presented as no. (%) 
or median [Q1-Q3 interquartile range]. Multiple linear 
regression was used to assess the independent effect of 
each component in predicting PRMemph, PRMfSAD and 
Pi10 with adjustment for age, sex, height, weight and 
pack-years. Standard spirometric parameters (FEV1, 
FVC, FEV1/FVC, PEF, and FEF25-75) were then added 
and the standardized β coefficients of the model were 
used to assess the importance of each predictor. We 
used the adjusted R2, the coefficient of determination, 

to evaluate the goodness-of-fit of the models. Regres-
sion analysis was done over the entire spectrum, in mild 
COPD (GOLD I) and moderate-severe COPD (GOLD 
II-III-IV). We compared the principal components with 
existing MEFVC parameters: angle of collapse [21], 
area under the forced expiratory flow-volume loop [22], 
obstructive index [23] and peak index [15]. Statistical 
analysis was conducted using Python 3 (Python Soft-
ware Foundation) with the scientific and statistical pack-
ages SciPy and StatsModels (open source, scipy.org and 
statsmodels.org), significance level was set at 0.05.

Results
Population characteristics
Of the 9841 patients that performed spirometry, 9207 
(93.6%) had acceptable flow-volume loops according to 
the American Thoracic Society (ATS)/European Res-
piratory Society (ERS) guidelines [18]. Subjects with 
Preserved Ratio Impaired Spirometry (PRISm, FEV1/
FVC > = 0.7 but FEV1 < 80%, n = 1055) were not consid-
ered, since other disease factors such as thoracic wall 
restriction or cardiac disease, being more prevalent in 
this subgroup, would influence our findings [24, 25]. 
Ultimately, 6302 subjects were used for the analysis. The 
flow of the eligible subjects for this analysis is described 
in Additional file 1: Figure S1. The characteristics of the 
remaining participants per GOLD stage are reported in 
Table  1. Sixty-seven of 107 never-smoked control sub-
jects had both spirometry and CT data available. In the 
6302 subjects used for the analysis, 67 were non-smokers 
and 6235 were ever smokers. Of those 6235 ever smok-
ers, 3214 were former smokers and 3021 were current 
smokers.

Principal components
The mean standardized flow-volume curves per GOLD 
stage are visualized in Fig.  1. The curves were sampled 
at 200 equidistant points resulting in 200 principal com-
ponents (full decomposition) with the first ten explain-
ing 78% of the variance in MEFVC shape (Fig. 2A). With 
the first 100 components, 98.4% of the variance could be 
explained. To visualize the influence of the components 
on MEFVC, we depicted a − 45 to + 45 percent change 
(5th to 95th percentile) of the four most dominant com-
ponents as compared to the overall mean MEFVC of 
the population (Fig.  2B). We visually assessed the influ-
ence of each of these four components on the MEFVC: 
PC1 influences PEF and the descending limb without 
altering the angle of collapse or concavity. PC2 pivots 
the descending limb around a fixed point, thereby also 
influencing PEF. PC3 and PC4 mainly model concav-
ity in MEFVC. The remainder of the analyses were done 
with the first four principal components since more 

Table 1  Table with the used abbreviations of CT-defined 
phenotypes

B, bronchial wall thickening; E, emphysema; S, small airways disease

Emphysema Small airways 
disease

Bronchial 
wall 
thickening

--- – – –

E-- ✓ – –

-S- – ✓ –

--B – – ✓
ES- ✓ ✓ –

-SB – ✓ ✓
E-B ✓ – ✓
ESB ✓ ✓ ✓
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components did not improve the model fits (adjusted R2) 
in the following analyses.

Multivariate analysis on PRMemph

When only considering principal components and 
adjusting for age, sex, height, weight and pack-years, PC1 
(β = − 4.9, P < 0.001), PC2 (β = − 4.3, P < 0.001) and PC3 
(β = − 1.4, P < 0.001) were significant predictors in the 
entire COPDGene population. Adjusted R2 was 0.50. In 
mild COPD, PC1 (β = − 1.6, P < 0.001), PC2 (β = − 1.4, 
P < 0.001) and PC3 (β = 0.7, P = 0.001) were signifi-
cant predictors and adjusted R2 was 0.17. In moderate-
severe COPD, PC1 (β = − 2.5, P < 0.001), PC2 (β = − 7.3, 
P < 0.001), PC3 (β = 2.3, P < 0.001) and PC4 (β = 0.9, 
P = 0.001) were significant predictors with an adjusted R2 
of 0.50. Full results can be found in Table 3.

