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Abstract
Mycotoxins are secondary metabolites produced by specific fungi. More than 400 different mycotoxins are known in the 
world, and the concentration of these toxins in food and feed often exceeds the acceptable limit, thus causing serious harm to 
animals and human body. At the same time, modern industrial agriculture will also bring a lot of environmental pollution in 
the development process, including the increase of heavy metal content, and often the clinical symptoms of low/medium level 
chronic heavy metal poisoning are not obvious, thus delaying the best treatment opportunity. However, the traditional ways 
of detoxification cannot completely eliminate the adverse effects of these toxins on the body, and sometimes bring some side 
effects, so it is essential to find a new type of safe antidote. Trace element selenium is among the essential mineral nutrient 
elements of human and animal bodies, which can effectively remove excessive free radicals and reactive oxygen species in 
the body, and has the effects of antioxidant, resisting stress, and improving body immunity. Selenium is common in nature 
in inorganic selenium and organic selenium. In previous studies, it was found that the use of inorganic selenium (sodium 
selenite) can play a certain protective role against mycotoxins and heavy metal poisoning. However, while it plays the role 
of antioxidant, it will also have adverse effects on the body. Therefore, it was found in the latest study that selenium yeast 
could not only replace the protective effect of sodium selenite on mycotoxins and heavy metal poisoning, but also improve the 
immunity of the body. Selenium yeast is an organic selenium source with high activity and low toxicity, which is produced 
by selenium relying on the cell protein structure of growing yeast. It not only has high absorption rate, but also can be stored 
in the body after meeting the physiological needs of the body for selenium, so as to avoid selenium deficiency again in the 
short term. However, few of these studies can clearly reveal the protective mechanism of yeast selenium. In this paper, the 
detoxification mechanism of selenium yeast on mycotoxins and heavy metal poisoning was reviewed, which provided some 
theoretical support for further understanding of the biological function of selenium yeast and its replacement for inorganic 
selenium. The conclusions suggest that selenium yeast can effectively alleviate the oxidative damage by regulating different 
signaling pathways, improving the activity of antioxidant enzymes, reversing the content of inflammatory factors, regulating 
the protein expression of apoptosis-related genes, and reducing the accumulation of mycotoxins and heavy metals in the body.
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Introduction

Mycotoxins are toxic secondary metabolites produced by cer-
tain fungi, which mainly grow in soil, hay, decaying vegeta-
tion, and grains, and can cause biochemical, physiological, Huiying Sun, Jia Chen, and Dongwei Xiong contributed equally to 
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and pathological changes in many species [1]. Mycotoxins 
were first discovered by certain fungal scientists in the early 
1960s during an outbreak of disease X in British turkeys. At 
that time, nearly 100,000 turkeys were killed because peanuts 
in their food were heavily contaminated with Aspergillus fla-
vus, a mycotoxin-producing mold [2]. Other mycotoxin-pro-
ducing fungi include Aspergillus, penicillium, and Fusarium. 
Different molds produce different mycotoxins, mainly includ-
ing ochratoxin A (OTA), deoxynivalenol (DON), T-2 toxin, 
zearalenone (ZEA, ZEN), and aflatoxin B1 (AFB1) [3]. Cur-
rently, more than 400 mycotoxins are recognized and their 
number is constantly growing. After all, we live in a world in 
crisis—from volatile financial markets to panic over feed and 
food safety. Instability and inconsistencies in agriculture and 
the feed industry are causing uncertainty around the world. It 
should be noted that more than 25% of the world’s cereals are 
contaminated with mycotoxins and such contaminated com-
ponents pose a serious threat to the health and performance 
of animals. Experience shows that often dangerous diseases 
caused by harmful substances (e.g., aflatoxin, ochratoxins) 
produced as a result of improper storage (e.g., moisture) or 
non-compliance with technological regimes during harvest-
ing cause veterinarians to misdiagnose the causes of diseases, 
e.g., coli, when in fact ochratoxin overloads the animal’s liver 
and causes secondary coli infection.

Heavy metal poisoning refers to poisoning caused by heavy 
metal elements or their compounds with a relative atomic mass 
greater than 65, mainly including arsenic, chromium, cadmium, 
and lead poisoning, which is mainly caused by exposure to or 
eating a large amount of mining, smelting, industrial, and other 
sewage wastes or abandoned industrial products [4]. With the 
development of new technologies in agricultural industry, 
heavy metal pollution needs more and more attention. The fre-
quent exposure and accumulation of heavy metals in organisms 
will cause serious health problems and affect the normal opera-
tion of a series of organs such as the brain, liver, and repro-
ductive organs [5]. Some heavy metals (such as mercury, lead, 
and cadmium) are able to accumulate in the food chain due to 
their long presence in the environment. At present, the safety of 
cultivated land and water polluted by heavy metals is seriously 
threatening the normal life of animals and people all over the 
world. The effects of acute heavy metal exposure at toxic levels 
are usually known and can be treated promptly. However, the 
impact of low/moderate levels of chronic heavy metal exposure 
on health is unlikely to be determined because they may be sub-
clinical and pathogenic effects may only manifest clinically over 
time in the guise of diagnosable diseases or other symptoms 
attributable to aging, thus delaying treatment [6]. At the same 
time, chelation therapy is commonly used to treat heavy metal 
poisoning in clinic. However, the widely used heavy metal 
chelating agent, dimercaptosuccinate, is not only poor in water 
solubility, low in oral bioavailability, but also short in half-life, 
which seriously limits its clinical application [7].

