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Abstract

Electric fields (E-fields) induced by transcranial magnetic stimulation (TMS) can be modeled 

using partial differential equations (PDEs). Using state-of-the-art finite-element methods (FEM), it 

often takes tens of seconds to solve the PDEs for computing a high-resolution E-field, hampering 

the wide application of the E-field modeling in practice and research. To improve the E-field 

modeling’s computational efficiency, we developed a self-supervised deep learning (DL) method 

to compute precise TMS E-fields. Given a head model and the primary E-field generated by 

TMS coils, a DL model was built to generate a E-field by minimizing a loss function that 

measures how well the generated E-field fits the governing PDE. The DL model was trained in 

a self-supervised manner, which does not require any external supervision. We evaluated the DL 

model using both a simulated sphere head model and realistic head models of 125 individuals 

and compared the accuracy and computational speed of the DL model with a state-of-the-art 

FEM. In realistic head models, the DL model obtained accurate E-fields that were significantly 

correlated with the FEM solutions. The DL model could obtain precise E-fields within seconds 

for whole head models at a high spatial resolution, faster than the FEM. The DL model built for 

the simulated sphere head model also obtained an accurate E-field whose average difference from 

the analytical E-fields was 0.0054, comparable to the FEM solution. These results demonstrated 
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that the self-supervised DL method could obtain precise E-fields comparable to the FEM solutions 

with improved computational speed.
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Introduction

Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation method used 

in treating major depression and other neuropsychiatric disorders (O’Reardon et al., 2007). 

However, TMS treatment outcomes vary greatly across patients (Cash et al., 2021; Cash et 

al., 2020; Diekhoff-Krebs et al., 2017; Fox et al., 2012; Fox et al., 2013; Kim et al., 2014; 

Luber et al., 2017; Opitz et al., 2016; Sack et al., 2009; Weigand et al., 2018; Williams 

et al., 2021). One primary source of such variability is that TMS suffers from targeting 

inaccuracies (Julkunen et al., 2009; Weiss et al., 2013). Recent studies have demonstrated 

that optimizing TMS stimulation parameters, such as location and orientation of the TMS 

coil, might improve TMS targeting and focality for individual subjects (Gomez et al., 2021; 

Makarov et al., 2020b; Weise et al., 2020), and optimizing TMS coil placement based on 

individual functional neuroanatomy could potentially increase effect sizes for both basic and 

clinical studies (Diekhoff-Krebs et al., 2017; Fox et al., 2012; Fox et al., 2013; Kim et al., 

2014; Luber et al., 2017; Opitz et al., 2016; Weigand et al., 2018).

Modeling of electric-fields (E-fields) is now the most widely used method to characterize 

the localization and spread of electrical current in the brain induced by TMS (Bungert et al., 

2017; Deng et al., 2013; Goetz and Deng, 2017; Gomez-Tames et al., 2020; Saturnino et 

al., 2019; Wang and Eisenberg, 1994). A variety of numerical computational methods have 

been developed to compute E-fields in conjunction with realistic head models by iteratively 

solving PDEs governing the E-field induced by TMS coils, including finite element methods 

(FEMs), boundary element methods (BEMs), and finite-difference methods (FDMs) (Htet 

et al., 2019; Makarov et al., 2020a; Nielsen et al., 2018; Paffi et al., 2015; Saturnino et 

al., 2019). The convergence of these numerical methods to the actual solution is sensitive 

to density of the head mesh, the polynomial approximation order, and error tolerance, and 

their computational cost is proportional to the modeling accuracy (Babuska et al., 1981). 

Although compromise is often necessary in real applications, it often takes tens of seconds 

for state-of-the-art E-field modeling methods to compute a high-resolution E-field (Htet et 

al., 2019; Makarov et al., 2020a; Nielsen et al., 2018; Paffi et al., 2015; Saturnino et al., 

2019).

The high computational cost of E-field modeling also makes it time-consuming and costly to 

optimize TMS stimulation parameters since a large number of E-fields have to be explored 

to identify an optimal solution (Gomez et al., 2021; Makarov et al., 2020b; Weise et 

al., 2020). To benefit clinical practice using these sophisticated tools, the computational 

cost of E-field modeling has to be reduced substantially without compromising accuracy. 