When adding standard spirometric parameters tests 
to the model, the principal components, PC1 (β = 0.7, 
P < 0.01), PC2 (β = 0.7, P < 0.01) and PC3 (β = − 0.4, 
P < 0.01) were still significantly associated in the entire 
COPDGene population. The adjusted R2 was 0.67. In 
mild COPD, adjusted R2 was 0.28 with FEV1 the domi-
nant predictor (β = − 10.7, P < 0.001). PC4 was a signifi-
cant predictor (β = − 0.5, P = 0.04). In moderate-severe 
COPD, adjusted R2 was 0.59 with FEV1/FVC the 

dominant predictor (β = − 11.3, P < 0.001), none of the 
components were significantly associated. Full results can 
be found in Additional file 1: Table S1.

Multivariate analysis on PRMfSAD

Adjusting for age, sex, height, weight and pack-years and 
only considering principal components, PC1 (β = − 7.1, 
P < 0.001), PC2 (β = − 5.1, P < 0.001), PC3 (β = 1.1, 
P < 0.001) and PC4 (β = − 0.7, P < 0.001) were signifi-
cant predictors. Adjusted R2 was 0.60. In mild COPD, 
PC1 (β = − 2.3, P < 0.001), PC2 (β = − 2.6, P < 0.001) and 
PC3 (β = 0.9, P = 0.03) were significant predictors while 
adjusted R2 was 0.2. In moderate-severe COPD, PC1 
(β = − 2.5, P < 0.001), PC2 (β = − 6.8, P < 0.001), PC3 
(β = 2.4, P < 0.001) and PC4 (β = 0.7, P = 0.01) were signif-
icant predictors with an adjusted R2 of 0.48. Full results 
can be found in Table 4.

When adding standard spirometric parameters to 
the model, the principal components PC1 (β = − 2.2, 
P < 0.001), PC2 (β = − 1.5, P < 0.001) and PC3 (β = 0.7, 
P < 0.001) were still significant predictors. Adjusted R2 
over the entire population was 0.65. In mild COPD, PC1, 
PC2 and PC4 were significant predictors (β = − 1.4, − 2.4 
and − 1.1, P = 0.03, P = 0.004 and P = 0.02). In moder-
ate-severe COPD, PC1, PC2 and PC3 were significant 

Fig. 1  The mean MEFVC shapes per GOLD stage in panel A, the mean MEFVC shapes per CT-based phenotype in panel B and the mean MEFVC 
shapes per number of abnormalities on CT in panel C. B, bronchial wall thickening; E, emphysema; GOLD, Global Initiative for Chronic Obstructive 
Lung Disease; MEFVC, maximal expiratory flow-volume curve; S, small airways disease
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predictors (β = − 1.4, − 5.9 and 2.5, P < 0.001, P < 0.001 
and P < 0.001) with an adjusted R2 of 0.49. Full results can 
be found in Additional file 1: Table S2.

Multivariate analysis on BWT
Only considering principal components and after 
adjusting for age, sex, height, weight and pack-years, 
all four PCs were significant predictors over the 
entire spectrum (β = − 0.35, β = − 0.19, β = 0.045 and 

β = 0.02, P < 0.001, respectively) and adjusted R2 was 
0.39. In mild COPD, PC1 and PC2 were significant pre-
dictors (β = − 0.06 and β = − 0.06, P = 0.04 and P = 0.1, 
respectively) with adjusted R2 0.14 while in moderate-
severe COPD, PC2, PC3 and PC4 were significant pre-
dictors (β = − 0.13, β = − 0.03 and β = − 0.05, P < 0.001, 
P = 0.03 and P = 0.001, respectively) with an adjusted 
R2 of 0.16. Full results can be found in Additional file 1: 
Table S3.

