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Abstract: Acer pseudoplatanus (maple) is a widely grown ornamental plant. In addition to its or-
namental and ecological value, it also has potentially high economic value. It is a rich source of
polyphenols and exhibits antioxidant activity. However, the relationship between polyphenol content
and antioxidant activity in maple leaves of different colors (green, yellow, and red) has not yet
been investigated. In this study, the total polyphenol (TP), total flavonoid (TFlav), tannin (TET),
chlorophyll a and b (Chl a and b), total anthocyanin (TAN), and total carotene (TAC) contents in
maple leaves of different colors were evaluated. Their antioxidant activities were determined based
on the inhibition of lipid oxidation, DPPH scavenging, ferric ion-reducing antioxidant power, and
iron-chelating abilities. The concentrations of TP, TET, TFlav, TAN, and TAC in red maple leaves
were higher than those in green and yellow maple leaves. In addition, red maple leaves showed
a higher antioxidant effect than the leaves of the other two colors. We observed that antioxidant
activity was positively correlated with TP, TFlav, and TAN and negatively correlated with Chl a and
b. Finally, we analyzed the metabolites of the different colored (i.e., green, yellow, and red) maple
leaves using gas chromatography/mass spectrometry (GC/MS) and found that the metabolite profile
significantly varied between the different colors. These results suggest that red leaves are a good
source of polyphenols and antioxidants and have potential use in the development of functional
foods and medicinal applications.

Keywords: antioxidant; different color; maple leaves; metabolites; polyphenols

1. Introduction

Oxidative stress disrupts the balance between reactive oxygen species (ROS), free
radicals, and antioxidant defenses [1]. It can play a crucial role in the development of
various diseases, such as cancer [2], malaria [3], arteriosclerosis [4], rheumatoid arthritis [5],
and neurodegenerative diseases [6], and the aging process [7]. Antioxidants are synthesized
in the human body or taken up from the environment through diet [8]. Although synthetic
antioxidants are widely used in the food, medicine, cosmetics, and other fields, there are
safety issues associated with these agents. Previous research has indicated that long-term
intake of synthetic antioxidants is associated with certain teratogenic and carcinogenic
risks [9].

Bioactive compounds, including polyphenols, as a nutritional component, are usu-
ally presented small amounts in food, and have been reported to have various health
effects, such as antioxidation, bacteriostasis, anti-inflammation, and immunity enhance-
ment. Therefore, bioactive substances have been widely used in foods, pharmaceuticals,
and cosmetics [10–13]. Polyphenols play an important role as antioxidants. Although
human diets such as fruits [14], vegetables [15], tea [16], and wine [17] are rich in polyphe-
nols, it is also necessary to find a natural, safe, and economic antioxidant in industrial
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production for sustainability [18]. Previous studies have found that olive rape [19], durum
wheat bran [20], Fraxinus ornus bark [21], and potato peel waste [22] are good sources of
natural polyphenols. In particular, maple leaves are inexpensive, easy to obtain, and have
significant value for the rational use of resources and sustainable development.

Anthocyanins, which are flavonoids, play an important role in physiological and
biochemical processes in plants, such as leaf color change. When leaves are subjected to
biotic and abiotic stresses, they are synthesized and accumulate in plant vacuoles [23,24].
In autumn, under the influence of photoperiod and low temperature, maple leaves begin
to senesce, chlorophyll content begins to decline, and anthocyanin content begins to rise;
therefore, maple leaves gradually change color from green to red [25]. Previous studies
have shown that reactive oxygen species (ROS) levels increase and antioxidant capacity
decreases during leaf senescence [26,27].

Previous studies on the antioxidant capacity of maple products included analyses of
maple syrup [28], maple sap [29], bark extracts [30], and leaf extracts [31]. However, to the
best of our knowledge, no study has compared the antioxidant capacity and metabolite
profiles of maple leaves of different colors simultaneously.

Therefore, the present study aimed to investigate the antioxidant potential of different
colored maple leaves and compare the content of total polyphenols, flavonoids, tannins,
chlorophyll a and b, and carotenoids in green, yellow, and red leaves. The antioxidant
properties of green, yellow, and red leaves were determined using four different methods:
thiobarbituric acid reactive substances (TBARS), 2,2-diphenyl-1-picrylhydrazyl radical
(DPPH), metal chelation, and ferric ion-reducing antioxidant power (FRAP). Finally, to
investigate the metabolic pathways associated with the colors, metabolite profiling of green,
yellow, and red leaves was conducted using gas chromatography/mass spectrometry
(GC/MS).

2. Materials and Methods
2.1. Maple Leaves

Maple leaves of different colors (green, yellow, and red) were collected from Jeonju
University (Jeonju, Jeonbuk, Republic of Korea) on 6 November 2020 (Figure 1). The leaves
collected from multiple trees were divided into three groups according to their color and
then dried at 40 ◦C to constant weight. The dried leaves were ground using a mortar and
pestle and stored at −60 ◦C until use.
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2.2. Polyphenol Content

One gram of sample was extracted with 20 mL of 50% aqueous methanol (JT Baker,
Radnor, PA, USA) for 3 h at 25 ◦C, with shaking at 200 rpm. The sample was centrifuged
at 195× g for 15 min at 25 ◦C (1580R, Labogene, Bjarkesvej, Lillerød, Denmark), then the
supernatant was collected [1,32,33].