Faster E-field modeling is achievable by using a dipole-based magnetic stimulation profile 
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approach that has to compute a magnetic stimulation profile for each individual subject 

with several hours of CPU time (Daneshzand et al., 2021) or to compute the E-field only 

on sparse points or the mean of the E-field in a region of interest (ROI) by leveraging 

the reciprocity principle (Gomez et al., 2021; Koponen et al., 2019). Recent studies 

have demonstrated that superfast high-resolution E-field modeling can be achieved using 

deep neural networks (DNNs) (Xu et al., 2021; Yokota et al., 2019). Particularly, the 

magnitude of E-fields was estimated based on individualized MRI head scans and TMS coil 

positions by DNNs (Yokota et al., 2019), and 3D vector E-fields were predicted using deep 

DNNs by integrating both individualized neuroanatomy (scalar-valued tissue conductivity or 

anisotropic conductivity tensors) and primary E-fields generated by TMS coils as the input 

(Xu et al., 2021). Though promising results have been obtained, the existing deep learning 

(DL) based models were driven and optimized in a supervised learning setting. To train 

the DNNs, E-fields estimated by conventional numerical methods, such as FEM, are used 

to generate training data. Therefore, their accuracy would be bounded by the conventional 

numerical methods used to generate the training data.

Inspired by self-supervised deep learning methods (Geneva and Zabaras, 2020; Guo et al., 

2020; Li et al., 2021; Li and Fan, 2018, 2020; Qin et al., 2019; Raissi et al., 2019; Rao et al., 

2021; Tian et al., 2020; Winovich et al., 2019; Yang and Perdikaris, 2019; Zhu et al., 2019) 

and the pioneer deep learning based E-field computation methods (Xu et al., 2021; Yokota 

et al., 2019), we develop a novel self-supervised deep learning based TMS E-field modeling 

method to obtain precise high-resolution E-fields. Specially, given a head model and the 

primary E-field generated by TMS coil, a DL model is built to generate the electric scalar 

potential by minimizing a loss function that measures how well the generated electric scalar 

potential fits the governing PDE, from which the E-field can be derived directly. In contrast 

to the conventional numerical methods that solve the PDEs iteratively, the DL model is built 

to learn the solution to the PDE directly. In contrast to the existing supervised DL methods, 

our DL model is trained in a self-supervised manner by minimizing an energy function 

that solves the governing PDE as a loss function, which does not require any external 

supervision. The trained DL model could be applied to new subjects and predict their 

E-fields by one forward-pass computation. We have validated the proposed DL model using 

both simulated sphere head model and realistic head models, and experimental results have 

demonstrated that our method can obtain precise E-fields comparable to solutions obtained 

by a state-of-the-art FEM implemented in SimNIBS v3.1 with improved computational 

speed.

Methods

We develop a self-supervised DL model to compute TMS E-fields by directly learning a 

mapping from the magnetic vector potential of a TMS coil and a realistic head model to 

the TMS induced E-field so that high-resolution TMS E-fields will be a good estimate of 

the solution to the governing PDE of TMS E-fields and be computed by one feedforward 

computation rapidly.
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TMS E-fields modeling

Given a head model consisting of head tissue compartments with different conductivities, 

the E-field E in the head induced by a TMS coil can be computed by solving a PDE 

(Goetz and Deng, 2017; Gomez-Tames et al., 2020; Wang and Eisenberg, 1994). Based on 

quasi-static approximation, the E-field, E = − ∇ϕ − ∂A
∂t , can be computed by solving

∇ ⋅ (σ∇ϕ) + ∇ ⋅ σ∂A
∂t = 0, (1)

with the Neumann boundary condition

n ⋅ σ∇ϕ + σ ∂A
∂t = 0, (2)

where σ is the tissue conductivity, A is the magnetic vector potential of the TMS coil, ϕ is 

the electric scalar potential, and n  is the normal vector to the tissue surface. Particularly, 

the primary E-Field − ∂A
∂t  depends only on the TMS coil characteristics (Deng et al., 2013; 

Koponen et al., 2017) and the secondary field −∇ϕ is caused by surface charges in the 

conducting medium characterized by the head model.

Computing TMS E-fields using deep neural networks

In contrast to the prevailing FEM/BEM methods adopted in E-field modeling studies 

(Gomez et al., 2021; Koponen et al., 2019; Makarov et al., 2020a; Makarov et al., 2020b; 

Nielsen et al., 2018; Paffi et al., 2015; Saturnino et al., 2019; Weise et al., 2020) and the 

existing DL methods that learn a mapping from individual MRI head scans/anatomy to 

E-fields in a supervised learning framework (Xu et al., 2021; Yokota et al., 2019), our DL 

model is built to minimize an energy function that solves the governing equation of Eq. 

(1) with the boundary condition of Eq. (2) in a self-supervised fashion as illustrated in Fig. 