Fig. 2  A Variance explained by the principal components on the left, cumulative variance explained by the principal components on the right. 
B influence of the first four principal components visualized. The blue curve is the overall mean MEFVC shape. The green curve illustrates the 
influence of each principal component when the coefficient is increased to the 95th percentile, the red curve when the coefficient is decreased to 
the 5th percentile. Component 1 influences PEF and the descending limb without altering the angle of collapse or concavity. Component 2 pivots 
the descending limb around a fixed point, thereby also influencing PEF. Component 3 and 4 mainly model concavity in MEFVC
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Again, the principal components were of little benefit 
on top of classical pulmonary function variables with an 
adjusted R2 over the entire population of 0.48 and with 
PC1, PC3 and P4 as significant predictors (β = − 0.04, 
β = 0.04 and β = 0.02, P = 0.02, P < 0.001 and P = 0.004, 
respectively). In mild COPD, adjusted R2 was 0.19 and 
no component was a significant predictor. In moderate-
severe COPD, adjusted R2 was 0.23 with PC2 and PC3 
significant predictors (β = − 0.11 and β = 0.05, P = 0.001 
and P = 0.02, respectively). Full results can be found in 
Additional file 1: Table S4.

CT‑Phenotypes
We determined 1.7% for PRMemph, 14.7% for PRMfSAD 
and 2.2 mm for Pi10 (Fig. 3) as the upper limit of normal 

(ULN) in a cohort of never-smoked normal controls 
(n = 67) and considered them as cut-offs for the presence 
of CT-based abnormalities. Figure  1B shows the mean 
MEFVC per CT-based phenotype and Fig. 1C the mean 
MEFVC per number of abnormalities as seen on CT. The 
characteristics of the subjects per CT-based phenotype 
are reported in Additional file  1: Table  S5. The cut-offs 
for emphysema and SAD were 5.8 and 18.6% when the 
classic %voxels < − 950 and %voxels < − 856 definitions 
for emphysema and SAD were used.

Comparison with other MEFVC‑derived parameters
Adjusted R2 for each parameter per CT outcome and 
subgroup can be found in Additional file  1: Table  S6. 
Compared to other MEFVC-derived parameters, the 

Table 4  Multivariate analysis for PRMfSAD

COPD, Chronic Obstructive Pulmonary Disease; PC, principal component

Entire spectrum (n = 6302) Mild COPD (n = 567) Moderate−severe COPD 
(n = 2826)

Adjusted R2 = 0.60 Adjusted R2 = 0.20 Adjusted R2 = 0.48

β P-value β P-value β P-value

Age 2.73  < 0.001 3.33  < 0.001 2.13  < 0.001

Sex  − 1.24  < 0.001  − 1.12 0.03  − 0.96  < 0.001

Height 0.63  < 0.001 1.21 0.03 0.70 0.01

Weight  − 1.53  < 0.001  − 1.68  < 0.001  − 1.93  < 0.001

Pack-years 0.61  < 0.001 0.30 0.40 0.56 0.002

PC1  − 7.14  < 0.001  − 2.35  < 0.001  − 2.54  < 0.001

PC2  − 5.10  < 0.001  − 2.63  < 0.001  − 6.79  < 0.001

PC3 1.11  < 0.001 0.88 0.03 2.68  < 0.001

PC4  − 0.66  < 0.001  − 0.52 0.17 0.69 0.01

Fig. 3  Percentage emphysema (PRMemph), percentage gas trapping (PRMfSAD) and bronchial wall thickening (Pi10) per group (never-smoked 
normal control subjects; mild COPD (GOLD I); moderate-severe COPD (GOLD II-III-IV)). The cut-offs (dashed lines) are determined by using the 95th 
percentile (upper limit of normal) on the control subjects
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principal components provided a better fit for PRMemph 
and PRMSAD. For Pi10, area under the forced expiratory 
flow-volume loop was the superior parameter. Over-
all, the classical pulmonary function parameters were 
superior.

Discussion
In 6302 subjects in the COPDGene study, we used prin-
cipal component analysis (PCA) to extract dominant 
patterns from the shapes of the MEFVC and explored 
their association with continuous CT-based parameters 
and eight CT-defined phenotypes based on cut-offs for 
emphysema, small airways disease and bronchial wall 
thickening. The advantage of this PCA analysis is that 
no hand-engineered features were required to analyze 
the MEFVC and the large collection of curves was fully 
exploited in extracting potential patterns. When com-
pared with existing hand-engineered features, the princi-
pal components were superior for emphysema and small 
airways disease and closely matched the area under the 
MEFVC for bronchial wall thickening.

