Biomarker | Description | Influencing factors | Characteristics | Sensitivity as biomarker of selenium intake(b) |
---|---|---|---|---|
Serum/plasma (a) Se concentrations | Non‐cellular Se; organic (mainly selenoproteins (selenoprotein P, glutathione peroxidase 3, thioredoxin reductases)); albumin‐bound SeMet; selenosugars (Ward‐Deitrich et al., 2021) and inorganic selenium (Vinceti et al., 2015a; Filippini et al., 2018) |
‐ Sex, age (Sheehan and Halls, 1999; Muntau et al., 2002) ‐ Smoking status (Swanson et al., 1990; Alfthan and Neve, 1996; Kocyigit et al., 2001; Arnund et al., 2006; Filippini et al., 2018) ‐ Inflammation, disease (Miller et al., 1983; Nichol et al., 1998; Combs et al., 2012) ‐ Chemical nature of dietary Se ‐ GPX1 679 genotype (Combs et al., 2012) |
‐ Varies across geographical locations (Fordyce, 2013; Stoffaneller and Morse, 2015; Ibrahim et al., 2019) ‐ Responds to Se supplementation over wide range of supplemental intake (15–700 μg/d); dose‐dependent (Ashton et al., 2009) ‐ Higher response to organic Se, especially in non‐deficient populations (Thomson et al., 1982; Burk et al., 2006; Combs, 2015) ‐ Suitable for speciation analysis |
‐ Can detect changes in intake over short/medium‐term ‐ Can distinguish ‘high’ from ‘low’ consumers ‐ Low responsiveness to inorganic Se intake in Se‐replete populations (Neve, 1995) ‐ Population‐specific equations to predict dietary Se intake (Longnecker et al., 1996; Burk et al., 2006; Combs, 2015) |
RBC Se concentrations | Mainly glutathione peroxidase 1 and Hb‐bound Se |
‐ Age (Lloyd et al., 1983) ‐ Chemical nature of dietary Se (Neve, 1995) ‐ Unaffected by inflammatory responses (Stefanowicz et al., 2013) |
‐ Responds to Se supplementation, more slowly than serum/plasma (Neve, 1995; Ashton et al., 2009) |
‐ Can detect changes in intake over medium/long‐term ‐ Can distinguish ‘high’ from ‘low’ consumers |
Whole blood Se concentrations | Cellular and non‐cellular circulating Se |
‐ Age (Lloyd et al., 1983) ‐ Smoking status (Lloyd et al., 1983) ‐ Disease (Muecke et al., 2009; Muecke et al., 2018) ‐ Chemical nature of dietary Se |
‐ Varies across geographical locations (Fordyce, 2013) ‐ Responds to Se supplementation over wide range of supplemental intake (15–200(c) μg/d); dose‐dependent (Neve, 1995; Ashton et al., 2009) ‐ Suitable for speciation analysis |
‐ Can detect changes in intake over medium/long‐term ‐ Can distinguish ‘high’ from ‘low’ consumers ‐ Population‐specific to predict dietary Se intake (Yang et al., 1989b) |
Urine Se concentrations | Primary route of Se elimination, mainly as selenosugars 1 and 3, trimethylselenonium ion (TMSe) and selenate and Se‐methylselenoneine |
‐ Sex ‐ Chemical nature of dietary Se (Burk et al., 2006) ‐ Se status ‐ Kidney function (Oster and Prellwitz, 1990) ‐ Physical activity (Rodriguez Rodriguez et al., 1995) ‐ GPX1 679 genotype (Combs et al., 2012) ‐ TMSe eliminators vs non‐eliminators (Kuehnelt et al., 2015; Lajin et al., 2016a) |
‐ Varies across geographical locations (Fordyce, 2013) ‐ Responds to Se supplementation over wide range of supplemental intake (100–700 μg/d); dose‐dependent (Yang et al., 1989b; Burk et al., 2006; Combs et al., 2012) ‐ Correlates with plasma Se over a wide range (Yang et al., 1989b; Sanz Alaejos and Diaz Romero, 1993) ‐ Suitable for speciation analysis |
‐ Can detect changes in intake over short term ‐ Can distinguish ‘high’ from ‘low consumers’ ‐ Population‐specific to predict dietary Se intake (Yang et al., 1989b; Sanz Alaejos and Diaz Romero, 1993; Longnecker et al., 1996; Combs, 2015) |
(Toe)nail/hair Se concentrations |
Deposition of Se |