1. Given a head model and TMS induced primary E-field as input, a deep neural network 

with parameters Θ is built to estimate ϕ by minimizing a loss function L that measures the 

dissipated power in the conducting medium (Wang and Eisenberg, 1994), specified as:

L Θ; ϕΘ = ∫
Ω

σ ∇ϕΘ + ∂A
∂t ⋅ ∇ϕΘ + ∂A

∂t dv, (3)

where ϕΘ is the electric scalar potential computed by the deep neural network and v refers to 

a spatial location (voxel) within the head model Ω.

Given the input training data, the deep neural network is trained to optimize the loss function 

of Eq. (3) in a self-supervised manner. Once the deep neural network is optimized, it could 

be applied to new subjects and predict the electric scalar potential ϕ by one forward-pass 

computation, from which the E-fields could be computed directly.
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Network architecture for computing TMS E-fields

The overall architecture of our deep neural network for computing TMS E-fields is 

illustrated in Fig. 2. The deep neural network’s backbone is a U-Net with an Encoder-

Decoder architecture (Ronneberger et al., 2015). The network’s input consists of an 

individual head model (scalar tissue conductivity map, a 4D volume with a channel size 

of 1) and a subject-specific primary E-field (− ∂A
∂t , a 4D volume with a channel size of 

3), and its output includes the estimated electric scalar potential ϕΘ (a 4D volume with a 

channel size of 1 and the same spatial dimension as the head model) and its gradient. The 

total E-field will be estimated as E = − ∇ϕΘ − ∂A
∂t . Particularly, the encoder path consists of 

ten convolutional layers with 8 to 128 filters and a stride of 1 or 2 for downsampling, the 

decoder path consists of four deconvolutional layers with 128, 64, 32, and 16 filters and a 

stride of 2 for upsampling, each of which is followed by two additional convolutional layers 

with 64, 32, 16, and 16 filters and a stride of 1. One output convolutional layer with 1 filter 

is used to predict the electric scalar potential ϕΘ, and its gradient is computed with a central 

difference operator on the image grid. Leaky ReLU (Maas et al., 2013) activation function 

is used for all the convolutional and deconvolutional layers, except those two output layers. 

The kernel size in all layers is set to 3×3×3.

Experimental results

Data preparation

We have evaluated the proposed deep learning method using both simulated sphere head 

model and realistic head models from real MRI scans.

For the simulated data, a 3D sphere head model with a radius of 95 mm and isotropic 

resolution of 1 mm was generated. Its origin coordinate was set to [0, 0, 0] and its 

conductivity set to 1 s/m homogeneously. The excitation was given by a point magnetic 

dipole located outside of the sphere. The dipole’s location was set to [0, 0, 100] and 

its moment set to [0, 0, 1]. The TMS induced E-field of this sphere head model can be 

calculated analytically (Heller and van Hulsteyn, 1992), facilitating the direct evaluation of 

numerical accuracy of methods under comparison.

For the realistic head models, we adopted a local cohort of 125 healthy adult subjects with 

high-resolution multi-echo T1-weighted MPR images (TR=2400 ms, TI=1060 ms, TE= 2.24 

ms, FA=8°, 0.8×0.8×0.8 mm3 voxels, image size=208×300×320, FOV= 256 mm). Based on 

these MRI scans, we used SimNIBS v3.1 to generate anatomically accurate head models 

(‘headreco’ option with SPM/Computational Anatomy Toolbox for tissue segmentation) and 

compute primary E-fields induced by a Magstim 70mm Figure-of-Eight coil placed at varied 

locations with different orientations (Gomez-Tames et al., 2018). For meshes of head models 

used in FEM computation, the average number of tetrahedrons was 3.915 × 106 (with std 

of 3.633 × 105), and the average edge length was 2.103 mm (with std of 0.801 mm), as the 

default setting used in the SIMNIBS pipeline. The tissue conductivity map was generated 

by substituting the head tissue label values with their corresponding conductivity values. We 
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adopted the SimNIBS conductivity values, i.e., 0.126, 0.275, 1.654, 0.01, 0.465, and 0.5 S/m 

for whiter matter, gray matter, CSF, bone, scalp, and eyes respectively.

Experiment settings and implementation

To obtain the E-field of the simulated sphere head model using our proposed deep learning 

model, the conductivity map of the sphere and the primary E-field induced by the dipole was 

fed into the network as illustrated in Fig. 2, and the network was trained and optimized with 

respect to the loss function of Eq. (3) until convergence.

For the evaluation on the realistic head models, we randomly selected 100 subjects as 

training subjects and the remaining 25 as testing subjects. To evaluate the accuracy and 

robustness of our deep learning model with respect to different TMS coil positions and 

directions, three different experiment settings were adopted.