2.2.1. Total Polyphenol (TP)

The Folin–Ciocalteu method was used to determine the TP content [32]. Briefly, 16
µL of the extract and 60 µL of the Folin–Ciocalteu reagent (Sigma-Aldrich, St. Louis, MO,
USA. Unless otherwise stated, all reagents are purchased from Sigma-Aldrich) were mixed
for 5 min at 25 ◦C. Sixty microliter of 60 g/L Na2CO3 were added and incubated for 90
min at 25 ◦C. The absorbance of the mixture was measured at 725 nm (Multiskan SkyHigh,
Thermo Fisher Scientific, Waltham, MA, USA). TP was expressed as milligrams of gallic
acid equivalents per gram of dry weight (mg GAE/g DW).

2.2.2. Total Extractable Tannin (TET)

The TET content was measured as previously described [18]. Briefly, to precipitate
tannins, 110 mg of PVPP (Polyvinylpyrrolidon) was added to 1 mL of the extract, mixed,
and centrifuged at 970× g for 10 min at 4 ◦C (1730R, Labogene). The TP content in the
supernatant (corresponding to the non-precipitated phenols) was determined using the
Folin–Ciocalteu method, as described in Section 2.2.1. The TET content was calculated by
subtracting the non-precipitated phenols from TP.

2.2.3. Total Flavonoid Content (TFlav)

The TFlav content was determined as described previously [34]. Briefly, 20 µL of
the extract was mixed with 80 µL of ddH2O (double distilled H2O), 6 µL of 5% NaNO2
solution, and 6 µL of 10% AlCl3 solution for 6 min, followed by addition of 80 µL of 4%
NaOH (Duksan, Ansan-si, Gyeonggi-do, Republic of Korea) solution. The mixture was
incubated in the dark for 30 min at 25 ◦C, and the absorbance was measured at 510 nm
(Multiskan SkyHigh, Thermo Fisher Scientific). The results are expressed in mg QE/g DW
(QE, quercetin equivalents).

2.2.4. Chlorophyll Content

The chlorophyll content was determined using a previously described method [34].
Briefly, 100 mg of leaves was mixed with 4 mL of 80% acetone (JT Baker). After rinsing
several times with 80% acetone, the sample was completely transferred to a test tube and
the volume was adjusted to 10 mL with acetone. The mixture was centrifuged immediately
at 1763× g for 10 min (1580R, Labogene). The absorbance of the mixture was measured at
646.8 nm and 663.2 nm (UV-1800, Shimadzu, Kyoto, Japan). The chlorophyll concentration
was calculated using the following formula:

Chl a (mg/L) = (12.25 × D663.2) − (2.79 × D646.8),

Chl b (mg/L) = (21.50 × D646.8) − (5.10 × D663.2),

Chl a (mg/g) = [Chl a (mg/L) × 10 mL]/100 mg,

Chl b (mg/g) = [Chl b (mg/L) × 10 mL]/100 mg

2.2.5. Anthocyanin Content

Anthocyanin content was measured in the dark, as described by Al-Farsi et al. [32,35].
A pH 1.0 buffer was prepared by mixing 14.9 mg/mL of KCl and 0.2 mol/L of HCl (Duksan)
at a ratio of 25:67 and a pH 4.5 buffer of 1.64 mg/mL of sodium acetate.

For extraction, the leaves (0.25 g) were homogenized in 20 mL of distilled water for 1
min and sonicated for 15 min. One mililiter of the supernatant was transferred to a 25 mL
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volumetric flask after centrifugation at 440× g for 10 min (1580R, Labogene) and adjusted to
the final volume with buffer (pH 1.0). Another 1 mL of the supernatant was transferred to a
25 mL volumetric flask and adjusted to the final volume with pH 4.5 buffer. The absorbance
values of these mixtures were measured at 510 and 700 nm (UV-1800, Shimadzu). The
absorbance was calculated as follows:

Ab = (Ab510nm − Ab700nm) pH1.0 − (Ab510nm − Ab700nm) pH4.5

The total anthocyanin content was calculated using the following equation and ex-
pressed as cyanidin 3-glucoside equivalents:

Total anthocyanin content (mg/100 g) was calculated as Ab/eL ×MW × D × V/G × 100;

where e = 26,900 (molar absorptivity of cyanidin 3-glucoside), L (cell path length) = 1 mL,
MW (molecular weight of anthocyanins) = 449.2, D (dilution factor) = 25, V = 25 mL, and
G = 250 mg.

