

Since January 2020 Elsevier has created a COVID-19 resource centre with

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the

company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related

research that is available on the COVID-19 resource centre - including this

research content - immediately available in PubMed Central and other

publicly funded repositories, such as the WHO COVID database with rights

for unrestricted research re-use and analyses in any form or by any means

with acknowledgement of the original source. These permissions are

granted for free by Elsevier for as long as the COVID-19 resource centre

remains active.

Future Generation Computer Systems 142 (2023) 376–392

D

z
c
e
a
c
i
w
n
s
p
g
a
f
d
o
d

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

MAG-D: Amultivariate attention network based approach for cloud
workload forecasting
Yashwant Singh Patel1, Jatin Bedi ∗,1
epartment of Computer Science Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab, India

a r t i c l e i n f o

Article history:
Received 13 May 2022
Received in revised form 19 December 2022
Accepted 2 January 2023
Available online 10 January 2023

Keywords:
Resources’ utilization
Deep learning
Prediction approaches
Cloud data centers
Energy-efficiency
Time-series

a b s t r a c t

The Coronavirus pandemic and the work-from-home have drastically changed the working style and
forced us to rapidly shift towards cloud-based platforms & services for seamless functioning. The
pandemic has accelerated a permanent shift in cloud migration. It is estimated that over 95% of digital
workloads will reside in cloud-native platforms. Real-time workload forecasting and efficient resource
management are two critical challenges for cloud service providers. As cloud workloads are highly
volatile and chaotic due to their time-varying nature; thus classical machine learning-based prediction
models failed to acquire accurate forecasting. Recent advances in deep learning have gained massive
popularity in forecasting highly nonlinear cloud workloads; however, they failed to achieve excellent
forecasting outcomes. Consequently, demands for designing more accurate forecasting algorithms exist.
Therefore, in this work, we propose ’MAG-D’, a Multivariate Attention and Gated recurrent unit based
Deep learning approach for Cloud workload forecasting in data centers. We performed an extensive
set of experiments on the Google cluster traces, and we confirm that MAG-DL exploits the long-range
nonlinear dependencies of cloud workload and improves the prediction accuracy on average compared
to the recent techniques applying hybrid methods using Long Short Term Memory Network (LSTM),
Convolutional Neural Network (CNN), Gated Recurrent Units (GRU), and Bidirectional Long Short Term
Memory Network (BiLSTM).

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

During the COVID-19 pandemic, many industries and organi-
ations are moving towards digitalization and automation. Cloud
omputing had a pivotal role in this transformation as it empow-
rs remote work infrastructure with greater computation, agility,
nd storage capabilities [1,2]. To fulfill the diverse demands of
loud users, the cloud service providers (CSPs) enable virtual-
zation technologies in the underlying physical infrastructure,
hich permits cloud applications to programmatically deliver
etworking & infrastructure-as-a-service (IaaS) [3]. To meet the
ervice level agreements (SLA) requirements, all commercial CSPs
rimarily invest in designing optimal resource allocation strate-
ies in such a way that the overall quality of experience (QoE)
nd quality of service (QoS) is enhanced [4]. A good workload
orecasting approach plays a pivotal role in making informed
ecisions while meeting these constraints. Therefore, a number
f key cloud players are performing extensive research in the
evelopment of workload forecasting algorithms to improve the

∗ Corresponding author.
E-mail address: jatin.bedi@thapar.edu (J. Bedi).

1 Both the authors contributed equally to the manuscript.
ttps://doi.org/10.1016/j.future.2023.01.002
167-739X/© 2023 Elsevier B.V. All rights reserved.
auto-scaling performance to support the fluctuating and enor-
mous big data workloads as well as to achieve significant en-
ergy savings [2,5–7]. The outcome of such strategies provides
a massive reduction in overall power cost and carbon emis-
sion, achieving the goal of green cloud computing as shown in
Fig. 1. In general, the cloud is a promising technology offering
advantages of on-demand resources, global coverage, and high
application availability [1,8]. However, the workload modeling
and characterization is extremely challenging in a highly dynamic
cloud environment. The workload modeling helps to improve
the interpretation of typical cloud workload patterns resulting
more informed decisions for robust resource management [9].
Through the workload characterization, performance models can
be developed to support research issues such as energy-efficiency
and resource management and to answer some critical research
questions, such as: how are the overall cloud data centers’ usage
levels affected by customer behavior? How cloud data centers’
energy-efficiency can be improved while the maintaining the QoS
levels? [9]. Intuitively, in the absence of forecasting techniques, it
is impossible to estimate real-time resource usage of cloud work-
load traces [7]. Therefore, the principal objective of this study is

to design a more robust cloud workload forecasting algorithm.