Setting 1.—The TMS coil was placed at a location within the motor cortex (center=‘C1’ 

and pos_ydir=‘CP1’ as defined in the EEG10-10 system) for each subject to generate a 

primary E-field using SimNIBS. There were 100 pairs of subject specific tissue conductivity 

maps and primary E-fields in total used for training the deep learning model and 25 pairs for 

testing its accuracy under this setting, which served as a proof-of-concept validation of our 

deep learning model on realistic head models.

Setting 2.—The TMS coil was placed at the same location within the motor cortex 

(center=‘C1’) but in different directions for training and testing the deep learning model. 

Particularly, primary E-fields of each training subject were generated with different coil 

directions (seen directions), including ‘CP1’, ‘Cz’, ‘FC1’, and ‘C3’, as training data. There 

were 400 pairs of subject specific tissue conductivity maps and primary E-fields in total for 

training the deep learning model. The optimized deep learning model was then evaluated on 

the testing subjects with the coil placed in directions different from those for generating the 

training data (unseen directions), including ‘CPz’, ‘FCz’, ‘FC3’, and ‘CP3’. In total, there 

were 100 pairs of subject specific tissue conductivity maps and primary E-fields for testing. 

This setting was adopted to evaluate the generalization performance of the deep learning 

model with respect to varying coil directions.

Setting 3.—The TMS coil was placed at different spatial locations within the left 

dorsolateral prefrontal cortex (DLPFC) to evaluate the robustness of the deep learning 

model with respect to changes of coil locations. Particularly, a target position was 

defined using the average mean Montreal Neurological Institute (MNI) coordinates 

(x=−42, y=16, z=28) (Friehs et al., 2020), which was transformed to subject space using 

SIMNIBS to obtain a subject-specific target position. Then, multiple coil positions and 

directions were generated within a grid centered at the target position using the SIMNIBS 

function ‘optimize_tms.get_opt_grid’ with parameters of radius=20, resolution_pos=10, 

resolution_angle=90, angle_limits=[−180,180], yielding 36 (9 positions by 4 directions) 

pairs of tissue conductivity map and primary E-field for each subject. In total, there were 

3600 pairs of subject specific tissue conductivity maps and primary E-fields for training the 
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deep learning model and 900 pairs of subject specific tissue conductivity maps and primary 

E-fields for testing its accuracy.

For both the simulated and realistic head models, our deep neural network’s input was a 

concatenated 4D volume data of the scalar tissue conductivity map (a 4D volume with a 

channel size of 1) and the primary E-field (a 4D volume with a channel size of 3), and its 

output included a predicted scalar electric potential (a 4D volume with a channel size of 

1) and its gradient. The deep neural network was optimized under each setting respectively 

on the training data regarding the loss function of Eq. (3). The subject-specific head model 

and primary E-field was generated using SimNIBS for each subject. For the realistic head 

models, the input image was cropped (only regions outside the head was cropped) to have 

a spatial dimension of 208×288×304 to fit the fully convolutional network architecture of 

our DL model. The channel size was 1 and 3 for scalar image (tissue conductivity map and 

electric potential) and vector image (primary E-field), respectively.

Our deep learning model was implemented using Tensorflow (Abadi et al., 2016). Adam 

optimizer (Kingma and Ba, 2014) is adopted to optimize the network, the learning rate was 

set to 1 × 10−4, the batch size was set to 1, and the number of iterations is set to 10000 for 

the simulated sphere head model, 30000 for realistic head model setting 1, 60000 and 90000 

for realistic head model setting 2 and 3 during training. One NVIDIA TITAN RTX GPU 

with 24G memory was used for training and testing. Training losses of our deep learning 

models on the simulated sphere head model and realistic head models are shown in Fig. 3, 

demonstrating the optimized deep learning models reached convergence with the specified 

parameters.

Evaluation and comparisons

We compared our method in terms of both accuracy and computational speed with a state-

of-the-art FEM, with superconvergent patch recovery, implemented in SimNIBS v3.1. We 

also compared our method with a FDM under Setting 1 using an implementation available 

at https://github.com/luisgo/TMS_Efield_Solvers (Gomez et al., 2020). As no ground truth 

was available for the realistic head models, we used the solutions of FEM as reference 

to estimate the accuracy, following the existing deep learning studies of E-field modeling 

(Xu et al., 2021; Yokota et al., 2019). The FEM solutions were projected onto voxels 

using “msh2nii” as implemented in SimNIBS for the comparison. Two evaluation metrics, 

including pointwise magnitude error and correlation coefficient between the predicted 

and reference solutions were adopted (Gomez et al., 2020). Specifically, the correlation 

coefficient was computed as Pearson correlation between the magnitude of E-fields obtained 

by our DL method and the FEM within a specified ROI, and the pointwise magnitude 

error was computed as err(r) =
abs EDL(r) − Eref(r)

maxr ∈ GM, WM Eref(r) , where r refers to voxel r in GM and 

WM region. Both measures were evaluated within different ROIs, including the combined 

gray matter and whiter matter (GM&WM) region, the gray matter (GM) region, the white 

matter (WM) region, region thresholded at the 95th percentile of E-field magnitude (Xu 

et al., 2021), and region thresholded at the 50% of the E-field maximum (Deng et al., 