2.2.6. Total Carotenoid Content

Total carotenoid content was measured as previously described [32]. The sample (2 g)
was extracted multiple times with an acetone/ethanol (1:1) mixture containing 200 mg/L
butylated hydroxytoluene until it turned colorless. After centrifugation at 440× g for 15 min
(1580R, Labogene), the supernatant was collected. The volume of the combined supernatant
was adjusted to 100 mL and the absorbance was measured at 470 nm (UV-1800, Shimadzu).
Total carotenoid content was calculated using the following equation and expressed as mg
per 100 g of sample weight:

Total carotenoid content (mg/g) = (Ab × V × 106)/(A1% × 100 G);

where Ab is the absorbance at 470 nm, V is the total volume of the extract, A1% is the average
extinction coefficient of carotenoids (2500 M−1·cm−1), and G is the sample weight (g).

2.3. In Vitro Antioxidant Test
2.3.1. Evaluation of Antioxidant Activity in the Linoleic Acid Model System

The antioxidant activity of the extract was determined based on the inhibition of
linoleic acid peroxidation, using the TBARS method [36–38].

Preparation and Treatment of Linoleic Acid Emulsions

Linoleic acid emulsion was prepared by mixing 300 µL of linoleic acid and Tween 20
in 50 mL of 0.2 M phosphate buffer (pH 7.2) as an emulsifier. Two milliliters of the extract
(5 mg/mL DW) were mixed with 2 mL of linoleic acid emulsion in 0.2 M phosphate buffer
(pH 7.0) at 50 ◦C for 5 days to accelerate the oxidation of lipids.

Thiobarbituric Acid Reactive Substances (TBARS)

Lipid oxidation was measured using the 2-thiobarbituric acid (TBA) method, as de-
scribed previously, with slight modifications [39]. Briefly, 100 µL of the emulsion was mixed
with 400 µL of TBA–TCA solution (20 mM TBA in 15% TCA) at 100 ◦C for 15 min. After
cooling to 25 ◦C, 2 mL of chloroform (JT Baker) was added, the mixture was centrifuged
at 431× g for 15 min at 4 ◦C (1730R, Labogene) and the supernatant was collected. The
absorbance of the samples was measured at 532 nm using a microplate reader (Multiskan
SkyHigh, Thermo Fisher Scientific). A sample containing the emulsion in TCA solution
was used as a blank.

2.3.2. DPPH-Free Radical Scavenging Effect

DPPH radical scavenging activity was determined according to a previously described
method [40], with minor modifications. Briefly, 50 mg/mL of sample solution was diluted
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to different concentrations in 50% methanol. DPPH solution (100 µL) was added to 100 µL
of sample solutions of different concentrations, and the mixture was incubated at 25 ◦C
for 30 min in the dark. The absorbance of the mixture was measured at 518 nm using
a microplate reader (Multiskan SkyHigh, Thermo Fisher Scientific), and the percentage
antioxidant activity (AA) was calculated using the following formula:

AA% = 100 − [(Absample − Abblank × 100)/Abcontrol];

where Abblank is the absorbance of the blank (100 µL of 50% aqueous methanol + 100 µL
of sample extract solution), and Abcontrol is the absorbance of the control (100 µL of 50%
aqueous methanol + 100 µL of DPPH). The IC50 values of different leaves were calculated
using SPSS (Statistical Package for the Social Sciences, version 25, IBM, Armonk, NY, USA).

2.3.3. FRAP

FRAP assay was performed according to a previously described method, with some
modifications [41]. The FRAP working reagent was prepared by mixing 25 mL of 300 mM
acetate buffer (pH 3.6), 2.5 mL of 10 mM TPTZ (2,3,5-triphenyltetrazolium chloride) solution
in 40 mM HCl, and 2.5 mL of 20 mM FeCl3·6H2O solution, incubated at 37 ◦C until further
use. Twenty microliters of the extract (1.5625 mg/mL DW) was mixed with 180 µL of
FRAP working reagent for 30 min in the dark. Then, the absorbances of the samples
were measured at 593 nm using a microplate reader (Multiskan SkyHigh, Thermo Fisher
Scientific). A standard curve of divalent iron ions was prepared using iron sulfate, and
a reference experiment was conducted with ascorbic acid under the same experimental
conditions. The results are expressed as ascorbic acid equivalents (AAE) per mg of dry
plant material.

2.3.4. Chelation Capability of Metal Ions

The free radical scavenging activity of the iron chelators was determined using a
previously described method, with slight modifications [42]. 6 µL of 2 mM FeCl2 and 12 µL
of 5 mM ferrozine solution were added to 200 µL of the extract at different concentrations
(0–50 mg/mL) and then incubated at 25 ◦C for 10 min. The absorbance of the mixture
and ethylenediaminetetraacetic acid EDTA (ethylene diamine tetraacetic acid; Duksan)
control were determined at 562 nm using a microplate reader (Multiskan SkyHigh, Thermo
Fisher Scientific). The ability of the extract to chelate ferrous ions was calculated using the
following equation:

Chelating effect (%) = [1 − (Absample/Abcontrol)] × 100

2.4. Extraction and Analysis of Metabolites

Metabolites were extracted and analyzed as previously described, with slight mod-
ifications [43,44]. Briefly, 10 mg of dried sample was mixed with extraction solvents
(methanol:chloroform:distilled water in a ratio of 14:4:2.85), vortexed for 30 min, and
centrifuged at 24,000× g for 3 min at 4 ◦C (1730R, Labogene). Finally, 100 µL of the super-
natant was vacuum dried using a vacuum concentrator (NB-503CIR, N-BIOTEK, Bucheon,
Gyeonggi, Republic of Korea).

