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Abstract: The study aims to investigate the likelihood of Zernike polynomial being used for re-
constructing rabbit corneal surfaces as scanned by the Pentacam segment tomographer, and hence
evaluate the accuracy of corneal power maps calculated from such Zernike fitted surfaces. The study
utilised a data set of both eyes of 21 rabbits using a reverse engineering approach for deductive
reasoning. Pentacam raw elevation data were fitted to Zernike polynomials of orders 2 to 20. The
surface fitting process to Zernike polynomials was carried out using randomly selected 80% of the
corneal surface data points, and the root means squared fitting error (RMS) was determined for the
other 20% of the surface data following the Pareto principle. The process was carried out for both
the anterior and posterior surfaces of the corneal surfaces that were measured via Pentacam scans.
Raw elevation data and the fitted corneal surfaces were then used to determine corneal axial and
tangential curvature maps. For reconstructed surfaces calculated using the Zernike fitted surfaces,
the mean and standard deviation of the error incurred by the fitting were calculated. For power maps
computed using the raw elevation data, different levels of discrete cosine transform (DCT) smoothing
were employed to infer the smoothing level utilised by the Pentacam device. The RMS error was
not significantly improved for Zernike polynomial orders above 12 and 10 when fitting the anterior
and posterior surfaces of the cornea, respectively. This was noted by the statistically non-significant
increase in accuracy when the order was increased beyond these values. The corneal curvature
calculations suggest that a smoothing process is employed in the corneal curvature maps outputted
by the Pentacam device; however, the exact smoothing method is unknown. Additionally, the results
suggest that fitting corneal surfaces to high-order Zernike polynomials will incur a clinical error in
the calculation of axial and tangential corneal curvature of at least 0.16 ± 01 D and 0.36 ± 0.02 D,
respectively. Rabbit corneal anterior and posterior surfaces scanned via the Pentacam were optimally
fitted to orders 12 and 10 Zernike polynomials. This is essential to get stable values of high-order
aberrations that are not affected by Zernike polynomial fittings, such as comas for Intracorneal Ring
Segments (ICRS) adjustments or spherical aberration for pre-cataract operations. Smoothing was
necessary to replicate the corneal curvature maps outputted by the Pentacam tomographer, and
fitting corneal surfaces to Zernike polynomials introduces errors in the calculation of both the axial
and tangential corneal curvatures.
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1. Introduction

The topography of both the anterior and posterior corneal surfaces can be indirectly
measured by capturing cross-sectional images using a corneal tomographer. The process
includes edge detection and surface reconstruction in order to generate three-dimensional
(3D) surfaces from two-dimensional (2D) images. Since what is being measured is not
exactly what is being offered by the tomography machine end-user software, digital signal
processing (DSP) methods are usually used to reconstruct the eye surface from a finite
number of 2D images. The process could also include surface fitting, smoothing and many
other approximations. In this context, the Pentacam rotating camera system employs a
Scheimpflug system to provide non-invasive images of the anterior and posterior surface
raw elevation as cross-sectional views [1]. There are 25 images with a 14.4◦ gap in standard
settings and 50 images with a 7.2◦ gap in high-resolution (HR) settings. Once images are
acquired, these gaps are bridged. Hence, surfaces are processed into corneal feature maps
that describe the anterior surface, posterior surface, corneal thickness (pachymetry) and
axial/tangential (sagittal) curvatures that vary across the cornea [2]. It is not apparent to the
end-user how surface data gaps are bridged and as maps are calculated from the bridged
posterior and anterior surfaces, it is key that both researchers and users utilising this device
understand the processes that may have been employed. Then, researchers will be able
to consider the effect of impeded DSP processes when using tomography-based corneal
surface measurements in treatment plans. Additionally, corneal tomography measurements
are vital in the diagnosis of keratoconus, monitoring of ectasia progression, and pre and
post-surgical assessments [3]. It is, therefore, important that DSP approximations and
possible associated induced errors are fully understood.

When a corneal surface is fitted to a Zernike polynomial of any order, it is expected
to achieve a fit with residuals unless the surface was already fitted to one of the same
orders. As an example, when a right rabbit corneal surface was fitted to a 3rd order
Zernike polynomial as in Figure 1, not all surface components were fitted, and considerable
residuals remained. This is because adding up the Zernike polynomial terms for this fit
(Figure 2) does not fully represent the original surface perfectly.
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Figure 1. Example of reconstructing anterior corneal surface (a) by using third order Zernike polyno-
mial to get the fitted surface in (b); however, a surface residual remains without fit in (c). Arithmeti-
cally, the height of the anterior surface (a) equals the height of the fitted surface (b) plus the height of
the residual surface (c).