https://doi.org/10.1016/j.future.2023.01.002
https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.01.002&domain=pdf
mailto:jatin.bedi@thapar.edu
https://doi.org/10.1016/j.future.2023.01.002

Y.S. Patel and J. Bedi Future Generation Computer Systems 142 (2023) 376–392
Fig. 1. Green cloud computing.

Over the past few decades, prediction approaches have re-
ceived considerable attention in the domain of weather fore-
casting, stock market, and energy sectors [5,10,11]. For cloud
workload prediction, various methods have been designed. These
schemes can be arranged into statistical models, machine learn-
ing and deep learning-based methods. Statistical models of pre-
diction presume linear dependency and stationary behavior
between time-series samples. Most of the statistical techniques
such as Holt-winter [12], ARIMA (Autoregressive integrated mov-
ing average) [13], seasonal ARIMA (SARIMA) [14], and Markov
models [15,16] are extensively employed, but unfortunately, these
approaches have dramatically failed to prove themselves in highly
chaotic time series, and long-term forecasting applications [1]. On
the other hand, the second category of machine learning tech-
niques have been employed to address the shortcomings of these
classical models [1]. Some of these methods, such as particle-
swarm-optimization (PSO), support-vector-regression (SVR), and
relevance-vector-machine (RVM), have been utilized to predict
the workload in cloud data centers [1]. However, these methods
are not suitable for large datasets, and their overall performance
is highly dependent on tuning parameters. Deep learning-based
prediction models are widely popular architecture performing
superior than classical machine learning techniques to solve the
most complex and challenging problems, such as cloud workload
forecasting [8,17]. Convolutional neural networks (CNNs) extract
input image features using convolution filters which can be used
by the feature extraction network. The neural network utilized
these extracted feature signals for classification [5]. To learn
highly chaotic and volatile time series for detection of long-range
dependence, LSTM (Long short-term memory) networks [18]
have shown tremendous learning improvement [19]. Moreover,
to improve the performance of forecasting, hybrid models are
commonly designed [4,7]. It is an ensemble technique combining
several models. While the methods applying empirical mode
decomposition (EMD) are gaining significant attention which is
a kind of nonlinear signal based-processing strategy and works
constructively for frequency and time domains [4]. However,
volatility is the key issue in the cloud workload forecasting.
Thus, we require a robust nonlinear model to assess the dynamic
changes and detect the long-range dependence in the cloud
workload.

In cloud systems, different resource usage metrics are cor-
related. For example, we anticipate the CPU load to rise at the
377
same pace to 40% and 60%, if it rises linearly from 0 to 20%
over time. However, it is plausible to predict that the allocated
memory will soon run out and start paging on disk, reducing
CPU consumption in the future [20], given the rise in memory
usage from 10% to 90% over the same time period. It demon-
strates how the outcomes of resource consumption prediction are
dependent on historical data (univariate time series forecasting)
and the time series data of additional resource utilization-related
factors (multivariate time series forecasting). These relationships
highlight how crucial multivariate time series prediction is and
make it possible to extract more features, which raises prediction
performance. Therefore, it is crucial to investigate multivariate
time series models instead of univariate forecasting models.