Nutrition is one of the most important factors affecting 
animal health. The forage used to feed livestock can be con-
taminated with a variety of harmful substances, including sec-
ondary metabolites of toxin-causing fungi and heavy metals 
waste from factories. Therefore, detoxification of domestic 
animal mycotoxin and heavy metal poisoning is an impor-
tant problem. A substantial body of research demonstrates 
that mycotoxins and heavy metals can harm the organism by 
producing too many reactive oxygen species and oxidative 
stress [8–11]. Therefore, the current research focuses on the 
use of antioxidants like vitamin E, vitamin C, proanthocya-
nidins, curcumin, and some trace elements like selenium and 
zinc to combat the oxidative damage caused to the body by 
these chemicals by weakening the destructive effect of reac-
tive oxygen species and oxidative stress. It has been shown 
that simultaneous supplementation of various antioxidants 
can minimize the oxidative stress associated with ingestion 
of feed contaminated with mycotoxins. The best results are to 
be expected when using a mixture of antioxidants, not just the 
individual ingredients. In addition to the use of antioxidants, 
some scientists have also found that Saccharomyces cerevi-
siae, a microbial feed additive classified as probiotics, can 
absorb fungal toxins (aflatoxin B1, ochratoxin A, and zearale-
none) in contaminated feed to mitigate the negative effects. 
Saccharomyces cerevisiae RC016 is a promising candidate 
for a feed additive formulation that improves animal growth 
and intestinal immune system. It has been shown that Sac-
charomyces cerevisiae RC016 can improve intestinal health 
in weaned piglets by alleviating small intestinal inflammation 
caused by deoxynivalenol poisoning [12]. Meanwhile, it was 
found that Lactobacillus rhamnosus bacteria can reduce the 
harmful effects of deoxynivalenol on the intestine of young 
pigs and has anti-inflammatory and antioxidant effects. They 
alleviate histopathological changes, limit the increase in the 
expression of pro-inflammatory cytokines, and reduce the per-
meability of the epithelium [13]. LGG supplementation can 
also reduce the damage of DON on the antioxidant system 
of piglet kidney [14]. At the same time, it was noticed that 
L. rhamnosus bacteria do not bind deoxynivalenol and only 
to a small extent cause the decomposition of this mycotoxin.

Trace element selenium is an important component of 
many important antioxidant enzymes in vivo, including glu-
tathione peroxidase, thioredoxin reductase, and iodothyronine 
deiodinase. As a part of enzymes that catalyze oxidation and 
reduction (REDOX) reactions, selenium protects cells from 
the harmful effects of free radicals and plays an important 
antioxidant role in the normal life activities of animals [15]. 
Selenium can exert its detoxification effect on mycotoxin 
poisoning by reducing reactive oxygen species production 
and mitochondrial dysfunction, enhancing cell viability and 
function, and inhibiting the immune response (see Fig. 1). 
More and more experimental results show that selenium is 
also a nutrient with immunomodulatory properties, which can 
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regulate the immune function changes caused by mycotoxins. 
It has been proved that selenium limits changes in cytokine 
and immunoglobulin gene expression induced by the action 
of deoxynivalenol [16]. Dietary supplementation of selenium 
prevents impaired humoral or mucosal immune function due 
to AFB1 [17]. In addition, Se can further counteract the 
immunotoxic effects of T-2 toxins on T lymphocytes [18].

Like other elements, selenium circulates in nature. Sele-
nium has two different forms: inorganic selenium and organic 
selenium. Organic forms include selenate (Na2SeO4) and 
sodium selenite (Na2SeO3), while organic forms include sele-
nomethionine (SeMet) and selenocysteine (SeC). After being 
ingested by the body, selenium is absorbed by the intestine 
and transported to the liver. In the liver, selenium is mainly 
metabolized to Sec. Then, Sec is combined into selenoprotein 
to form selenoprotein in the form of selenium-cysteine, which 
is the derivative of the simplest amino acid cysteine and can 
be used as a selenium source for other tissues in the body 
[19]. Selenoproteins are also involved in the development and 
regeneration of muscle tissue [20]. Selenium is also a com-
ponent of two essential amino acids (selenomethionine and 
selenocysteine) that form key enzymes in many metabolic 
processes [21]. The discovery of the conversion of inorganic 
selenium organisms into organic derivatives (e.g., selenom-
ethionine) by prion producing yeast cells suggests that prion 
producing yeast cells rich in organic forms of selenium create 
the possibility of obtaining selenium biocomplexes that could 
be used to produce dietary supplements for protein selenium 
in animals and humans [22]. In addition, selenium has many 
important functions in the human body. It can inhibit cancer 
cell division and protect neurons and cardiomyocytes [23]. 
It is also involved in the recovery of ascorbic acid from its 
oxidative metabolites, in DNA synthesis and apoptotic pro-
cesses (i.e., programmed cell death), and plays an impor-
tant anti-inflammatory role in autoimmune thyroiditis [24]. 
Dietary supplementation of selenium also contributes to the 
development of strong antioxidant defenses for maternal 
and developing embryos, and is positively associated with 
embryo survival and offspring development [25].

In addition, selenium has been experimentally and clini-
cally proven to be effective against viral diseases. Selenium 

is an oxidizing agent, which easily reacts with the sulfhy-
dryl group in the active center of the viral protein disulfide 
isomerase, thus inactivating it. This causes the hydropho-
bic spikes of the virus to lose their ability to interact with 
the dithionyl group of membrane proteins, and the virus is 
unable to enter the cytoplasm of healthy cells. The same 
mechanism underlies the action of oxidants with apparent 
antiviral activity [26]. Selenomionine at higher than physio-
logical concentrations was found to resist replication of por-
cine Delta coronavirus in porcine renal epithelial cells and 
enhance mitochondrial antiviral signaling protein (MAVS) 
protein expression and interferon regulatory factor-3 (IRF-3) 
phosphorylation [27]. Therefore, selenium may be consid-
ered a promising antiviral drug and may be effective in the 
treatment of COVID-19. For example, when isolating sam-
ples from COVID-19 patients, Moghaddam et al. found that 
39% of survivors had low serum selenium levels, while 65% 
of patients who died of COVID-19 showed severe selenium 
deficiency compared with survivors [28]. As mentioned 
above, Im et al. also found that 42% of hospitalized patients 
with COVID-19 showed selenium deficiency with moderate 
pneumonia [29]. Therefore, adequate selenium supplemen-
tation may reduce oxidative stress by restoring antioxidant 
enzymes, reducing cell death and clotting pathways, and pro-
tecting endothelial cells, thus having an overall protective 
effect on the lungs and other organs to mitigate the impact 
of COVID-19 on the body [30].