2013; Yokota et al., 2019), to get better understanding about the characteristics of the 
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DL based solution. For the simulated sphere head model, the E-field can be calculated 

analytically (Heller and van Hulsteyn, 1992) to directly evaluate the numerical accuracy of 

methods under comparison. Particularly, the difference between a numerical solution Enum 

and an analytically solution Eana was measured with a normalized root-mean-square error 

(NRMSE): 1
N ∑v = 1

N Enum(v) − Eana(v)
Eana(v) , where N is the number of voxels in the sphere head 

model. The evaluation metrics were computed on voxels with values greater than 0 in the 

reference/ground-truth solution.

Results

Results on simulated sphere head model.—Fig. 4 shows the magnitude of E-

fields computed analytically, by the FEM, and by the proposed DL model, respectively, 

demonstrating that the numerical E-fields obtained by our DL model and the FEM were 

visually similar to the analytical solution. The NRMSE between the DL based and analytical 

E-field was 0.0054, close to the NRMSE between FEM based and analytical E-field 

(NRMSE=0.0055), indicating that the E-field solution obtained by the DL model was 

comparable to the FEM solution. This result demonstrated that the proposed DL model 

can indeed be optimized to learn the E-field that follows the physics law underlying the 

TMS stimulation.

Results on realistic head model setting 1.—The E-fields of three randomly selected 

testing subjects computed by the FEM and our proposed DL method are shown in Fig. 

5. The results obtained by our DL model had patterns similar to those obtained by 

FEM. Quantitatively, the results obtained by our DL method were significantly correlated 

with the FEM solutions, with an average correlation of 0.978 and an average pointwise 

magnitude error of 0.012 within the gray and white matter region, and these measures were 

similar when evaluated within gray matter and white matter respectively, as summarized 

in Table 1, indicating that the results by our DL model are comparable to the reference 

solutions of FEM. The average correlation and pointwise magnitude error were 0.948 

and 0.03 respectively for regions with E-field magnitude exceeding the 95th percentile, 

which are similar to those obtained by state-of-the-art supervised DL models (Xu et al., 

2021). For regions with a E-field magnitude exceeding 50% of the E-field maximum, 

the average correlation and pointwise magnitude error were 0.837 and 0.049 respectively. 

These quantitative measures were largely consistent with results shown in Fig. 5 that the 

magnitude error was relatively larger for regions with a high E-field magnitude. Moreover, 

our DL model obtained similar correlation coefficients and pointwise magnitude error on 

both training and testing subjects as shown in Table 1, demonstrating the model’s robustness 

to the anatomical differences across different subjects. Our E-field solutions were also 

significantly correlated with the FDM solutions, with an average correlation coefficient 

of 0.981 (standard deviation: 0.006) and an average pointwise magnitude error of 0.010 

(standard deviation: 0.002) within the gray and white matter.

Results on realistic head model setting 2.—The E-fields of three randomly selected 

testing subjects with unseen coil directions computed by the FEM and our proposed DL 

method are shown in Fig. 6. Though the coil directions were different from those used for 
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training the DL model, the DL model still successfully predicted the E-fields for the testing 

subjects, demonstrating good consistency with those obtained by the FEM. Quantitatively, 

the results on both seen and unseen coil directions obtained by our DL method were 

significantly correlated with the FEM solutions, with an average correlation of 0.979 and 

0.957 respectively, while the average pointwise magnitude error was 0.013 and 0.019 

respectively for the gray and white matter region, as summarized in Table 1. As shown 

in Fig. 6, the prediction error was relatively larger for regions with a high E-field magnitude. 

It is worth noting that all these results were obtained for testing subjects which were not 

used for the model training. These results demonstrated that the DL model was robust 

under different coil direction settings and could generalize to unseen coil directions. We also 

observed that the pointwise magnitude error of the 3rd subject was larger compared with 

others in Fig. 6, which might indicate the model’s robustness to inter-subject anatomical 

difference compromises moderately when the coil directions were not seen during the model 

training procedure.