‐ Age (Hunter et al., 1990) ‐ Smoking (Swanson et al., 1990; van den Brandt et al., 1993; Virtanen et al., 1996; Xun et al., 2011) ‐ Chemical nature of dietary Se (i.e. toenail Se content might not reflect inorganic Se exposure (Filippini et al., 2017)) ‐ Growth rate (Slotnick and Nriagu, 2006) ‐ External exposure (e.g. Se‐containing shampoos) |
‐ Varies across geographical locations (Morris et al., 1983; Hunter et al., 1990; Fordyce, 2013) ‐ Responds slowly to Se supplementation (weeks to months) (Gallagher et al., 1984; Longnecker et al., 1993) ‐ Correlation with Se intake (Hunter et al., 1990; Swanson et al., 1990) and blood/plasma Se (Yang et al., 1989a; Satia et al., 2006) over a wide range shown in some studies. Other studies found no or low association with Se intake (Hunter et al., 1990; Al‐Saleh and Billedo, 2006; Satia et al., 2006; Vinceti et al., 2012) or blood selenium (Satia et al., 2006; Vinceti et al., 2012; Chawla et al., 2020). |
‐ Can detect changes in intake over medium/long‐term ‐ Can distinguish ‘high’ from ‘low’ consumers ‐ Requires standardised procedures for sample collections and treatments as prone to contamination (Slotnick and Nriagu, 2006) ‐ Population‐specific to predict dietary Se intake based on toenail content (Longnecker et al., 1996) |
Plasma selenoprotein P concentrations | 20%–70% of total plasma Se; mostly secreted in the liver (Saito, 2021) |
‐ Inflammation; oxidative stress (Saito, 2020; Vinceti et al., 2022); insulin levels and glucose metabolism (Speckmann et al., 2008; Mao and Teng, 2013; Schomburg, 2022) ‐ Se status ‐ Selenoprotein P polymorphisms (Meplan et al., 2007) |
‐ Responds rapidly to Se supplementation in populations with ‘low Se’ intake/status (Duffield et al., 1999; Hurst et al., 2010) ‐ Correlates with plasma/serum Se up to 80–90 μg/L (Hurst et al., 2013) |
‐ Responsive in population with Se status in the lowest range ‐ Plateau (i.e. maximum expression) in the higher range of Se intake (> ca. 60–70 μg/day) |
Plasma, RBC, platelet and whole blood glutathione peroxidase activity |
‐ Glutathione peroxidase 3 in plasma (represents 10%–25% of plasma/whole blood Se) ‐ Glutathione peroxidase 1 in RBC ‐ Glutathione peroxidase 1 and glutathione peroxidase 4 in platelets |
‐ Sex, age ‐ Se status ‐ Race ‐ Physical activity (Tessier et al., 1995; Pograjc et al., 2012) ‐ Deficiencies in other nutrients ‐ Chemical nature of dietary Se (Thomson et al., 1982; Xia et al., 2005) ‐ Diseases, polymorphisms (Hurst et al., 2013) |
‐ Plasma glutathione peroxidase is a useful marker of Se intake/status in populations with low Se intake; it responds rapidly to supplementation. Correlates with plasma/serum Se up to 80 μg/L serum Se (Rea et al., 1979; Muller et al., 2020) ‐ RBC GPx glutathione peroxidase responds slowly to depletion and supplementation; plateau at plasma Se levels > 100 μg/L (Neve, 1995; zzn et al., 2000; Burk et al., 2006; Hurst et al., 2010; Combs et al., 2012) ‐ Platelet glutathione peroxidase responds rapidly to Se dietary changes; plateau at plasma Se levels > 100 μg/L (Alfthan et al., 1991; Neve, 1995; Burk et al., 2006; Hurst et al., 2010) |
‐ Responsive in population with Se status in the lowest range ‐ Plateau in the higher range of Se intakes (> ca. 40–60 μg/day) |
AAS: Atomic absorption spectrometer; d: day; ELISA: enzyme‐linked immunosorbent assay; GF: graphite‐furnace; Hb: haemoglobin; HG: Hydride‐generation; ICP‐MS: Inductively coupled plasma mass spectrometry; RBC: red blood cell; Se: selenium.
(a) Serum and plasma selenium concentrations are considered equivalent.
(b) Short term: hours/days; Medium term: weeks; Long term: months.
(c) Highest dose tested in available supplementation trials reporting on blood Se concentration.