According to the survey, most parts of China are in 
the selenium deficiency environment, and selenium defi-
ciency often causes a variety of diseases, as shown in Fig. 2 
[31–33]. Moreover, selenium deficiency can also cause seri-
ous pathological changes in body organs and tissues. The 
study found that selenium deficiency can cause kidney dam-
age and fibrosis in the body, and the Wnt/β-catenin pathway 
may play an important role [34]. At the same time, selenium 
deficiency also affects the morphology and structure of liver 
cells and mitochondria, and causes structural damage and 
fibrosis in liver tissues [35]. Selenium deficiency also causes 
diarrhea by disrupting intestinal flora, and through intestinal 
flora causes pathological changes such as intestinal inflam-
mation, autophagy, endoplasmic reticulum stress, apoptosis, 
tight junctions, and abnormal smooth muscle contraction 
[36]. However, even exposure to higher concentrations of 
selenium also can be toxic to the body. Selenium is essential 
for the proper production of mammalian sperm cells and 
for sperm maturation. Sperm production is always affected 
when dietary selenium levels are too high or too low, which 
may affect semen quality decline and sterility [37]. It was 
found that high doses of selenium would increase the oxi-
dative stress in yeast, thus increasing the process of lipid 
peroxidation. The experiment also found that higher levels of 
oxidized glutathione (GSSG) were obtained from yeast bio-
mass aqueous solution supplemented with selenium (40–60 

Fig. 1   Effect of selenium on mycotoxin. The symbol “→” indicates 
activation and “⟞” indicates inhibition
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mg/L). The low concentrations of GR observed in yeast 
showed that the two examined yeast strains have a reduced 
ability to effectively convert emerging GSSG to its reduced 
form. GR was responsible for maintaining adequate levels of 
reduced glutathione in the cytoplasm of cells [38].

Due to its ability to affect various diseases by enhancing 
antioxidant capacity and regulating immune cells as well 
as pathogens such as viruses, selenium supplements may 
become a high-dose supplement to treat various diseases, 
especially the body’s sensitivity to selenium supplementa-
tion and the relatively low price of selenium preparation, 
which may lead to new ideas for solving medical problems 
such as cancer treatment and HIV treatment. It is possible 
that new and effective methods will be developed to prevent 
these diseases, which may save more resources than treat-
ment alone.

Selenium yeast is a high-quality organic selenium source 
with high absorption rate, low toxicity, and wide safety range 
generated by the substitution of sulfur element in the protein 
structure of growing yeast cells [39]. The studies have found 
that adding selenium yeast to the diet can prevent various 
pathological conditions caused by oxidative stress [40–43]. 
At present, although some studies have shown that inorganic 
selenium sources, such as sodium selenite (SS), which are 
mainly used as dietary selenium source additives, have 
significant detoxification effects on mycotoxins and heavy 
metal poisoning [44–47], they are still limited by acute tox-
icity, accelerated oxidation, and low bioavailability in the 
application process. So far, some developed countries have 
prohibited their use in animal diets [48]. Meanwhile，most 
tests have found that selenium in SY has higher bioavail-
ability and can improve its antioxidant activity more avail-
able than selenium in SS after comparison [49–51]. This 
is because the biological potency and safety of selenium 
yeast products have been greatly improved in the production 
process, making them easier to be absorbed and utilized by 
the body.

At present, although selenium yeast has been widely used 
in the production of selenium-rich products, e.g., selenium-
rich eggs, the mechanism of selenium yeast against oxidative 

stress induced by mycotoxins and heavy metal poisoning to 
protect the body from oxidative damage is still little known. 
Therefore, this review aims to analyze and summarize the 
detoxification mechanisms of selenium yeast to mycotoxins 
and heavy metal poisoning, and will help to inform future 
studies investigating the effects of selenium yeast.

Major Toxicity Mechanisms Induced 
by Mycotoxins and Heavy Metals

To date, various studies have shown that once animals 
ingest feed contaminated with mycotoxins, multiple adverse 
effects can be induced in vivo, e.g., hepatororal and renal 
toxicity, reproductive toxicity, cardiotoxicity, neurotoxicity, 
and immunotoxicity [52–54]. The accumulation of heavy 
metals in the body will also lead to the occurrence of the 
above diseases [55–57]. However, any study on the effects 
of mycotoxins on organisms usually involves articles on 
a single substance. In fact, feed may be contaminated by 
several mycotoxins at the same time, which increases their 
toxicity. For example, mycotoxins mixed with aflatoxin and 
deoxynivalenol could aggravate liver damage and immune 
dysfunction, leading to a decline in pig growth [58]. Myco-
toxins mixed with deoxynivalenol and aflatoxin B1 could 
reduce the ileal apparent digestibility of nutrients in the 
feed of weaned pigs, and affects the growth performance 
and nutrient digestibility of weaned piglets [59]. The main 
mechanism of its toxicity is described below.