Results on realistic head model setting 3.—The E-fields of one randomly selected 

testing subject computed by the FEM and our proposed DL method for three different 

coil positions located within the DLPFC area are shown in Fig. 7. The E-fields obtained 

by our DL model are visually similar to those obtained by FEM. The average correlation 

coefficient of the solutions obtained by our DL model and FEM was 0.984 within the 

gray and white matter for the testing subjects, with an average pointwise magnitude 

error of 0.012 as summarized in Table 1, indicating that our DL model was capable of 

predicting E-fields with varying coil positions and directions. It could be observed that 

the prediction error was relatively larger for regions with a high E-field magnitude. The 

average correlation and pointwise magnitude error were 0.943 and 0.036 respectively for 

regions with a E-field magnitude exceeding the 95th percentile, and the average correlation 

and pointwise magnitude error was 0.819 and 0.055 respectively for regions with E-field 

magnitude exceeding 50% of the E-field maximum.

Computation time.—It took 35.17 and 33.65 seconds on average by the FEM as 

implemented in SIMNIBS to obtain the E-field for one subject (whole head model with 

208×288×304 voxels at a spatial resolution of 0.8×0.8×0.8 mm3) with the TMS coil located 

at the motor cortex and DLPFC respectively when using one Intel Xeon Gold 5218 CPU. 

It took 14.27 and 14.26 seconds by our trained DL model using the same CPU. On one 

NVIDIA TITAN RTX GPU, it took 1.47 and 1.49 seconds respectively by our trained DL 

model to compute E-fields with the TMS coil located at the motor cortex and DLPFC, 

respectively. For the FEM, the timing measurement included the time for assembling and 

solving the FEM system; For DL method, the timing measurement includes the time for 

one forward pass to obtain the E-field and the electric potential using a head model and a 

primary E-field as input. We did not include the time for computing head model/mesh and 

primary E-field for both the FEM and our DL method. This comparison demonstrated the 

improved computational speed obtained by the proposed deep learning model. For the model 

training, it took 2.88 seconds on average for each training iteration. It is worth noting that 

the model only needs to be trained once for a target ROI, which can be applied to new 

testing subjects without further optimization once trained.
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Discussion

We have developed a self-supervised deep learning model to directly learn a mapping from 

the magnetic vector potential of a TMS coil and a realistic head model to the TMS induced 

E-fields, instead of iteratively solving equations governing the E-field induced by a TMS 

coil. Experimental results on both simulated and realistic head models have demonstrated 

that our method could obtain similar accuracy compared with the most commonly used 

numerical method. Our method is capable of computing the TMS induced E-fields by one 

forward-pass computation, taking less than 1.5 seconds for a realistic head model with high 

spatial resolution.

Several numerical computational methods have been developed for accurate E-fields 

modeling in conjunction with realistic head models, such as FEMs, BEMs, and FDMs. 

Though the computational speed of state-of-the-art numerical methods has been improved 

a lot, their computational cost for high-resolution E-fields is still high due to the nature of 

iterative optimization in their PDE solvers, which compromises their use in the optimization 

of TMS stimulation parameters in both basic and clinical studies. Instead of solving the 

governing PDEs from scratch, recently studies have demonstrated promising performance 

of deep neural networks for rapid estimation of E-fields (Xu et al., 2021; Yokota et al., 

2019), in which deep neural networks are trained to directly predict the E-fields with high 

fidelity to those estimated using conventional E-field modeling methods, such as FEMs. 

Therefore, the deep neural networks are actually trained to predict the solutions obtained 

by the conventional E-field modeling methods and their performance is bounded by the 

conventional E-field modeling methods used for generating training data. Moreover, it will 

also be time-consuming to generate surrogate training data with different TMS stimulation 

parameters on a large cohort.

In contrast to the existing deep learning based E-field modeling methods (Xu et al., 2021; 

Yokota et al., 2019) that learn a mapping from head scans/models to surrogate E-fields 

estimated using conventional E-field modeling methods in the supervised learning way, our 

method directly learns a solution to the governing equations in a self-supervised learning 

way, which does not require any external supervision. Our proposed deep neural network 

is designed to predict the TMS induced electric scalar potential and is optimized so that 

the network’s output fit the governing PDE as much as possible, which is formulated to 

minimize an energy function that solves the governing PDE. Therefore, our method directly 

learns a solution to the same governing PDE as the convention numerical optimization 

methods do, while benefiting from the fast inference of deep neural networks. As surrogate 

E-fields are not required by our method, realistic head models from diverse imaging datasets 

can be used as the training data for our method. To the best of our knowledge, our method is 

the first study to investigate self-supervised deep learning for TMS E-field modeling, though 

physics-informed deep learning methods have been successfully applied to solving PDEs on 

varied domains (Geneva and Zabaras, 2020; Guo et al., 2020; Qin et al., 2019; Raissi et al., 