In our previous work, Wei et al. [4] conducted an assessment of the capability of
Zernike polynomials to correctly reconstruct human corneal surfaces measured by different
anterior eye tomography measurement devices, including Pentacam. Their results sug-
gested that Zernike polynomials of orders 12 and 10 provided optimal fitting to the anterior
and posterior surfaces, respectively, for healthy and keratoconic human corneas.
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Figure 2. The process of fitting the anterior corneal surface, shown in Figure 1, using 3rd order
Zernike polynomial with ten terms. When these terms are added, they reconstruct the surface
in Figure 1b.

In this animal-based study, in addition to investigating the optimal Zernike polynomial
fitting orders on rabbit eyes, further analysis was conducted to improve understanding of
any assumptions that are used in the calculation of the corneal curvature maps outputted
by the Pentacam corneal tomographer. The potential loss in accuracy that is incurred when
Zernike polynomial fitted surfaces are used in the calculation of corneal curvature maps
was then investigated. This work further improves understanding of the inner digital
signal processing workings of the Pentacam device, and the limitations of Zernike fitted
surfaces, which will directly enhance both the clinician and the researcher’s ability to use
the data appropriately.
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2. Materials and Methods
2.1. Animal Subjects

Twenty-one Japanese white rabbits (2–3 kg) from the Animal Breeding Unit at Wenzhou
Medical University were used in this study in the presence of a veterinarian. All rabbits
were treated in agreement with the Association for Research in Vision and Ophthalmology
(ARVO) Statement for the use of Animals in Ophthalmic and Vision Research and with the
approval of the Laboratory Animal Ethics Committee of Wenzhou Medical University (code:
wydw2021-0065). The rabbits had their IOP assessed (mean ± SD = 12.4 ± 1.7 mmHg) af-
ter capturing the Pentacam corneal images, using a Tono-pen tonometer (Reichert, Inc.,
New York, NY, USA) to ensure the eyes were not subjected to elevated IOP. Pentacam mea-
surements were performed in a dim-light room using an adjustable height table and manual
positioning to control the rabbit eye location during the eye scanning process, Figure 3.
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Figure 3. Positioning of a rabbit eye during the Pentacam eye scanning process at Wenzhou Medi-
cal University.

2.2. Data Collection

Clinical tomography data has been collected from both eyes of rabbits using Pentacam
(OCULUS Optikgeräte GmbH, Wetzlar, Germany). Raw elevation data collected by the
Pentacam for the anterior and posterior surfaces were analysed using a custom-built
MATLAB code (MathWorks, Natick, MA, USA). Data were extracted in a cloud of 3D points
at locations on a squared mesh grid in both nasal-temporal and superior-inferior directions.
The grid considers locations from −7 to 7 mm in both of the principal directions. Raw
elevation values that were not part of the cornea were disregarded in this study.

2.3. Corneal Surface Fitting

The quality of fitting Zernike polynomials to a corneal surface was quantified by the
root mean squared (RMS) error; the less error, the more accuracy. The term “error” in
this context signified the difference in the raw elevation between the clinically measured
corneal surface elevation and the Zernike polynomial fitted surface. Consider a surface
grid centred around the corneal apex, then the radius of each point on this grid, ρg, is
calculated as

ρg =
√

Xg2 + Yg2, (1)

where Xg and Yg represent the coordinates of each of the grid points.
A normalised form ρ of the radius ρg is required for Zernike fit, and can be calculated as

ρ =
ρg

ρmax
, (2)
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where ρmax is the maximum radius observed in the data, which in this case was set to
5 mm to ensure that the data were in the Pentacam’s most reliable measurement area, as
peripheral measurements are less reliable. Any surface data beyond this maximum radius
were disregarded in these analyses. The Zernike raw elevation Zm

n (ρ, ϕ) is given by [5]

Zm
n (ρ, ϕ) =

{
Rm

n cos(mϕ) m > 0
Rm

n sin(mϕ) m < 0
, (3)

where ϕ is the azimuthal angle of the coordinates Xg and Yg, n is the radial order of the
polynomial, m an azimuthal integer index that varies from −n to n for even (m-n) and
equals 0 for odd (n-m) and Rm

n is a radial polynomial, defined as

Rm
n (ρ) =

n−m
2

∑
k=0

(−1)k(n − i)!ρn−2k

k!((n + m)/2 − k)!((n − m)/2)!
(0 ≤ ρ ≤ 1), (4)