For chemical derivatization, we mixed 10 µL of methoxyamine hydrochloride in
pyridine (40 mg/mL) for 90 min at 30 ◦C, followed by 45 µL of N-methyl-N-(trimethylsilyl)
trifluoroacetamide (MSTFA) for 30 min at 30 ◦C. A mixture of fatty acid methyl esters
(C8–C30) was used for quality control purposes. All the samples were analyzed within 24 h
of derivatization.

The metabolites were analyzed using GC/MS (Shimadzu QP2010 Plus, Shimadzu)
equipped with a column Rtx-5sil (30 m × 0.25 mm i.d. × 0.25 µm film thickness). The oven
temperature was set at 50 ◦C for 2 min and programmed to 200 ◦C at a rate of 5 ◦C/min,
which was held for 5 min, and then programmed to 330 ◦C at a rate of 10 ◦C/min, and
finally held for 5 min. The temperatures of the interface and the ion source were set
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to 280 ◦C and 250 ◦C, respectively. Mass spectra were acquired in the mass range of
85–600 m/z at an ionization voltage of 70 eV.

The resulting data were deconvoluted using the Automated Mass Spectral Deconvolu-
tion and Identification System (AMDIS; version 3.2), and the metabolites were identified
using the Golm Metabolome Database (GMD) [45]. The data were further processed using
SpectConnect with an elution threshold of 1 min and support threshold of 70% [46]. The
processed data were normalized using sum normalization and range scaling.

2.5. Statistical Analysis and Metabolic Network Analysis

Correlation plot, principal component analysis (PCA), and hierarchical clustering
analysis (HCA) were conducted using OriginPro 2023 (OriginLab Corporation, Northamp-
ton, MA, USA), SIMCA (version 14.1, Umetrics, Umea, Sweden), and Metaboanalyst 5.0
(https://www.metaboanalyst.ca/, accessed on 19 October 2022), respectively. Differences
in metabolites between the groups were evaluated using one-way analysis of variance
(ANOVA) followed by Fisher’s LSD post hoc test (p < 0.05).

3. Results
3.1. Polyphenol Content

The content of polyphenols (represented by TP, TET, TFlav, Chl a, Chl b, TAN, and
TAC) were significantly different in maple leaves of different colors (Table 1). In this study,
the TP and TFlav content were much higher in the red leaves than those in the leaves of
the other two colors (green and yellow). The amount of TP in red leaves (106.43 ± 3.828
mg GAE/g) was approximately two times higher than that in the green leaves (49.657 ±
2.501 mg GAE/g), and the TP content of yellow leaves was 69.05 ± 3.59 mg QE/g. The
TFlav content of the red leaves (47.48 ± 1.109 mg QE/g) was approximately three times
higher than that of the green leaves (17.50± 0.87 mg QE/g), and the TFlav content of yellow
leaves was 29.60 ± 1.00 mg QE/g. In addition, red leaves contained the highest amount
of TET (57.97 ± 3.59 mg GAE/g). There was no significant difference in TET content
between the red and yellow leaves (57.41 ± 3.65 mg GAE/g), and it was significantly
higher than that of green leaves (39.96 ± 2.65 mg GAE/g). Unsurprisingly, green leaves
had more chlorophyll a and b than yellow and red leaves, which is consistent with previous
reports [47,48]. In addition, TAN and TAC contents in red leaves were higher than those
in the leaves of the other two colors. These results indicate that red maple is a potential
source of phenolic compounds.

Table 1. Total content of different polyphenols.

TP
(mg GAE/g)

TET
(mg GAE/g)

TFlav
(mg QE/g)

Chl a
(mg/g)

Chl b
(mg/g)

TAN
(mg/100 g)

TAC
(mg/100 g)

Green 49.66 ± 2.50 a 39.96 ± 2.65 b 17.50 ± 0.87 c 1.49 ± 0.112 a 0.82 ± 0.12 a N.D. 0.21 ± 0.01 c

Yellow 69.05 ± 3.59 b 57.41 ± 3.65 a 29.60 ± 1.00 b 0.24 ± 0.01 b 0.33 ± 0.02 b 0.02 ± 0.002 b 0.28 ± 0.01 b

Red 106.43 ± 3.83 c 57.97 ± 3.59 a 47.48 ± 1.11 a 0.03 ± 0.01 c 0.10 ± 0.02 c 0.07 ± 0.002 a 0.71 ± 0.01 a

Data are expressed as the mean of triplicate analyses ± standard deviation, with different superscripts indicating
significant differences between the means (p < 0.05). TP, total phenol; TET, total extractable tannin; TFlav, total
flavonoid; Chl a, chlorophyll a; Chl b, chlorophyll b; TAN, total anthocyanins; TAC, total carotenoids; N.D., not
detected.