Oxidative Stress

Reactive oxygen species (ROS) are oxygen free radicals in 
organisms, including oxygen and highly active molecules 
containing oxygen, such as superoxide anion (O2·−), 
hydroxyl radical (HO·), nitric oxide (·NO), hydrogen per-
oxide (H2O2), and peroxynitrite (ONOO) [60], which are 
by-products of mitochondria and other organelles in cells 
[61]. The body will constantly produce reactive oxygen spe-
cies during metabolism. Under normal circumstances, the 

Fig. 2   Diseases caused by sele-
nium deficiency
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production and clearance of active oxygen in the body are 
in dynamic balance, so the body will not express obvious 
oxidative damage. While the body accumulates too much 
reactive oxygen species and exceeds the threshold of cell 
antioxidant capacity, it can induce oxidative stress [62]. Oxi-
dative stress is a negative effect produced by free radicals in 
the body. Under this condition, active substances will cause 
oxidative damage to biological macromolecules in living 
cells, such as proteins, carbohydrates, lipids, and DNA [63]. 
In addition, oxidative stress can accelerate cell aging [64], 
induce cell apoptosis [65], and eventually lead to the occur-
rence of many diseases, such as cancer, cardiovascular dis-
ease, and neurodegenerative diseases [66–68].

AFB1 is the most toxic of all aflatoxins, which can induce 
oxidative stress in the testes, causing pathological damage 
and dysfunction of the testes [69]. It has been reported that 
AFB1 was able to significantly increase the production of 
intracellular ROS and decrease the level of glutathione, 
thereby activating several signal pathways related to inflam-
matory response to induce oxidative stress in cells [70]. 
Similarly, the OTA exposure significantly downregulated 
the expression of the antioxidant enzyme genes, decreased 
the activity of the antioxidant enzymes, and increased the 
intracellular ROS levels to cause oxidative stress [71]. Mean-
while, the oxidative damage of DNA could also be directly 
induced by OTA [72]. Moreover, ZEA could also damage 
the cytoskeletal structure of the mouse TM4 Sertoli cells 
via the oxidative stress-autophagy-ER stress pathway [73]. 
Fu et al. found that ZEA can cooperate with LPS to increase 
the accumulation of ROS and malondialdehyde (MDA) 
in bovine mammary epithelial cells (MAC-T), and reduce 
their mitochondrial membrane potential, superoxide dis-
mutase (SOD), and glutathione (GSH) levels, to aggravate 
cytotoxicity [74]. T-2 toxin exposure could cause oxidative 
stress–induced cytotoxicity by significantly reducing cell 
viability, increasing MDA levels, and reducing glutathione 
peroxidase (GSH-Px), SOD, and catalase (CAT) activity 
[75]. All these findings suggest that cellular oxidative stress 
is one of the modes of virulence induced by mycotoxins.

Oxidative stress is also one of the main toxic mechanisms 
of heavy metals. It has been found that cadmium could accu-
mulate within the nephron and induce the dysfunction of the 
mitochondrial electron transport chain, leading to electron 
leakage and the production of reactive oxygen species, and 
ultimately leading to oxidative damage to DNA, proteins, 
and lipids [76]. Furthermore, lead exposure was also able to 
increase ROS levels, decrease antioxidant enzyme activity 
in vivo, and impair oocyte maturation and fertilization by 
inducing oxidative stress, leading to the decline of fertility 
in female mice [77]. Ma et al. also found that adding arsenic 
to the diet could inhibit the Nrf2-Keap1 pathway in the liver 
and kidney to induce oxidative stress [78]. The levels of lipid 
peroxidation and protein carbonyl group content in mice 

exposed to hexavalent chromium (Cr(VI)) were increased, 
and a large number of ROS were produced in the body. At 
the same time, the activities of SOD, glutathione S-trans-
ferase, GSH, total mercaptan (TT), CAT, and cholinesterase 
were decreased, which induced oxidative stress leading to 
liver cell damage, causing the increase of aspartate ami-
notransferase and alanine aminotransferase [79].

Apoptosis

Apoptosis is also known as programmed cell death. OTA 
was able to increase cellular oxidative stress and apoptosis 
rates by activating the phosphatidylinositol 3-kinase/threo-
nine kinase (PI3K/AKT) signaling pathway to hinder cell 
proliferation and development [80]. It was also found that 
OTA could also induce endoplasmic reticulum stress and 
reactive oxygen species generation by activating NADPH 
oxidase and calpain [81]. Meanwhile, ZEA could signifi-
cantly decrease the transcription and expression of the anti-
apoptotic protein Bcl-2 and the increase of the pro-apoptotic 
protein Bax, to induce apoptosis through the mitochondrial 
apoptosis pathway [82]. Furthermore, Long et  al. also 
indicated that ZEA could also cause mouse epithelial cell 
apoptosis through ER stress [83]. In addition, the study also 
found that the cytotoxicity induced by DON could increase 
the expression of genes and proteins related to apoptosis 
and inflammation in cells [84]. In vitro, DON could induce 
significant morphological changes in subject cells undergo-
ing the Caspase-3-related pathway, leading to apoptosis [85]. 
AFB1 could promote cell apoptosis and cell cycle arrest in 
G2-M phase through oxidative stress, and activate the phos-
phorylation of nuclear factor-kappa B (NF-ĸB) in microglia 
in mouse spinal cord to induce cell apoptosis [86]. Fumoni-
sin (FB1) could also increase the ROS levels of cells by 
affecting the Keap1-Nrf2 pathway-related factors to cause 
inflammation and cell apoptosis, and finally destroy the tes-
ticular tissue structure and affect the formation of sperm 
[87]. In summary, mytoxins can cause apoptosis both in vitro 
and in vivo.