Zernike raw elevation (height) term Zm
n (ρ, ϕ) was fitted to the anterior and posterior

corneal surfaces exported by the Pentacam software. The RMS error was calculated for
every fit as,

RMS =

√√√√∑
q
i=1

(
Zi f it − Zi sur f

)2

N
, (5)

where Z f it is the Zernike fitted surface height and Zsur f is the measured raw elevation
surface height and N is the total number of data points considered in the RMS calculation.
Pentacam surface data grid is 141 by 141 spaced by 0.1 mm with around 8840 valid
measured data points (depending on the quality of measurement) out of the total of
19881 grid points (44.5%). During the fitting process, 80% of the data points were randomly
selected for polynomial fitting, and the other 20% were used for the RMS error calculation
following the Pareto principle [6]. Using a different set of data points in validation is
essential as validating on the original set used in the fitting process overfits this set and
leads to misleading small RMS values. Right and left eyes were always treated separately
to avoid any possible bias in the results [7,8], and no superior-inferior mirror-imaging data
merging techniques were applied in the current study.

It was previously identified that the optimal Zernike order for the anterior surface
was 2 orders higher than for the posterior surface [4]. This was considered in this analysis
by maintaining a two-order difference between the Zernike polynomials of the anterior
surface when compared to the posterior. For example, when fitting the anterior surfaces to
an order 5 Zernike polynomial, the posterior surface was fitted to one of order 3. Whilst
maintaining this rule, the order of the anterior surface was increased from 3 to 20 and
for each order, both the axial and tangential refractive power maps were calculated and
compared to the power of the original unfitted maps.

In order to evaluate the effect of fitting order selection in clinical practice, three high-order
aberration terms’ coefficients were selected for further investigation. Vertical and horizontal
commas are both being used in Intracorneal Ring Segments (ICRS) selection for Keratoconus
patients [9], and spherical aberration is being used for pre-cataract operations [10].

2.4. Corneal Refractive Power Estimates

The corneal refractive power P was calculated using the Gaussian optics formula [11,12]:

P =
ncornea − nair

Ranterior
+

naqueous − ncornea

Rposterior
− Tc

ncornea
× ncornea − nair

Ranterior
×

naqueous − ncornea

Rposterior
(6)

where the refractive indices of the air, nair, cornea, ncornea, and aqueous humour, naqueous,
were set to 1.0, 1.376 and 1.336, respectively, [13,14]; Ranterior and Rposterior represent the
instantaneous radii of curvatures of the anterior and posterior surfaces, respectively; and Tc
is the central corneal thickness. When analysing the raw Pentacam data, the central corneal
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thickness, Tc, the value measured by the Pentacam Scheimpflug system was employed.
When Zernike fitted corneal surfaces were considered, Tc was calculated by subtracting the
Z-axis value of the fitted corneal posterior surface from the fitted anterior surface at the
corneal apex. To find the overall refractive power, both the axial and tangential versions of
the radii of curvature were considered. Axial curvature Ka =

1
Ra

and tangential curvature
Kt =

1
Rt

were determined using a custom-built MATLAB (MathWorks, Natick, MAJ, SA)
program following Klein’s methods [15] as in Equations (7) and (8), respectively;

Ka =
1

Ra
=

1
ρg

∫ ρ

0
Ktdρg =

dZg/dρg

ρg

(
1 +

(
dZg/dρg

)2
) 1

2
, (7)

Kt =
1
Rt

= Ka + ρg
dKa

dρg
=

d2Zg/dρg
2(

1 +
(
dZg/dρg

)2
) 3

2
. (8)

Corneal Ranterior and Rposterior in Equation (6) were substituted by either axial radius of
curvature Ra or tangential radius of curvature Rt depending on the type of the calculated
refractive power map. Z-coordinates were substituted by those of the anterior or posterior
surface, depending on the corneal surface where the curvature was being determined.
Refractive power errors due to surface Zernike polynomial fittings were calculated for the
central optic zone of the cornea up to 3 mm diameter, the average pupil size among normal
adults in daylight [16,17].