In the previous study, the similar methods have been widely used to determine the
content of TP, TET and TFlav in various plants including maple, Dendropanax morbifera, and
Mentha piperita L. [18,49,50]. The method for measurement of chlorophyll in this study have
been used in various plants such as stevia and Lippia filifolia [51,52]. The handheld SPAD-
502 chlorophyll meter could be used for determining relatively content of chlorophyll and
showed the strong correlation with the method used in this study [53]. The pH differential
method has been generally used for measurement of TAN content in various plants such as
black carrot [54] and the average extension coefficient of carotenoids has been commonly

https://www.metaboanalyst.ca/
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used as the determination of total carotenoid content [55]. Although the methods used in
this study have been generally used for measuring the content of polyphenols, the content
of each polyphenols should be verified using other techniques such as high performance
liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) in
further application.

3.2. Antioxidant Activity
3.2.1. TBARS

In this study, we determined the oxidation value of linoleic acid at different time
points. As shown in Figure 2a, maple leaves of different colors had reduced lipid oxidation.
This indicates that all maple leaves had antioxidant activity, regardless of color. Among
these, red leaves showed the highest antioxidant effect. On day 5, the absorbance values (at
532 nm) of all extracts from leaves of different colors were significantly different from those
of the control (p < 0.01). The absorbance of the red leaves was six times lower than that of
the control. In addition, the absorbance value of the red leaves was lower than that of the
green leaves (p < 0.05).
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3.2.2. DPPH-Free Radical Scavenging Effect

The DPPH-free radical scavenging method is currently the most widely used method
for determining antioxidant capacity owing to its simplicity, speed, and accuracy. DPPH is
one of the most commonly used synthetic free radicals; the higher the IC50 value of DPPH,
the lower its antioxidant effect. In this study, the DPPH free radical scavenging method
was used to determine the free radical scavenging ability of maple leaf extracts [3].
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The DPPH scavenging capacities of maple leaves of different colors are shown in
Figure 2b. The antioxidant IC50 value of the red leaves was 6.53 mg/mL, which was lower
than that of the green and yellow leaves. The IC50 value of yellow leaves was highest at
7.40 mg /mL, which is equivalent to the antioxidant capacity of ascorbic acid (0.11 mg/mL).

3.2.3. FRAP

The FRAP method is based on the principle that antioxidants reduce Fe3+-TPTZ to
produce blue-violet Fe2+-TPTZ at low pH. Therefore, the absorbance at 593 nm can be used
as an indicator of the total antioxidant capacity of the sample [56].

In this study, the FRAP values for maple extracts from the leaves of different colors
varied over a wide range of 0.10–0.15 AAE/mg DW (Figure 2c). The FRAP value of
red leaves was the highest (0.1532 AAE/mg DW), whereas that of green leaves was the
lowest (0.1031 AAE/mg DW). The FRAP value of yellow leaves was 0.119 AAE/mg
DW, suggesting that red leaves have a higher antioxidant effect than leaves of the other
two colors.

3.2.4. Metal Ions Chelating Ability

Ferrous ions (Fe2+) cause lipid peroxidation and food deterioration. Therefore, the
ability to chelate ferrous ions can reveal the antioxidant capacity of a substrate [57]. Ferrous
ions form a red complex with ferrozine; the intensity of the red color decreases after the
addition of chelating agents, which is used as an indicator of the chelating ability and
antioxidant capacity of a compound [58].

Figure 2d shows the ferrous ion-chelating ability of maple leaves of different colors.
The IC50 value of yellow leaves was observed to be the lowest (26.66 ± 1.19 mg/mL), and
red leaves showed the weakest ability to chelate ferrous ions (51.02 ± 1.75 mg/mL). This
indicates that yellow leaves had a higher antioxidant capacity than the leaves of the other
two colors.

The results of the TBARS, DPPH, and FRAP assays demonstrated that red leaves had
the highest antioxidant activity among all three colors (red > yellow > green). However,
the yellow leaves had the strongest metal-ion chelating ability (yellow > green > red). This
finding is similar to the results of previous studies showing that the antioxidant capacity of
the same materials may be different based on the methods used [59] owing to the selective
reaction of free radicals with antioxidants [60].

3.3. Correlation Coefficients of Antioxidant Activities and Polyphenols Content

Previous studies on grapes, Desmodium species, and Chinese dark teas [61] have
revealed a relationship between polyphenols and antioxidant properties. TBARS, DPPH,
and FRAP assays are the most commonly used methods for oxidation resistance testing.
The higher the values of TBARS, DPPH, and metal chelation, the weaker the oxidation
resistance. Conversely, the higher the value of FRAP, the stronger the oxidation resistance.

Figure 3 shows the correlation between the antioxidant activity and polyphenol con-
tent. The contents of TP, TET, and TFlav were negatively correlated with TBARS and DPPH
values and positively correlated with FRAP values. This indicates that antioxidant activities
were highly associated with the content of phenolic compounds and flavonoids in maple
leaves.

Chlorophyll contents (Chl a and Chl b) were positively correlated with TBARS and
DPPH values, whereas TAN and TCA were positively correlated with EDTA and FRAP
values.