The experiment showed that cadmium could activate the 
mitochondrial-mediated intrinsic apoptosis pathway and 
JNK (c-Jun N-terminal kinase), extracellular signal-reg-
ulated kinase (ERK), and p38 MAPK (mitogen-activated 
protein kinase) pathways to reduce cell viability and increase 
apoptosis rate [88]. Meanwhile, cadmium could also induce 
hepatocyte apoptosis and tissue damage through inflamma-
tory reaction [89]. Even at very low lead concentrations, Pb 
was equally toxic to monocytes and macrophages, which 
shows a decline in cell viability and an increase in the num-
ber of apoptotic cells [90]. Zhou also found that lead could 
increase the expression of PPARγ and stimulate the cleav-
age of caspase-3 and PARP to induce cytotoxicity [91]. In 
addition, the mRNA and protein levels of apoptosis- and 
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autophagy-related genes were significantly increased in cells 
exposed to Arsenic trioxide (As2O3) [92]. Inorganic arsenic 
(As3+) could exert its cytotoxicity in neuronal cells through 
downstream regulated autophagy-dependent apoptosis path-
way via Akt inactivation/AMPK activation, ultimately lead-
ing to cell death [93]. To sum up, apoptosis is one of the 
mechanisms of heavy metals induced toxicity as well.

Immunologic Injury

Mycotoxins also have immunotoxicity, which seriously 
affects the immune function of the body. It was found that 
ZEA could induce T lymphocyte apoptosis through exces-
sive activation of MAPK pathway [94]. Islam also found 
that ZEA could reduce the level of IgM and tumor necro-
sis factor (TNF)-ɑ, and increase the level of IgE and inter-
leukin (IL)-6 in vivo. In addition, ZEA could also induce 
splenocyte apoptosis by regulating the ratio of Bax to Bcl-2 
[95]. Recent studies have also shown that ZEA could also 
attenuate macrophage-mediated innate immunity by reduc-
ing LPS-activated macrophages’ production of pro-inflam-
matory mediators, cytokines, and NLRP3 inflammasome 
[96]. At the same time, AFB1 could induce the increase of 
inflammatory cytokine interferon (IFN)-γ, IL-1β, as well as 
the decrease of anti-oxidant enzyme activity to cause dam-
age to intestinal immune function and barrier function of 
broilers [97]. Mycotoxins can also cause atrophy and fail-
ure of immune organs and other histopathological changes 
[98]. Khan et al. significantly detected leucopenia and the 
decrease of IgY and IgA concentrations in serum, as well 
as the weightlessness of thymus, spleen, and bursa in chicks 
after OTA exposure [99]. To sum up, mycotoxin exposure 
can induce immunosuppression.

For heavy metals, heavy metal poisoning can also cause 
a strong immunosuppressive reaction in the body. Qu found 
in the study that cadmium exposure could trigger oxidative 
stress and obvious pathological damage in spleen tissue 
[100]. At the same time, cadmium exposure significantly 
inhibited the phagocytic activity of chicken peritoneal mac-
rophages, and caused the increase of apoptosis, accumula-
tion of reactive oxygen species, morphological changes, and 
other pathological damage, and promoted the transcription 
of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-ɑ) 
in macrophages under the stimulation of LPS [101]. Simi-
larly, lead treatment also significantly inhibited the activities 
of SOD, GPX, and CAT and increased the accumulation 
of nitric oxide (NO) and MDA to induce oxidative stress 
and activate MAPK/NF-ĸB signal pathway to cause splenic 
necrosis [102]. Arsenic can disrupt lymphocyte morphol-
ogy, reduce cell viability, cause abnormal proportions of T 
lymphocyte subsets, and induce regulatory T cell (Tregs) 
dysfunction to cause immune damage [103]. Liu et al. found 
that chickens exposed to arsenic showed a reduced IFN-γ/

IL-4 ratio and an increased IL-17 level, which indicated an 
imbalanced immune response in vivo [104]. In conclusion, 
heavy metals can induce immune changes in the body.

Histological Injury

Mycotoxin poisoning also has significant effects on histo-
morphology. DON exposure can significantly reduce intes-
tinal villus height and increase recess depth [105]. Popescu 
found that local necrosis, sinus dilatation, and inflammatory 
parenchyma infiltration occurred in the liver of piglets fed 
the basic diet contaminated with the mixture of OTA and 
AFB1 [106]. In the livers of piglets exposed to fumonisin, 
scattered necrosis, swelling, and scattered focal hyperplasia 
of hepatocytes were observed. Meanwhile, mild focal inter-
stitial lymphoid tissue cell infiltration were shown in the 
lung and mild focal fibrosis were founded in visceral pleura 
[107]. To sum up, mycotoxin poisoning can induce tissue 
necrosis, inflammatory cell infiltration, and focal prolifera-
tion and so on.

The study found that with the increase of dietary cad-
mium supplement, the liver tissue of laying hens was sig-
nificantly damaged. That is, liver tissue had periportal 
fibrosis, bile duct hyperplasia, and periportal inflamma-
tory cell infiltration [108]. In the testis of lead-exposed 
chickens, obvious gaps were found between convoluted 
seminiferous tubules, and some convoluted seminiferous 
tubules, basement membrane, and blood testis barrier were 
damaged. The reproductive epithelium became thinner, the 
number of spermatogenic cells decreased significantly, the 
nucleus of spermatogenic cells shrank, and a large num-
ber of swollen mitochondria and autophages could be seen 
[46]. Sections of the arsenic-induced cardiotoxicity group 
contained a variety of lesions, including extensive necro-
sis, inflammatory cell infiltration, cytoplasmic vacuola-
tion, minor fibrous swelling, soft interstitial edema, and 
muscle fiber loss and so on [109]. In conclusion, heavy 
metals can lead to significant pathological changes in tis-
sue morphology.