2.5. Smoothing

The axial and tangential power maps were smoothed using the robust discretised
smoothing spline method [18]. Different degrees of smoothing were applied using a positive
scaling parameter S, with higher S providing a smoother map. The method, which is based
on the discrete cosine transform (DCT), works with equally spaced data in two dimensions.
As the degree of smoothing is influenced by the smoothing parameter S, it is appropriate
to adjust the value of S to achieve the best smooth estimate of the original data whilst also
avoiding over-smoothing, where some data features disappear, or under-smoothing, where
the digital noise affects the quality of the data. In the current study, S was fixed to 5 with
axial maps and 15 with tangential maps, based on the preliminary investigations carried
out in [19,20].

3. Statistical Analysis

Statistics and Machine Learning Toolbox of MATLAB (MathWorks, Natick, MA, USA)
was used to perform the statistical analysis. The null hypothesis probability (p-value) at
a 95% confidence level was calculated to compare each set of RMS errors obtained when
a corneal surface was fitted to Zernike polynomials of successive orders. Initially, the
one-sample Kolmogorov–Smirnov test was used to make sure that each set of RMS errors
followed a normal distribution, and then the two-sample t-test was used to investigate the
significance between pairs of data to check whether they were significantly different. Using
the Pentacam squared grid of 141 points, nominally 19881 points were tested for each fitting
order. As t-tests require independence of the measures, and fellow eyes were not analysed
together in the current study, the two-sample t-test was deemed suitable to determine
whether there is a significant difference between the means of two data groups [21]. The
test was used several times in this study to evaluate the differences in RMSs for different
fitting orders when corneal surfaces and their refractive power were investigated.

4. Results

Zernike polynomials of different orders were fitted to the anterior and posterior
surfaces of the rabbit corneas, and the corresponding RMS was computed. The Kolmogorov–
Smirnov test, Figure 4, confirmed that p-values were under 0.05, indicating that the resulting
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fitting RMSs form normal distributions. From Figure 5, the anterior and posterior surfaces
of the rabbit cornea are best fitted to order 12 and 10 Zernike polynomials, respectively.
This is demonstrated in the RMS, which converges to a value close to 0 µm for orders
greater than these. The significance was computed for the RMS of successive polynomial
orders. This further highlighted the suggested Zernike polynomial orders, as for orders
higher than those aforementioned, the difference between consecutive order RMS values
became insignificant at a confidence level of 5% (p > 0.05). Following convergence of the
RMS error, there were residual errors of 0.54 and 0.49 µm for the anterior and posterior
surfaces, respectively, in the right eye population and 0.52 and 0.49 µm, respectively, in the
left eye population.
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Figure 4. The probability (p-value) of the null hypothesis indicates whether the data comes from a
standard normal distribution as a result of the Kolmogorov–Smirnov test.
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the first row. Results are shown separately for the right and left eyes. Statistical significance between
successive fitting orders RMS values is demonstrated in the second row where the two samples t-test
were used. The transient state orders show significant changes in power differences; however, steady
state orders show a stable change in power differences.

Refractive corneal power maps were produced by computing both the axial and
tangential curvature from the raw Pentacam elevation data and then smoothed using
varying degrees of smoothing, Figures 6 and 7. When applying different degrees of
smoothing to the axial curvature maps, it was noted that moving up to S = 6 gave a
good representation of the surface without missing any important features, as can be seen
by visually comparing smoothed maps to those produced by the corneal tomographer
software, Figure 8. If the same logic is applied to the tangential curvature maps, a smoothing
degree of S = 16 was visually identified to achieve a similar smoothness to that which is
shown in the maps generated using the corneal tomographer software, Figure 6.
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Figure 8. Curvature maps, as outputted by the Pentacam tomographer, for the same rabbit eye
reported in Figure 6 (yellow dashed rectangle) and Figure 7 (pink dashed rectangle).

Average central axial and tangential power differences were computed for posterior
and anterior corneal elevation data fitted to Zernike polynomial with different orders,
Figure 9. Average errors of the calculated power within the 3 mm central optic zone and
their standard deviations were then computed. The average errors in axial and tangential
refractive powers showed convergence at and after fitting order 12. Beyond this order,
the errors converged to 0.16 ± 0.01 D, 0.37 ± 0.02 D in the right eyes and 0.16 ± 0.01 D,
0.36 ± 0.03 D in left eyes for the axial and tangential curvature maps, respectively.