We found that a small number of components were 
sufficient to model a large proportion of the variance 
in shape of MEFVC. Multivariate analysis for the first 
four principal components showed that 49, 60 and 39 
percent of the variance could be explained for emphy-
sema (PRMemph), small airways disease (PRMfSAD) and 
bronchial wall thickening (Pi10), respectively. However, 
when adding classical pulmonary function tests (FEV1, 
FVC, FEV1/FVC, PEF and FEF25-75) to the models, 
independent contributions of the principal components 
were strongly reduced because of high intra-correlations 
(Additional file 1: Table S7). For emphysema (PRMemph), 
shape-derived components PC1, PC2 and PC3 were still 
independent contributors. For small airways disease 
(PRMfSAD) in mild COPD, PC2 was the third important 
predictor, whilst it became the most important predic-
tor in moderate-severe COPD for which FEV1, FVC and 
FEV1/FVC were no longer significant. These findings 
highlight the impact of small airways disease on PEF, 
particularly in more advanced disease stages. For bron-
chial wall thickening, the fit of the regression model was 
generally very low, indicating that presence of abnormal 
thickening of the larger airway bronchial walls, did not 
profoundly affect the shape of the MEFVC.

Interestingly, in multinomial logistic regression model-
ling the number of CT disease abnormalities present on 
CT rather the type of CT abnormalities (E, SAD, BWT), 
the pseudo R2 was negative and not significant for mild 
COPD, indicating that in the mild disease stage, any CT 
abnormalities are unlikely to be detected by the shape 
of MEFVC or even the standard lung function param-
eters. Hence, the current data suggest that our initial 

hypothesis should be rejected, and that early disease pro-
cesses as identified on CT cannot be predicted by param-
eters isolated from the relative form of the maximal 
expiratory flow-volume curve. In particular, FEF25-75, as 
surrogate marker of small airways disease on spirometry 
was not predictive in the mild COPD subgroup. It raises 
the question if in patients with normal spirometry, risk 
behavior and chronic respiratory symptoms may point to 
the need of a CT scan, as suggested by Celli et al. [26].

By using the upper limit of normal on the 67 never-
smoked normal control subjects in this cohort, we 
obtained cut-offs for abnormal values of the CT out-
comes. With these cut-off values, most of the patients 
in the mild COPD subgroup had PRMemph and PRMfSAD 
values within the normal range (Fig.  3). It also demon-
strates that mild airflow limitation as diagnosed by an 
FEV1/FVC below 0.7, can present with CT scans within 
normal limits. In these individuals, early airway pathol-
ogy in terminal or respiratory bronchioles may still be 
present as this is beyond the resolution of conventional 
CT [27]. An alternative explanation may come from the 
initial lung function values determined by lung growth, 
which may result in a lower FEV1/FVC ratio and FEV1 
without true pathology on CT.

We normalized the MEFVC curve for FVC to adjust 
for lung volume and hence also anthropometry and age, 
and to maximally visualize the changes in shape across 
the different phenotypes. Next, we calculated the mean 
MEFVC shape per GOLD stage and per CT-based phe-
notype. The area under the curve decreases and the con-
cavity or so-called kink in the curve increases as lung 
function deteriorates. For the CT-based phenotypes, the 
mean shapes are similar for the phenotypes with only 
one abnormality [--B, -S-, E--], while for those with two 
abnormalities [-SB, E-B, ES-], the concavity is larger and 
the area under the curve smaller, which is to be expected 
as these are the subjects in the higher GOLD stages. Sub-
jects showing evidence of three abnormalities on CT 
have the largest concavity and the smallest area under 
the curve on average. Overall, our findings indicate that 
concavity of the flow-volume loop is linked to more 
advanced COPD in which emphysema, but also other 
radiological phenotypes co-occur.