Detoxification Mechanism of Selenium Yeast 
to Mycotoxin Poisoning

In modern farming, mycotoxins are likely to be inadvertently 
ingested by the body, so safe, efficient, and novel detoxifica-
tion methods are crucial. To date, much research has been 
conducted in this regard, and because detoxification pro-
cesses are often accompanied by the loss of feed palatability 
and nutritional value, the addition of protective nutrients or 
additives is a good way to reduce mycotoxin toxicity. It has 
found that selenium has a certain protective effect on the 
oxidative damage caused by mycotoxin poisoning. However, 
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because the use of inorganic selenium often brings potential 
harm, further research on the detoxification mechanism of 
selenium yeast to mycotoxin poisoning can be used to solve 
this part of the problem (see Table 1).

Anti‑inflammatory and Anti‑oxidation

ROS, MDA, GSH-Px, and SOD are the key indicators of 
the overall antioxidant capacity of the body. As a result of 
selenium is an important component of GSH-Px in the body, 
and antioxidant enzymes are widely found in the immune 
system, selenium also has a certain role on inflammatory 
factors. Zhou et al. found that T-2 toxin resulted in signifi-
cantly higher levels of IL-6, IL-1β, and TNF-α in serum and 
cartilage [118]. Meanwhile, the ROS levels of T-2 toxin were 
decreased after treatment with organic selenium [119]. It has 
been reported that selenium-rich yeast could reverse the lev-
els of cytokines IFN-γ, IL-10, IL-6, and IL-1β by inhibiting 
TLR4/MYD88 signaling and prolonging NF-ĸB signaling, 
to antagonize the oxidative stress and inflammation induced 
by OTA exposure, and reduce intestinal pathological dam-
age [110]. Similarly, selenium-rich yeast also can detoxify 
AFB1-induced toxicity. That is, SY could significantly 
improve the antioxidant capacity, IL-2, and IFN-γ content, 
and increase the IL-2, IFN-γ, and GSH-Px1 mRNA levels 
[113]. Selenium could also reduce DON-induced oxidative 
damage by increasing glutathione peroxidase activity [120]. 
In addition, the increase of MDA level and the decrease of 
GSH-Px and SOD content in serum caused by ZEA expo-
sure also returned to the normal level after treatment with 

selenium-enriched yeast [115] In view of this, selenium 
yeast can inhibit oxidative stress and inflammatory reaction 
by regulating the activation of signal pathways, the levels of 
antioxidant enzyme, and the content of inflammatory factors 
caused by mycotoxin poisoning.

Anti‑apoptosis

Similarly, selenium deficiency could also aggravate oxida-
tive stress injury induced by AFB1 via reducing the level 
of antioxidant enzymes, upregulating apoptosis genes (Cas-
pase-3 and Caspase-9) and downregulating anti-apoptosis 
genes and several selenium proteins [121]. After adding 
selenium yeast, the cell survival rate could be increased by 
10 times, and the cells could be effectively protected from 
AFB1-induced killing [122]. In addition, selenium yeast 
could also significantly improve the expression of apopto-
sis-related genes in OTA poisoning, showing anti-apoptotic 
effects in vivo and in vitro. For chicken, cell apoptosis and 
oxidative damage induced by OTA exposure could also 
return to normal levels after the use of selenium yeast [111]. 
The main mechanism is that SY could not only reverse the 
decrease of antioxidant enzyme activity induced by OTA, 
but also protect the decrease of Bcl-2 protein level and the 
increase of Caspase-3 and Bax protein expression by acti-
vating Nrf2/Keap1 and PI3K/AKT signaling pathways, so 
as to restore normal kidney and liver conditions [112]. For 
ZEA exposure, Long et al. found that selenium yeast could 
inhibit the apoptosis and testicular damage in germ cells 
by enhancing the antioxidant capacity and changing the 

Table 1   Mechanism of selenium yeast on mycotoxins poisoning

Mycotoxins Site of injury Protective mechanism of selenium yeast Ref.

OTA Broiler cecum Regulates TLR4/MYD88 signal pathway, inhibits NF-ĸB expression, and increases the 
expression of tight junction related genes; significantly reduces MDA and IL-1β, IL-6 and 
IFN-γ level, increases GSH, SOD activity, and IL-10 level,  and antagonizes the intestinal 
barrier damage

[110]

Broiler liver, kidney Reduces the content of ALT and MDA induced by OTA, and reverses the reduction of 
T-AOC, GSH-Px, and T-SOD, improves the activity of antioxidant enzymes; activates 
PI3K/AKTNrf2/Keap1 signaling pathway to improve the antioxidant defense system, sig-
nificantly upregulates the gene expression of Nrf2 and its target genes

[111, 112]

AFB1 Mouse immune system Improves the growth performance, antioxidant capacity, IL-2 and IFN-γ content, increases 
IL-2 and IFN-γ and GSH-Px1 mRNA levels

[113]

Duck immune system Increases lymphocyte proliferation and acidity α—the positive rate of naphthyl acetate 
esterase (ANAE+); improves the levels of IL-2 and IL-6, and reverses the adverse effects of 
AFB1 on relative immune organ weight

[114]

ZEA Mouse liver, kidney Reduces ALT, AST, urea, and uric acid; increases the levels of MDA, GSH-Px, and SOD in 
serum; and reverses the damage caused by ZEA

[115]

Mouse testis Improves the decrease of epididymal index and testicular index; decreases the content of 
MDA in testis, increases the activities of SOD and GPx, reverses the increase of mRNA 
expression levels of Bax and caspase 3 and mRNA expression levels of BCL2, vimentin 
and cadherin 2

[116]

DON Broiler immune system Increases the number of CD3 (+), CD4 (+), CD8 (+) T cells and IgM (+) B cells in the 
blood

[117]
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expression levels of apoptosis-related genes in mice as well 
[116]. At the same time, it was found to prevent apoptosis 
and oxidative stress caused by ZEA through inhibiting ER 
stress [123]. In conclusion, selenium yeast can inhibit the 
apoptosis caused by mycotoxins via significantly reducing 
oxidative stress and regulating apoptosis-related proteins.