2019; Rao et al., 2021; Tian et al., 2020; Winovich et al., 2019; Yang and Perdikaris, 2019; 

Zhu et al., 2019).
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Our method is designed as a general-purpose method for the computation of E-field, and 

it could obtain the E-field for a new subject (whole head model with 208×288×304 voxels 

at a spatial resolution of 0.8×0.8×0.8 mm3) in about 1.47 seconds. Several alternative 

fast E-field computation methods have been developed (Daneshzand et al., 2021; Stenroos 

and Koponen, 2019). Particularly, a magnetic stimulation profile for each subject needs 

to be computed in advance (Daneshzand et al., 2021), which may require hours of CPU 

time. The surface integral equation used in (Stenroos and Koponen, 2019) is valid only 

for isotropic medium, which cannot account for the anisotropic conductivity of white 

matter properly. Our method does not require per-subject training or pre-computation, it 

could be applied to new subjects directly without further optimization once a DL model 

training is finished. Moreover, we can further reduce its computation time by applying the 

trained model to a region of interest (ROI) instead of the whole head model, facilitated 

by the fully convolutional network architecture of our method. It should be noted that an 

isotropic tissue conductivity model was adopted in our current method development and 

evaluation, and the trained model should not be applied to head models with anisotropic 

tissue conductivity. It should be also noted that extension to anisotropic tissue conductivity is 

feasible by incorporating anisotropic conductivity tensor into the loss function defined in Eq. 

(3) and replacing the scalar conductivity with anisotropic conductivity tensor properly as the 

network input.

In addition to promising accuracy and computational speed, our method is robust to varying 

TMS coil locations and directions. As demonstrated in Fig. 6, the deep neural network 

generalized well for computing E-fields of the testing subjects that were generated by the 

coil placed in directions different from those for generating the training data. The validation 

experiment with the coil placed at left DLPFC has further demonstrated that the accuracy 

of the predicted E-fields was still comparable to that obtained by the FEM on the testing 

subjects, even though the coil was placed at varying locations and in different directions, as 

illustrated in Fig. 7. The good generalization performance of the proposed method may be 

attributed to its self-supervised learning nature, which optimizes the deep learning model to 

learn the underlying mapping between head anatomy and electric potential without external 

guidance or prior assumptions. The robust generalization emphasizes that this method is 

likely to be applicable to the optimization of TMS stimulation where varying positions and 

directions around the target position are to be explored. Nevertheless, it was observed in 

Figs. 5 to 7 that the pointwise magnitude errors were relatively large at the regions with a 

high E-field magnitude, indicating there is still room for improving the model’s performance 

with respect to both methodological development and model training, such as optimizing the 

neural network architecture and increasing the size of training dataset. It was also observed 

in Fig. 6 that the prediction error for the 3rd subject was relatively larger than that for other 

subjects, which might be due to large inter-subject anatomical differences between training 

and testing subjects, and it is expected that a model trained on a larger training dataset with 

more subjects will improve the model’s robustness to anatomical differences across subjects. 

On the other hand, the DL-based results can also be served as a good initialization for 

conventional PDE solvers to achieve an improved convergence rate given that the DL-based 

results were close to the FEM-based solutions.
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Though the self-supervised deep learning method has demonstrated enormous potential 

for fast and accurate E-field modeling, there are still several limitations should be noted. 

First, current evaluation was focused on E-field induced by a Figure-of-Eight coil and 

head models at a single resolution, the influence of different coils and spatial resolutions 

of head models merits further investigation. Second, scalar tissue conductivity maps were 

used in the present study. Future work will be devoted to modeling of anisotropic tissue 

conductivity with deep learning and exploring its effects on the derived E-field. Third, our 

current model adopts a traditional U-Net architecture, which can be optimized in terms of 

both accuracy and computational speed of the E-field modeling using neural architecture 

search (NAS) techniques (Elsken et al., 2019). In addition, tuning the hyper-parameters for 

network training such as batch size along with the architecture optimization may further 

improve the performance. Moreover, the gradient operator currently used to compute the 

loss function in Eq. (3) was implemented as a central difference operator on the image 

grid, which may generate blurring or artificially elevated peak values around the tissue 

boundaries. More attention should also be paid to exploring other numerical solutions such 

as cubic spline based method and spectral differentiation for computing gradient or other 

processing strategies to improve the prediction at tissue boundary regions. Fourth, dedicated 

deep neural networks were trained separately for different target regions in the present study, 

future work will be devoted to investigating the feasibility of one unified neural network for 

multiple target regions across the cerebral cortex and its generalization with respect to the 

size of training data and the neural network capacity.