Interpretation
Our analysis demonstrates that the shape of the maxi-
mal expiratory flow-volume curve is not an appropriate 
screening tool for early disease phenotypes identified 
by CT scan since neither the principal components and 
classical pulmonary function parameters were linked 
with emphysema, small airways disease or bronchial 
wall thickening as seen on CT. In moderate-severe air-
flow obstruction (GOLD II-III-IV) the concavity of the 
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curve is mainly related to the presence of emphysema in 
a combined phenotype with small airways disease, with 
MEFVC shape parameters having a limited but statisti-
cally significant association with CT defined pathologies.

Abbreviations
ATS	� American Thoracic Society
BWT	� Bronchial wall thickening
COPD	� Chronic obstructive pulmonary disease
CT	� Computed tomography
emph	� Emphysema
ERS	� European Respiratory Society
FEF	� Forced expiratory flow
FEV1	� Forced expiratory volume in 1 second
FRC	� Functional residual capacity
fSAD	� Functional Small Airways Disease
FVC	� Forced vital capacity
GOLD	� Global Initiative for Chronic Obstructive Lung Disease
Hu	� Hounsfield unit
MEFVC	� Maximal Expiratory Flow-volume Curve
PC	� Principal component
PCA	� Principal component analysis
PEF	� Peak expiratory flow
Pi10	� Airway wall thickness at an internal perimeter of 10 mm
PRISm	� Preserved ratio impaired spirometry
PRM	� Parametric response mapping
SAD	� Small Airways Disease
TLC	� Total lung capacity
ULN	� Upper limit of normal

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12931-​023-​02318-4.

Additional file 1: Table S1. Multivariate analysis for PRMemph with pulmo-
nary function test parameters. Table S2. Multivariate analysis for PRMfSAD 
with pulmonary function test parameters.Table S3. Multivariate analysis 
for Pi10. Table S4. Multivariate analysis for Pi10 with pulmonary function 
test parameters. Table S5. Characteristics per CT-based phenotype. 
Table S6. Linear regression adjusted R2s for different parameters derived 
from maximal expiratory flow-volume curves for emphysema, small 
airways disease and bronchial wall thickening (PRMemph, PRMfSAD, Pi10 on 
CT) per subgroup. Table S7. Pearson correlation coefficients between 
the first four principal components and the classical pulmonary function 
parameters FEV1, FVC, FEV1/FVC, FEF25-75, PEF. Figure S1. Flow of eligible 
subjects for this study. CT, computed tomography; COPDGene, Genetic 
Epidemiology of COPD; PRISm, preserved ratio impaired spirometry.

Acknowledgements
Financial/nonfinancial disclosures: KV has nothing to disclose. ND has 
nothing to disclose. IG receives personal funding from Research Foundation 
Flanders (FWO). MT is CEO and co-founder of ArtiQ but received no payments 
related to the manuscript. TT has nothing to disclose. JDC received funding 
from NIH Grant Support R01-089897 and is chairman of the COPD Foundation 
Board of Directors. EKS received funding from NIH Grant Support and institu-
tional grant support from GlaxoSmithKline and Bayer. BJM received funding 
from NHLBI, grants from AstraZeneca, GlaxoSmithKline and Pearl Research 
and fees from AstraZeneca, GlaxoSmithKline, Sunovion, Verona, Boehringer 
Ingelheim, Takeda, Third Pole, Phillips and Circasia. He is member of the NHLBI 
and Spiration Data Safety Monitoring Boards and chairman of Mt. Sinai SOM 
Data Safety Monitoring Board. RJ received consulting fees from National Jew-
ish Health for an LLC he owns. MDV received funding from the AI in Flanders 
project. WJ received grants from AstraZeneca and Chiesi and obtained fees 
from AstraZeneca, Chiesi and GlaxoSmithKline. He is chairman of Board of 
Flemish Society for TBC prevention and board member of ArtiQ.

Role of the sponsors: None of the sponsors had input or contributions 
related to the study and manuscript.