When vertical, horizontal commas and spherical aberration coefficients were tested
against the Zernike order fitting, fluctuations were observed on the values in low orders
(transient state), but once the order of fitting is equal or passes 12 and 10 for the anterior
and posterior surfaces, the values were stalled (steady state), (see Figures 10 and 11). Right
eyes aberrations were settled at 4.22 ± 0.33 µm, 3.71 ± 0.3 µm, and 7.89 ± 0.43 µm while
left eyes were settled at 3.74 ± 0.31 µm, 3.43 ± 0.29 µm and 7.42 ± 0.41 µm. Rates of change
in fitted values of Zernike cototients were observed by the first derivative of these values,
and the steady state was recognised when the rate of change was close to zero.
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Figure 9. The average difference between axial and tangential power for surfaces was generated
using different Zernike polynomial orders, and the power values were computed using the original
elevation data. Results only consider the central optic zone of the cornea (central 3 mm diameter).
The transient state orders show significant changes in power differences; however, steady state orders
show a stable change in power differences.
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Figure 10. Right eyes set, (a) Vertical coma Zernike coefficient (top) and its rate of change with the fit order
(bottom), (b) Horizontal coma Zernike coefficient (top) and its rate of change with the fit order (bottom),
(c) Spherical aberration Zernike coefficient (top) and its rate of change with the fit order (bottom).
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Figure 11. Left eyes set, (a) Vertical coma Zernike coefficient (top) and its rate of change with the
fit order (bottom), (b) Horizontal coma Zernike coefficient (top) and its rate of change with the fit
order (bottom), (c) Spherical aberration Zernike coefficient (top) and its rate of change with the fit
order (bottom).

5. Discussion

Rabbit eyes are frequently used for animal-based investigations of various ocular
applications because of their similarity in size to the human cornea, in addition to producing
consistent and repeatable results at a low cost [22] due to the ease of manipulation [23]. They
have been successfully used for assessing the implantation of intraocular lenses (IOL) [24],
inlay implantation [25], corneal stromal opacity [26], laser-based vision correction [27,28],
the complication of refractive surgery [29] and approving the safety of intrastromal laser
ablation [30,31]. Zernike polynomials are widely used to describe the shape of the corneal
surface through their terms and coefficients [5,32–34]. Using Zernike polynomial fitting,
rabbit eyes were reported to have lower refractive errors, when compared to human
eyes, but larger higher-order aberrations [35]. Geometrically, through the use of Zernike
polynomials, the corneal surface can be reconstructed from the combination of terms that
have a physical meaning directly connected to the characteristics of the ocular surface [36].
Optically, a light wavefront at a specific time instance is a surface that perpendicularly joins
all light rays’ points generated by the same source and have the same phase. Ideally, the
wavefront must be a perfect sphere centred on the source point if the light is not refracted.
Zernike polynomials are widely used to describe the light wavefront over the surface of a
circular pupil, hence used in showing the eye’s behaviour in spread-out light rays or the
so-called eye’s aberrations. Zernike polynomials have the ability to dismantle the optical
aberrations to individual components, hence, the ability to help to determine vertical and
horizontal commas in addition to spherical aberration.

When measuring corneal tomography, the Pentacam uses a Scheimpflug system to
take elevation measurements at several equally spaced meridians around the eye [1]. To
obtain values for points in between these meridians, surface fitting or interpolation must
be used. In this study, corneal tomography data measured using Pentacam were obtained
from twenty-one rabbits and analysed in order to identify the optimal order of Zernike
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polynomials. The current study confirms the Pentacam-based measurement findings of
Wei et al.’s earlier study [4] by showing that the anterior and posterior elevation data
outputted by the Pentacam tomography device are optimally fitted to Zernike polynomials
of order 12 and 10, respectively. This behaviour has been previously reported with both
healthy and keratoconic eyes with human participants [4], and now in animal eyes as
reported in this study.

When compared to the raw elevation data, even with optimal polynomial fitting,
there were residual errors of 0.54 µm and 0.49 µm for the anterior and posterior surfaces,
respectively, in the right eye population and 0.52 µm and 0.49 µm, respectively, in the left
eye population. For a 10 mm diameter fit of the cornea, these errors are far lower than
those achieved when using a conic-fit, which was reported as 21.18 ± 11.1 µm by [37,38]
performed a similar study whereby they investigated the effect of varying the order of
meridional polynomial fitting on the RMS error. For a 10.7 mm diameter, their data
suggested that optimal fits are obtained with fit orders of 8 or higher. These orders were able
to achieve an RMS of roughly 0.08 µm, far lower than observed in this study. These results
suggest that, despite the usefulness of Zernike polynomials when describing corneal shape,
meridional polynomials provide the greatest accuracy, relative to the raw elevation data.