The content of TP, TET, and TFlav in red leaves and its antioxidant capacity (TBARS,
DPPH, and FRAP) were higher, whereas the content of chlorophyll (Chl a and b) was
lower than that in green and yellow leaves. Collectively, the antioxidant properties were
negatively correlated with Chl a and b. On the other hand, they were positively correlated
with TP, TET, and TFlav.
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3.4. Metabolite Profiling

A total of 54 metabolites in the maple leaves of the three colors were identified by GMD.
Among these, 23 metabolites were related to antioxidant activity and seven metabolites
were polyphenolic acids (Table 2).

Table 2. List of identified metabolites.

Scheme Compound
Name

Molecular
Formula p Value FDR Maximum

Value
Minimum

Value
Antioxidant &

References

Sugars and sugar
alcohols

(10)

D-Glucose C6H12O6 <0.05 <0.05 Red Green

D-Fructose C6H12O6 <0.05 <0.05 Red Green

Sucrose C12H22O11 <0.05 <0.05 Green Red &
Yellow

Trehalose C12H22O11 <0.05 <0.05 Green Yellow 4[62]

D-Galactose C6H12O6 0.2520 0.2617 Red Yellow

D-Ribose C5H10O5 <0.05 <0.05 Yellow Green

Inositol C6H12O6 <0.05 <0.05 Green Red

Erythritol C4H10O4 <0.05 <0.05 Yellow Green &
Red N[63]

Sorbitan C6H12O5 <0.05 <0.05 Green Yellow

Xylitol C5H12O5 <0.05 <0.05 Yellow Red 4[64]
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Table 2. Cont.

Scheme Compound
Name

Molecular
Formula p Value FDR Maximum

Value
Minimum

Value
Antioxidant &

References

alcohol, Fatty
alcohol

and
phytosterols (8)

1-
Hexadecanol C16H34O <0.05 <0.05 Yellow Red N[65]

Docosanol C22H46O 0.3003 0.3060 Red Yellow N[66]

Glycerol C3H8O3 <0.05 <0.05 Green Red

Stearyl
alcohol C18H38O <0.05 <0.05 Green Red

D-Pinitol C7H14O6 <0.05 <0.05 Green Yellow N[67]

Phytol C20H40O <0.05 <0.05 Yellow Red N[68]

(2,3,4,5,6-
Pentahydroxycyclohexyl)
dihydrogen
phosphate

C6H13O9P <0.05 <0.05 Green Red

β-Sitosterol C29H50O 0.0655 0.0722 Green Red N[69]

Amino
acid
(13)

Alanine C3H7NO2 <0.05 <0.05 Green Red

Aspartic acid C4H7NO4 <0.05 <0.05 Green Red

Leucine C6H13NO2 <0.05 <0.05 Green Red

Phenylalanine C9H11NO2 <0.05 <0.05 Green Red

Proline C5H9NO2 <0.05 <0.05 Yellow Red N[70]

Pyroglutamic
Acid C5H7NO3 <0.05 <0.05 Yellow Red

Serine C3H7NO3 <0.05 <0.05 Yellow Red

Threonine C4H9NO3 <0.05 <0.05 Green Red

Tyrosine C9H11NO3 <0.05 <0.05 Green Red

Valine C5H11NO2 <0.05 <0.05 Green Red

L-Glutamate C5H9NO4 <0.05 <0.05 Green Red 4[71]

Glycine C2H5NO2 <0.05 <0.05 Green Red

γ-
Aminobutyric

acid
C4H9NO2 <0.05 <0.05 Green Red N[72]

Organic acid
(14)

Malic acid C4H6O5 <0.05 <0.05 Yellow Red

2-Keto-
gluconate C6H10O7 <0.05 <0.05 Green Yellow

3-
Hydroxypropionic

acid
C3H6O3 <0.05 <0.05 Green Yellow

Lactic acid C3H6O3 0.1433 0.1517 Yellow Red

Palmitic acid C16H32O2 <0.05 <0.05 Green Red

Quinic acid C7H12O6 <0.05 <0.05 Yellow Red 4[73]

sn-Glycerol
3-phosphate C3H9O6P <0.05 <0.05 Green Red

Stearic acid C18H36O2 0.58722 0.58722 Green Yellow 4[74]

Succinic acid C4H6O4 <0.05 <0.05 Green Red

Ascorbic acid C6H8O6 <0.05 <0.05 Red Yellow N[75]

Citric acid C6H8O7 <0.05 <0.05 Green Red 4[76]
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Table 2. Cont.