Other contributions
Grant support and disclaimerThe project described was supported by 
Award Number U01 HL089897 and Award Number U01 HL089856 from the 
National Heart, Lung, and Blood Institute. The content is solely the responsibil-
ity of the authors and does not necessarily represent the official views of the 
National Heart, Lung, and Blood Institute or the National Institutes of Health.
COPD Foundation Funding
COPDGene is also supported by the COPD Foundation through contribu-
tions made to an Industry Advisory Board that has included AstraZeneca, 
Bayer Pharmaceuticals, Boehringer-Ingelheim, Genentech, GlaxoSmithKline, 
Novartis, Pfizer, and Sunovion.
COPDGene® Investigators – Core Units
Administrative Center: James D. Crapo, MD (PI); Edwin K. Silverman, MD, PhD 
(PI); Barry J. Make, MD; Elizabeth A. Regan, MD, PhD.
Genetic Analysis Center: Terri H. Beaty, PhD; Peter J. Castaldi, MD, MSc; Michael 
H. Cho, MD, MPH; Dawn L. DeMeo, MD, MPH; Adel El Boueiz, MD, MMSc; Mari-
lyn G. Foreman, MD, MS; Auyon Ghosh, MD; Lystra P. Hayden, MD, MMSc; Craig 
P. Hersh, MD, MPH; Jacqueline Hetmanski, MS; Brian D. Hobbs, MD, MMSc; John 
E. Hokanson, MPH, PhD; Wonji Kim, PhD; Nan Laird, PhD; Christoph Lange, 
PhD; Sharon M. Lutz, PhD; Merry-Lynn McDonald, PhD; Dmitry Prokopenko, 
PhD; Matthew Moll, MD, MPH; Jarrett Morrow, PhD; Dandi Qiao, PhD; Elizabeth 
A. Regan, MD, PhD; Aabida Saferali, PhD; Phuwanat Sakornsakolpat, MD; Edwin 
K. Silverman, MD, PhD; Emily S. Wan, MD; Jeong Yun, MD, MPH.
Imaging Center: Juan Pablo Centeno; Jean-Paul Charbonnier, PhD; Harvey O. 
Coxson, PhD; Craig J. Galban, PhD; MeiLan K. Han, MD, MS; Eric A. Hoffman, 
Stephen Humphries, PhD; Francine L. Jacobson, MD, MPH; Philip F. Judy, PhD; 
Ella A. Kazerooni, MD; Alex Kluiber; David A. Lynch, MB; Pietro Nardelli, PhD; 
John D. Newell, Jr., MD; Aleena Notary; Andrea Oh, MD; Elizabeth A. Regan, 
MD, PhD; James C. Ross, PhD; Raul San Jose Estepar, PhD; Joyce Schroeder, MD; 
Jered Sieren; Berend C. Stoel, PhD; Juerg Tschirren, PhD; Edwin Van Beek, MD, 
PhD; Bram van Ginneken, PhD; Eva van Rikxoort, PhD; Gonzalo Vegas Sanchez- 
Ferrero, PhD; Lucas Veitel; George R. Washko, MD; Carla G. Wilson, MS;
PFT QA Center, Salt Lake City, UT: Robert Jensen, PhD.
Data Coordinating Center and Biostatistics, National Jewish Health, Denver, CO: 
Douglas Everett, PhD; Jim Crooks, PhD; Katherine Pratte, PhD; Matt Strand, 
PhD; Carla G. Wilson, MS.
Epidemiology Core, University of Colorado Anschutz Medical Campus, Aurora, CO: 
John E. Hokanson, MPH, PhD; Erin Austin, PhD; Gregory Kinney, MPH, PhD; 
Sharon M. Lutz, PhD; Kendra A. Young, PhD.
Mortality Adjudication Core: Surya P. Bhatt, MD; Jessica Bon, MD; Alejandro A. 
Diaz, MD, MPH; MeiLan K. Han, MD, MS; Barry Make, MD; Susan Murray, ScD; 
Elizabeth Regan, MD; Xavier Soler, MD; Carla G. Wilson, MS.
Biomarker Core: Russell P. Bowler, MD, PhD; Katerina Kechris, PhD; Farnoush 
Banaei- Kashani, PhD.
COPDGene® Investigators – Clinical Centers
Ann Arbor VA: Jeffrey L. Curtis, MD; Perry G. Pernicano, MD.
Baylor College of Medicine, Houston, TX: Nicola Hanania, MD, MS; Mustafa Atik, 
MD; Aladin Boriek, PhD; Kalpatha Guntupalli, MD; Elizabeth Guy, MD; Amit 
Parulekar, MD;
Brigham and Women’s Hospital, Boston, MA: Dawn L. DeMeo, MD, MPH; Craig 
Hersh, MD, MPH; Francine L. Jacobson, MD, MPH; George Washko, MD.
Columbia University, New York, NY: R. Graham Barr, MD, DrPH; John Austin, MD; 
Belinda D’Souza, MD; Byron Thomashow, MD.
Duke University Medical Center, Durham, NC: Neil MacIntyre, Jr., MD; H. Page 
McAdams, MD; Lacey Washington, MD.
HealthPartners Research Institute, Minneapolis, MN: Charlene McEvoy, MD, MPH; 
Joseph Tashjian, MD.
Johns Hopkins University, Baltimore, MD: Robert Wise, MD; Robert Brown, MD; 
Nadia N. Hansel, MD, MPH; Karen Horton, MD; Allison Lambert, MD, MHS; 
Nirupama Putcha, MD, MHS.
Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Tor-
rance, CA: Richard Casaburi, PhD, MD; Alessandra Adami, PhD; Matthew Budoff, 
MD; Hans Fischer, MD; Janos Porszasz, MD, PhD; Harry Rossiter, PhD; William 
Stringer, MD.
Michael E. DeBakey VAMC, Houston, TX: Amir Sharafkhaneh, MD, PhD; Charlie 
Lan, DO.
Minneapolis VA: Christine Wendt, MD; Brian Bell, MD; Ken M. Kunisaki, MD, MS.