Axial and tangential power maps computed using the raw elevation data contain noise
and require smoothing for effective visualisation. Digital noise is systematically generated
while processing discrete data collected during the eye scanning process. For this reason,
an investigation into the impact of smoothing the resulting refractive power maps was
conducted, to reduce the noise, whilst ensuring no key information is lost in the process.
This analysis highlighted that the tangential curvature maps were far more sensitive to
digital noise than axial refractive power maps (Figures 6 and 7). Tangential curvature is
calculated using the second derivative of the raw elevation data; however, axial curvature is
calculated using the first derivative. This exercise demonstrated that the second derivative
creates more digital noise (less signal-to-noise ratio) than the first derivative and, as a
result, tangential maps need more smoothing than axial maps. The data suggests that the
curvature map displayed by the tomographer software is smoothed. This is evident in the
maps with minimal smoothing where the digital noise, systematically generated during
the calculations, drastically reduces the practicality of using them for diagnosis.

Axial and tangential power maps were then computed using corneal surface data
obtained from Zernike polynomials of varying order. The results show that reconstructing
the corneal surface through the use of Zernike polynomials induces errors in the calculation
of corneal refractive power. This is due to the loss of accuracy during the fitting process
itself and the existence of the systematic digital noise associated with calculating both
axial and tangential curvatures. Therefore, getting the same refractive corneal power from
a Zernike reconstructed surface cannot be achieved. Users need to acknowledge that
reconstructing refractive power maps through Zernike polynomials will incur a loss in a
portion of these powers as a residual error. However, they can minimise these residual
powers by using Zernike polynomials with orders of at least 12 and 10 when fitting the
anterior and posterior surfaces, respectively. Even with these optimal Zernike orders, there
will still be errors of around 0.16 D and 0.36 D when computing the axial and tangential
power, respectively, although these errors are not clinically significant.

6. Conclusions

The current study evaluated Zernike fitting in rabbit corneas using a reverse engi-
neering approach in attempts to utilise deductive reasoning to understand how Pentacam
device software performs. The result confirms that the optimal Zernike orders for fitting
to Pentacam-measured tomography data are 12 and 10 for the anterior and posterior sur-
faces, respectively. Axial and tangential power maps were computed using raw elevation
and Zernike polynomial fitted data. In doing so, the necessity of smoothing for practical
purposes was demonstrated. It was also demonstrated that reconstructing corneal sur-
faces using Zernike polynomials induces a residual error in the calculation of axial and
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tangential refractive power. The aforementioned optimal Zernike polynomial orders were
able to minimise this error, although residual errors of 0.16 and 0.36 D were still present
for the axial and tangential curvature maps, respectively. Each of these results is impor-
tant when considering the precision of the tomographic or power map data, something
that is influential in several clinical applications, such as keratoconus progression and
ectasia screening [39,40].

Ultimately, the Pentacam utilises the Scheimpflug principle by taking either 25 (stan-
dard settings) or 50 (high resolution (HR) settings) scans in two seconds as its camera
rotates around its axis, dealing with potential eye movement and discrete images requires
full reconstruction of the surface raw elevation. As the calculation of curvatures from
reconstructed elevation has severe resolution requirements, polynomial-based smoothing
appeared to be a proper option. The current study findings support the hypothesis that
Pentacam eye anterior and posterior surfaces are fitted to order 12 and 10 Zernike polyno-
mials, respectively within the DSP implemented in the Pentacam software, as rabbit eyes
showed an identical fit performant that is similar to the human eyes [4]. This identicality
was observed regardless of the systematic misalignment errors associated with capturing
rabbit eyes’ tomography. Finally, to get stable values of high-order aberrations that are not
affected by Zernike polynomials, such as commas for ICRS adjustments [9] or spherical
aberration for pre-cataract operations [10], the current study recommends using order
12 and 10 Zernike polynomials specifically to fit corneal anterior and posterior surfaces,
respectively, as long as the Pentacam is being used as a tomographer in the measurement
process. This conclusion should not be applied interchangeably with other eye tomography
or topography instruments due to variations in their measurement methods and associated
DSP procedures.
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