Enhance the Immune Function

In the study of the antagonistic effect of selenium on myco-
toxins, it was also found that selenium could enhance the 
immune function. For example, dietary selenium could 
protect from AFB1-induced humoral or mucosal immune 
function damage, as well as restoring the content of IgM, 
IgG, IgA, and sIgA [17]. Furthermore, Huang et al. found 
that the usage of organic selenium increased the production 
of T cell proliferation and interleukin-2 in vivo to mitigate 
the immunotoxicity of AFB1 [124]. Another experiment 
showed that adding selenium yeast to the diet could coun-
terbalance the adverse effects of duck AFB1 poisoning on 
growth performance and immunity by improving the levels 
of IL-2 and IL-6 and the relative weight of immune organs 
[114]. As far as DON is concerned, the diet supplemented 
with selenium yeast could increase the induced reduction 
of B lymphocytes and T lymphocytes in blood [117]. Of 
course, the enhanced immune function of selenium yeast is 
still related to its antioxidant activity [125]. These studies 
could suggest that selenium yeast may be a promising sup-
plement to protect humans and animals from the decreased 
immunity induced by mycotoxins.

Among the numerous challenges facing the breeding 
industry, nutritional supplementation can be used as an 
effective and safe way to address the problem of exposure to 
mycotoxins in livestock and poultry. As a potential antioxi-
dant, a trace element selenium is an essential component of 
several essential enzymes in the body. Owing to high safety, 
high bioavailability, and low toxicity of selenium yeast, it 
can be used as a good choice for mycotoxin detoxification. 
This may help in the future to improve both human and ani-
mal health, while reducing the inevitable economic losses.

Detoxification Mechanism of Heavy Metal 
Poisoning

Heavy metal poisoning is a common public health problem. 
Chelation therapy has been the main treatment for heavy 
metal poisoning; i.e., chelating agents combine with metal 
ions to form chelators to enhance their clearance from the 
body. However, metal chelating agents have some disadvan-
tages, which can redistribute heavy metals from other tissues 
to the brain, increasing its neurotoxicity and other adverse 
effects [126]. Therefore, it is very momentous to propose a 

safe and effective new chelating agent. Studies have found that 
selenium has antioxidant properties and can prevent animals 
and humans from the harm of heavy metals [127–130]. Due to 
the adverse effects of inorganic selenium on the body, further 
research on the detoxification mechanism of selenium yeast 
against heavy metals poisoning provides the future direction 
to solve this problem (see Table 2).

Anti‑inflammatory and Anti‑oxidation

The anti-inflammatory and antioxidant effects of sele-
nium yeast can also combat the toxic damage of heavy 
metals. Selenium yeast can protect Cd-induced oxidative 
damage by inhibiting the decrease of antioxidant enzyme 
activity caused by cadmium exposure, and downregu-
lating MAPK pathway and improving caspase8 mRNA 
expression level [131]. Chen et al. found that selenium 
yeast could also inhibit the expression of receptor inter-
acting protein-1 (RIP1), receptor interacting protein-3 
(RIP3), and mixed lineage kinase domain–like protein to 
significantly block the accumulation of cadmium in the 
kidney, and inhibit oxidative stress and reduce cadmium-
induced necrosis by regulating PTEN (phosphatase and 
tensin homolog deleted on chromosome 10)/PI3K/AKT 
signal pathway induced by miR26a-5p [132]. Moreover, 
selenium yeast also has an antagonistic effect on cad-
mium-induced inflammatory damage. That is, selenium 
yeast could reverse the increase of inflammatory fac-
tors and heat shock proteins (HSPs) caused by cadmium 
exposure to reduce the accumulation of cadmium in the 
liver [133]. For chicken skeletal muscle inflammation 
caused by excessive lead poisoning, selenium yeast could 
inhibit Ras/ERK pathway as well as the content of IL-1β, 
IL-4, IL-10, IFN-γ, and other inflammatory factors to 
alleviate it [136]. Finally, SY may also have a protective 
effect against the Cr6+-induced immune suppression and 
inflammation response by regulating the NF-ĸB signaling 
pathway [137]. Therefore, according to the above studies, 
SY can be used as a potential therapeutic agent for heavy 
metal–induced inflammatory damage.

Anti‑apoptosis

Selenium also has some antagonistic effects on apoptosis 
induced by heavy metal poisoning. Cadmium exposure 
induced the increase of Bax, caspase-9, p53, cytochrome c 
(Cyt-c) mRNA levels, Bax/Bcl-2 ratio, caspase-3 mRNA, 
and protein levels [139]. However, the application of sele-
nium yeast was found to reduce the cadmium-induced apop-
tosis in chicken liver cells by increasing the antioxidant lev-
els and the expression of selenoprotein [134]. At the cellular 
level, selenium yeast can also repair cadmium-induced DNA 
damage [135]. In addition, selenium yeast can also inhibit 
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the dysfunction and apoptosis caused by hexavalent chro-
mium. First, it can reduce the level of malondialdehyde and 
alleviate chromium-induced oxidative stress by increasing 
the level of superoxide dismutase and glutathione. Second, 
it can restore the expression of p53, Bax, Cyt-c, caspase-9, 
caspase-3, Bcl-2, and other genes induced by chromium to 
normal [138]. Overall, selenium yeast can alleviate heavy 
metal–induced cytotoxicity by inhibiting oxidative stress and 
reversing the protein expression levels of apoptosis-related 
genes. However, the more detailed mechanisms still need to 
be summarized through more studies.

Compared with traditional metal chelating agents, natural 
antioxidants are easy to obtain, are reasonable in price, and 
have few or no side effects [126]. Thus, they can be used 
as a new method to solve heavy metal poisoning. Selenium 
yeast is a good choice for new chelators due to its potent 
antioxidant activity, high safety, high bioavailability, and low 
toxicity. This provides new ideas for the future field of heavy 
metal toxicology research.