Scheme Compound
Name

Molecular
Formula p Value FDR Maximum

Value
Minimum

Value
Antioxidant &

References

Glyceric acid C3H6O4 <0.05 <0.05 Yellow Red

Erythronic
acid C4H8O5 <0.05 <0.05 Green Red

Fumaric acid C4H4O4 <0.05 <0.05 Green Yellow 4[77]

Polyphenols
and

Phenolic acids
(7)

Cryptochlorogenic
acid C16H18O9 <0.05 <0.05 Yellow Green N[78]

Gallic acid C7H6O5 <0.05 <0.05 Red Green N[79]

Neochlorogenic
acid C16H18O9 <0.05 <0.05 Red Green N[78]

Cianidanol C15H14O6 <0.05 <0.05 Red Yellow N[80]

α-Tocopherol C29H50O2 <0.05 <0.05 Red Green N[81]

γ-Tocopherol C28H48O2 <0.05 <0.05 Yellow Green N[82]

Shikimic acid C7H10O5 <0.05 <0.05 Red Green N[83]

Others
(2)

Phosphoric
acid H3PO4 <0.05 <0.05 Green Red

Urea CH4N2O 0.1101 0.1189 Yellow Red

Note: FDR: False Discovery Rate. 4: metabolites related to antioxidant activity. N: metabolites with antioxidant
activity.

To reveal the metabolic differences between maple leaves of different colors, a prin-
cipal component analysis (PCA) was performed. The PCA score scatter plot (Figure 4)
showed a significant difference in the metabolite profiles between the three groups. PC 1
and PC 2 values from the PCA score scatter plot accounted for 78.3% and 69.1% of the total
R2X (explained) and Q2 (predictive) variances, respectively, indicating a good model [84].
As shown in Table 3, the selected 20 metabolites with high absolute loading value which
represent how each metabolite contributed to the new variables (PC 1 and PC 2) generated
using the PCA model. Among the 53 metabolites identified, 41 metabolites such as suc-
cinic acid, inositol, and phenylalanine contributed positively to PC 1 and 26 metabolites
contributed positively to PC 2 such as erythritol, γ-tocopherol, and phytol. On the contrary,
12 metabolites including D-fructose, shikimic acid, and D-glucose contributed negatively
to PC 1, and 27 metabolites including D-pinitol, trehalose, and fumaric acid contributed
negatively to PC 2.

In the heatmap from HCA, the metabolite profiles of the six biological replicates in
each group were similar; however, the profiles varied among the three groups, represented
by different colors (Figure 5). The metabolite profiles of maple leaves changed from green
to red, and the pattern of yellow leaves was more similar to that of green leaves than of
red leaves. Moreover, the relative contents of the different metabolites in each group could
be distinguished by the differences in color. One-way ANOVA and Fisher’s LSD post hoc
test revealed that the level of 48 metabolites was significantly different between the three
groups [p-value < 0.05 with false discovery rate (FDR) < 0.05]. Of these 48 metabolites,
eight metabolites (including gallic acid, ascorbic acid, and shikimic acid) were higher in red
leaves than in green and yellow leaves. Conversely, the levels of 27 metabolites (including
threonine, valine, glycine, and fumaric acid) were higher in green leaves than in yellow
and red leaves.

By analyzing the metabolites of maple leaves of different colors, we found 48 different
metabolites in maple leaves of different colors (p < 0.05). The leaves could be divided into
three categories by PCA and HCA, indicating that there were significant differences in the
metabolite profiles between leaves of different colors.
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Table 3. List of twenty metabolites with high absolute loading values on PC 1 and PC 2.

PC 1 PC 2

Metabolites Loadings Scores Metabolites Loadings Scores

Succinic acid 0.188 Erythritol 0.262
Inositol 0.184 γ-Tocopherol 0.26

Phenylalanine 0.183 Phytol 0.259
Glycerol 0.182 Quinic acid 0.231
Glycine 0.181 Malic acid 0.229

D-Fructose −0.179 1-Hexadecanol 0.209
Erythronic acid 0.179 Proline 0.202
Aspartic acid 0.178 Serine 0.195

Shikimic acid −0.178 Cryptochlorogenic
acid 0.195

Citric acid 0.177 D-Pinitol −0.188
Valine 0.176 Trehalose −0.187

Glutamic acid 0.174 D-Ribose 0.184
D-Glucose −0.174 Fumaric acid −0.175
Threonine 0.173 Sorbitan −0.174

Neochlorogenic acid −0.173 2-Keto-gluconate −0.163
Alanine 0.172 Urea 0.159
Tyrosine 0.171 Glyceric acid 0.158
Leucine 0.168 Xylitol 0.156

Stearyl alcohol 0.168 Pyroglutamic Acid 0.156
Phosphoric acid 0.167 Cianidanol −0.144

Note: Loadings scores were obtained by PCA analysis, presenting data as the 20 with the largest absolute values
in the loading values, and data analysis was analyzed in Metaboanalyst.
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4. Discussion