https://doi.org/10.1186/s12931-023-02318-4
https://doi.org/10.1186/s12931-023-02318-4


Page 11 of 12Verstraete et al. Respiratory Research           (2023) 24:20 	

Morehouse School of Medicine, Atlanta, GA: Eric L. Flenaugh, MD; Hirut 
Gebrekristos, PhD; Mario Ponce, MD; Silanath Terpenning, MD; Gloria Westney, 
MD, MS.
National Jewish Health, Denver, CO: Russell Bowler, MD, PhD; David A. Lynch, 
MB.
Reliant Medical Group, Worcester, MA: Richard Rosiello, MD; David Pace, MD.
Temple University, Philadelphia, PA: Gerard Criner, MD; David Ciccolella, MD; 
Francis Cordova, MD; Chandra Dass, MD; Gilbert D’Alonzo, DO; Parag Desai, 
MD; Michael Jacobs, PharmD; Steven Kelsen, MD, PhD; Victor Kim, MD; A. 
James Mamary, MD; Nathaniel Marchetti, DO; Aditi Satti, MD; Kartik Shenoy, 
MD; Robert M. Steiner, MD; Alex Swift, MD; Irene Swift, MD; Maria Elena Vega-
Sanchez, MD.
University of Alabama, Birmingham, AL: Mark Dransfield, MD; William Bailey, MD; 
Surya P. Bhatt, MD; Anand Iyer, MD; Hrudaya Nath, MD; J. Michael Wells, MD.
University of California, San Diego, CA: Douglas Conrad, MD; Xavier Soler, MD, 
PhD; Andrew Yen, MD.
University of Iowa, Iowa City, IA: Alejandro P. Comellas, MD; Karin F. Hoth, PhD; 
John Newell, Jr., MD; Brad Thompson, MD.
University of Michigan, Ann Arbor, MI: MeiLan K. Han, MD MS; Ella Kazerooni, MD 
MS; Wassim Labaki, MD MS; Craig Galban, PhD; Dharshan Vummidi, MD.
University of Minnesota, Minneapolis, MN: Joanne Billings, MD; Abbie Begnaud, 
MD; Tadashi Allen, MD.
University of Pittsburgh, Pittsburgh, PA: Frank Sciurba, MD; Jessica Bon, MD; Divay 
Chandra, MD, MSc; Joel Weissfeld, MD, MPH.
University of Texas Health, San Antonio, San Antonio, TX: Antonio Anzueto, MD; 
Sandra Adams, MD; Diego Maselli-Caceres, MD; Mario E. Ruiz, MD; Harjinder 
Singh.

Take‑home message
The shape of the maximal expiratory flow-volume curve is not an appropriate 
screening tool for early disease phenotypes identified by CT scan. However, it 
contributes to assessing emphysema and SAD in moderate-severe COPD.
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