Summary

This review mainly presents the protective effect of selenium 
yeast on effectively reducing the toxicity of animal mycotox-
ins and heavy metals, which shows that selenium yeast has a 

certain detoxification effect. Selenium yeast can effectively 
alleviate oxidative damage by regulating different signal path-
ways, improving the activity of antioxidant enzymes, revers-
ing the content of inflammatory factors, regulating the protein 

Table 2   Mechanism of selenium yeast on heavy metals poisoning

Heavy metals Injury site Protective mechanism of selenium yeast Ref.

Cd Layers  kidney Significantly increases the activities of SOD, GSH-Px, and CAT in serum and liver, 
decreases the level of MDA to inhibit oxidative stress; reverses the expression of 
MLKL, RIp1, RIP3, ERK, JNK, and P38 mRNA induced by Cd, and increases the 
expression level of caspase8 mRNA

[131]

Broiler  liver Inhibits the expression of RIP1, RIP3, and MLKL, prevents the accumulation of cadmium 
in the kidney to reduce necrosis; activates the expression of miR-26a-5p, downregulates 
the expression of PTEN, upregulates PI3K/AKT signal pathway, to inhibit oxidative 
stress; specifically reduces the expression level of HSP60, HSP70 and HSP90

[132]

Layers liver Significantly reduces cadmium accumulation, NO production,  inducible nitric oxide syn-
thase (iNOS) activity, inflammatory factors, HSPs (HSP 27, 40, 60, 70, and 90) mRNA 
and protein expression levels induced by cadmium to inhibit inflammation

[133]

Layers liver Downregulates the levels of NLRP3, Caspas-1 and IL-1 β and IL-18, restores antioxidant 
level and selenoprotein expression level, and reduces hepatocyte apoptosis

[134]

Porcine jejunal epithelial cells Significantly improves cell viability and protects cells from cadmium-induced DNA 
breakage and apoptosis

[135]

Pb Broiler skeletal muscles Reverses the increase of nitric oxide concentration and iNOS activity induced by pb, and 
reduces the expression level of IL-1β, IL-4, IL-10, IFN-γ

[136]

Cr Broiler spleen Increases the index of spleen organs; increases the level of SOD and GSH, reduces the 
content of MDA, and alleviate the histopathological damage; significantly increases the 
content of T-globulin IgA, IgM, and IgG, and reduces the expression of proinflamma-
tory cytokines

[137]

Broiler kidney Alleviates the morphological and structural damage of renal tubules and glomeruli, and 
reduces the organ index, creatinine level and blood urea nitrogen level of the kidney; 
increases the levels of SOD and GSH, reduces the level of MDA to alleviate oxidative 
stress; recovers the levels of p53, c-Myc, Bax, Cyt-c, caspase-9, and caspase-3

[138]

Fig. 3   Detoxification mechanism of selenium yeast on mycotoxins 
and heavy metals poisoning [140]. The symbol “→” indicates activa-
tion and “⟞” indicates inhibition. The red arrow indicates that the 
concentration or level of the indicator increases or rises, while the 
green arrow indicates that the concentration or level of the indicator 
decreases or falls
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expression of apoptosis-related genes, and reducing the accu-
mulation of mycotoxins and heavy metals in the body. The main 
detoxification mechanism is as follows, as shown in Fig. 3.

Inevitably, now we live in a world of feed and food 
safety crises. Instability and inconsistency in the agricul-
tural and feed industries are creating uncertainty around 
the world. Whether mycotoxins or heavy metals, long-
term exposure to feed and food can cause serious health 
problems and even death in animals. Under normal cir-
cumstances, the symptoms of acute poisoning are more 
obvious, but often those with low concentration of chronic 
toxin poisoning not only the symptoms of slow, but also 
bring greater harm to the body. With the continuous devel-
opment of industrial and agricultural technology, many 
studies have found that the traditional detoxification meth-
ods of mycotoxin and heavy metal poisoning have many 
shortcomings. They not only can not completely eliminate 
the toxicity of these toxins, but also have serious adverse 
effects on the body. Therefore, it is important to develop a 
new antidote to avoid these problems.

Through the analysis of the toxic mechanism of mycotox-
ins and heavy metal poisoning through a number of research 
data, it is found that they mainly play toxic effects by causing 
oxidative stress in the body. Therefore, adding antioxidants 
to feed and utilizing their powerful antioxidant properties 
can play a protective role for animal body. At present, a 
variety of antioxidants such as vitamin E and vitamin C, 
proanthocyanidins, curcumin, and some trace elements such 
as selenium and zinc are the focus of research.

Since selenium can affect various diseases by improving 
antioxidant capacity and regulating immune cells as well 
as pathogens such as viruses, selenium supplements may 
become a highly effective supplement for treating vari-
ous diseases, especially the body’s sensitivity to selenium 
supplementation and the relatively low price of selenium 
preparations, which may bring new ideas for the clinical 
use of selenium. According to previous studies, inorganic 
sodium selenite can detoxify toxic substances in the body. 
However, because of its high toxicity and low utilization 
rate, the use of inorganic sodium selenite has been banned 
in some developed countries. It has been found that sele-
nium yeast, a highly active organic selenium source with 
low toxicity, not only has a high absorption rate, but also 
can store selenium after meeting the physiological needs 
of the body. Therefore, the use of selenium yeast as a new 
antidote to fungal toxins and heavy metal poisoning will 
be more safe and efficient detoxification, will have better 
protection against oxidative damage, and further improve 
the body’s immune function. At present, although there 
are many studies on the effect of selenium yeast on reduc-
ing the toxicity of mycotoxins and heavy metals, its more 
detailed mechanism has not been fully obtained, so more 
experiments are still needed to analyze.
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