Phenolic compounds with good antioxidant properties are important parameters for
evaluating the antioxidant properties of plant extracts [85]. According to a previous study,
the content of polyphenols in various plant leaves ranged from 11.14 to 175.35 mg/g [86].
Among the twenty four plants studied, only seven plants (including Malus domestica and
Cydonia oblonga) had higher polyphenol content than red maple leaves. In this study, the
antioxidant activity was measured using four different methods, and we found that the
antioxidant capacity of red leaves was much higher than that of the leaves of the other
two colors (red > yellow > green). The DPPH scavenging IC50 value of red leaves was
6.53 mg/mL. Herbal and low-cost biological resources have been the focus of antioxi-
dant research. In previous research, the DPPH scavenging IC50 value of Cassia fistula
L. seed extract [87], Gracilaria changii crude extract [88], and Erechtites hieraciifolius [89]
was 11.07 mg/mL, 14.70 mg/mL, and 8.46 mg/mL, respectively. In addition, that of
various vegetables such as Murraya koenigii, Trigonella foenum-graecum, Centella asiatica,
and Amaranthus spp. was 9.62 mg/mL, 27.69 mg/mL, 19.89 mg/mL, and 27.27 mg/mL,
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respectively [90]. Another study showed that the IC50 values of various fruits (such as
mangosteen, orange, pomelo, grapes, papaya, grape, rose apple, and jackfruit) ranged
from 11.18 to 110.46 mg/mL [91]. Compared with the antioxidant properties of various
biological materials, the antioxidant properties of maple leaves are not only stronger than
those of low-cost biological resources but also stronger than those of some fruits. There-
fore, our findings suggest that maple leaves, particularly red leaves, are a good source of
polyphenols and antioxidants.

Changes in leaves and carotenoids, among which the degradation of chlorophyll, is
a sign of senescence [92,93]. In our observations (as shown in Figure 1), the outer leaves
of maple were more converted to red sooner than the inner leaves. This may be because
the outer leaves are exposed to more light and higher temperatures during the day and
bear lower temperatures at night. This is consistent with previous studies showing that
shading slows down the loss of chlorophyll, and the difference in temperature between
day and night is conducive to the accumulation of anthocyanins [94,95]. The degradation
of chlorophyll, which plays an essential role in capturing light energy, is a critical step in
the accumulation of ROS during senescence. Additionally, the synthesis of anthocyanin
(which acts as an antioxidant) is an important step in reducing oxidative damage [96,97].
In this study, we compared the chlorophyll content between green, yellow, and red maple
leaves. The results agreed with previous reports and demonstrated that the chlorophyll
content showed a decreasing tendency from green to red. In contrast, the anthocyanin and
carotenoid contents were highest in the red maple leaves. These results are in agreement
with a previous study that showed anthocyanin accumulation in red leaves [47]. Previous
studies have reported that flavonoid/anthocyanin accumulation is affected by carotenoid
accumulation [98] and chlorophyll degradation [99]. Our results also showed a positive
and negative correlation between anthocyanins, and carotenoid or chlorophyll content,
respectively.

Phenolic compounds are important secondary metabolites in plants that mainly origi-
nate from the phenylpropane metabolic pathway [100]. In plants, photosynthetic products
generate phosphoenolpyruvic acid (PEP) and erythrose 4-phosphate (E4P) through the
Embden-Meyerhof-Parnas (EMP) and pentose phosphate (PPP) pathways, respectively.
PEP and E4P enter the shikimic acid pathway and generate phenylalanine, the starting
substrate of the phenylphenyne pathway. After a series of enzymatic reactions, flavonoids
(such as catechins, proanthocyanidins, and anthocyanins) can be synthesized [100,101].
In this study, we found that the content of phenylalanine in green leaves is the highest,
and that the antioxidant-related substances (such as cryptochlorogenic acid, gallic acid,
neochlorogenic acid, cianidanol, α-tocopherol, and ascorbic acid) gradually increased
during leaf senescence, by further metabolite analysis. These results are consistent with
previous results in this study, correlating with higher total phenolic content and stronger
antioxidant capacity in red leaves.

In addition, previous studies have reported that the total amount of phenolic acids
and antioxidant capacity were low in samples with a high content of free amino acids. The
late-harvested sweet potato leaves showed higher antioxidant capacity and polyphenol
content, but lower amino acid content than the early- and middle-harvests [102]. Similarly,
it was found that the total flavonoid content of Ocimum basilicum L. significantly decreased
under high amino acid treatment [103]. Consistent with previous studies, our study also
showed that most amino acids (such as alanine, aspartic acid, leucine, phenylalanine,
threonine, tyrosine, valine, glutamate, glycine, and γ-aminobutyric acid) in green leaves
were present at higher levels than those in other colors. However, the polyphenolic acid
content and antioxidant capacity were lower, indicating that amino acids may be converted
to other phenolic compounds via the shikimic acid/phenylpropanoid/flavonoid synthetic
pathway.
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5. Conclusions

Maples are widely planted and are easily obtained in the northern temperate zone.
In this study, we compared the polyphenol content and antioxidant properties of maple
leaves of three colors (green, yellow, and red). The levels of TP, TET, TFlav, TAN, and TAC
were higher in red leaves than in the other leaves. However, Chl a and b levels were lower
in the red leaves. In addition, the antioxidant capacity of the red leaves was higher than
that of the green and yellow leaves. PCA and HCA results revealed significant differences
in metabolite profiles in maple leaves among green, yellow, and red colors. This study is
the first to evaluate the level of polyphenols, antioxidant effects, and metabolites in maple
leaves according to color. Therefore, red maple leaves may be used as a potential source
of natural antioxidants and could be applied in the development of functional foods and
pharmaceuticals.
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