In conclusion, a self-supervised deep learning model was developed to estimate TMS 

induced E-fields directly from realistic head models and the TMS coil’s magnetic vector 

potential. The DL model can obtain high-resolution E-fields from realistic head models 

with high accuracy, facilitating fast and precise TMS E-field modeling, and therefore the 

optimization of TMS stimulation parameters in both basic and clinical studies.
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Highlights

• Self-supervised deep learning computes E-fields induced by TMS

• E-fields are computed by solving the governing PDE directly

• Self-supervised deep learning obtains E-fields with high accuracy and 

efficiency
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Fig.1. 
A self-supervised deep learning model for computing TMS E-field. A deep neural network 

is applied to learn a mapping from individual head model and TMS induced primary 

E-field to the TMS electric scalar potential, and the network is optimized by a loss function 

determined by an energy function (Wang and Eisenberg, 1994).
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Fig.2. 
Deep convolutional neural network with an Encoder-Decoder architecture applied to 

learn TMS E-field. The numbers underneath convolutional (C1_1, C1_2, …, C9_2) and 

deconvolutional (D1, D2, D3, and D4) layers indicate their corresponding numbers of 

kernels, with a stride of 1 or 2 for downsampling or upsampling. The kernel size in all layers 

is set to 3×3×3.
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Fig.3. 
Training loss of the proposed deep learning model on simulated sphere head model (a) and 

realistic head models under different experiment settings (b).
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Fig.4. 
The magnitude of E-fields of the sphere model computed analytically, by FEM (with a 

NRMSE of 0.0055), and by our DL method (with a NRMSE of 0.0054), respectively.
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Fig.5. 
E-fields of three randomly selected testing subjects computed by the FEM and the proposed 

DL model with the motor cortex as a stimulation target (1st and 2nd rows), and the 

corresponding pointwise magnitude error map with the FEM solution as reference (3rd 

row). The top colorbar shows the magnitude values (in V/m) of the E-fields and the bottom 

colorbar shows the normalized pointwise magnitude error.
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Fig.6. 
E-fields of three randomly selected testing subjects computed by the FEM and the proposed 

DL model with the motor cortex as a stimulation target and the coil set in varying directions 

(1st and 2nd rows), the corresponding pointwise magnitude error map with the FEM solution 

as reference (3rd row). The top colorbar shows the magnitude values of the E-fields and the 

bottom colorbar shows the normalized pointwise magnitude error.
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Fig.7. 
E-fields of one randomly selected testing subjects computed by the FEM and the proposed 

DL model with the dorsolateral prefrontal cortex (DLPFC) as a stimulation target and 

the coil set at varying positions and in different directions (1st and 2nd rows), and the 

corresponding pointwise magnitude error map with the FEM solution as reference (3rd row). 

The top colorbar shows the magnitude values of the E-fields and the bottom colorbar shows 

the normalized pointwise magnitude error.
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Table 1.

Quantitative evaluation of the proposed DL method under different experimental settings, with the FEM 

solutions as reference. Mean and standard deviation of the correlation coefficient (CC) and pointwise 

magnitude error (PME) measures within different regions of interest (ROIs) are demonstrated. ROI definition: 

gray and whiter matter (GM&WM), gray matter (GM), white matter (WM), region thresholded at the 

95th percentile of E-field magnitude (95th percentile), region thresholded at the 50% of maximum E-field 

magnitude (50% of max).

CC 
GM&WM CC GM CC WM CC 95th 

percentile
CC 50% of 

Max
PME 

GM&WM PME GM PME WM PME 95th 

percentile
PME 50% 

of Max

Setting 
1 train 0.984±0.005 0.984±0.004 0.985±0.006 0.958±0.007 0.856±0.035 0.010±0.002 0.010±0.002 0.010±0.002 0.025±0.003 0.044±0.003

Setting 
1 test 0.978±0.006 0.979±0.005 0.977±0.008 0.948±0.014 0.837±0.034 0.012±0.003 0.012±0.003 0.013±0.003 0.030±0.005 0.049±0.008

Setting 
2 test 
(seen 
dir)

0.979±0.005 0.978±0.005 0.980±0.006 0.933±0.017 0.801±0.127 0.013±0.003 0.013±0.003 0.013±0.003 0.034±0.007 0.055±0.011

Setting 
2 test 

(unseen 
dir)

0.957±0.012 0.961±0.010 0.953±0.015 0.918±0.022 0.782±0.113 0.019±0.005 0.019±0.005 0.022±0.005 0.042±0.011 0.064±0.014

Setting 
3 test 0.984±0.004 0.983±0.004 0.985±0.004 0.943±0.010 0.819±0.052 0.012±0.002 0.012±0.002 0.012±0.003 0.036±0.005 0.055±0.006
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