Along with the multivariate forecasting, it is essential to ex-
ploit the varying priority levels associated with a workload se-
quence at various points in time because of the different effects of
earlier stages on the future host load. Thus, it is necessary to focus
on the addition of an attention layer in deep learning networks.
Also, most of the cloud workload prediction techniques [21–
24] concentrate on single-step prediction. The one-step-ahead
forecasting-based autoscaler uses inconsistent scale-up and scale-
down actions [25] as a result of workload changes, wasting re-
sources and expenses. To stop variations from impacting the
scaling process, resource provisioning procedures must be car-
ried out based on a multi-step-ahead forecasting.. To resolve
the aforementioned issues, this paper aims to design a MAG-
D architecture which applies multivariate attention layer and
bidirectional GRU Network for multistep-ahead workload predic-
tion. In fact, the main forecasting problem has been subdivided
into machine learning (ML) pipeline including data preprocessing
and data segmentation, clustering of time series inputs, stacked
bidirectional GRU Network and bidirectional LSTM layer, and
attention layer. Ultimately, we combine all independent results to
get the final forecasted time step value. The novelty of this work
is to propose a robust approach identifying the long-range de-
pendence, effect of multiple resource usage metrics, and stacked
deep learners for correct interpretation of data center workload
patterns. The key contributions of the work are:

• Proposed a multivariate systematic deep learning architec-
ture for cloud workload forecasting.
• Designed a MAG-D framework combining the attention

layer & bidirectional GRU with improved prediction accu-
racy and reduced complexity.
• A clustering based stacked strategy is applied for improve-

ment in the generalized performance.
• Using real cloud workload traces of Google cluster, we ex-

amine the performance in terms of RMSE & MAE.

The remaining of this work is structured as follows: Section 2
provides the related studies in the cloud literature of work-
load prediction. The basic principle and background study is
introduced in Section 3. In Section 4, we present the complete ar-
chitecture of proposed MAG-D model, and its complexity analysis.
Implementation details and performance evaluations with real-
world traces are discussed in Section 5. Lastly, Section 6 concludes
the work.

2. Related work

For cloud workload forecasting, several studies are presented.
These schemes can be categorized into statistical and ML based
methods, deep learning based approaches, and hybrid schemes as
depicted in Fig. 2.

Y.S. Patel and J. Bedi Future Generation Computer Systems 142 (2023) 376–392

2
i

(
F
i
A
m
m
e
M
o
t
a
a
a
h
u

2

s
y
w
(
L
(
2
e
s
R
n
a
G
m
c
h
l
w
e

Fig. 2. Classification of cloud workload forecasting techniques.
.1. Statistical and machine learning based cloud workload forecast-
ng approaches

Some of the basic forecasting techniques namely Holt-winter
HW) [12], ARIMA [13], SARIMA [14], Markov models [15], and
eed-forward neural network [26] have been extensively applied
n cloud workload forecasting. Zhang et al. [13] designed an
RIMA-enabled model to forecast cloud resource usage. ARIMA
odel is among one of the most popular time series forecasting
odels. Although, it does not performs well when nonlinearities
xist in the time-series data. Hsieh et al. [27] proposed a Gray-
arkov-based model for Virtual Machine (VM) consolidation,
ptimizing VM migrations, energy consumption, and SLA viola-
ions. Caglar et al. [26] designed an iOverbook model comprising
feed-forward mode of a 2-layer neural network, which gener-
lizes the linear and nonlinear correlation of input & output by
pplying a single hidden layer. However, major of the studies
ave neglected the long-time period dependency of the resource
sage metrics.

.2. Deep learning based cloud workload forecasting approaches

Deep neural architectures have proved to be powerful and
uccessfully applied for cloud workload forecasting in recent
ears. The most common architectures such as feed forward net-
orks, recurrent neural networks (RNNs), gated recurrent units
GRUs), long-short term memory networks (LSTMs), bidirectional
STM networks (BiLSTMs), and convolutional neural networks
CNNs) are gaining popularity for time-series forecasting [5,6,
8,29]. Zhang et al. [2], proposed a self-adaptive differential
volution algorithm & neural network based workload forecasting
trategy. For financial time-series forecasting, [30] designed a
NN approach. For cloud workload forecasting, a wavelet neural
etwork based technique is presented in [31]. For a multi-input
nd single-output set of samples, polynomial neural network or
roup meta-data handling (GMDH) approach builds a fusion of
odels in a self-organized form [4]. Such technique is utilized for
ontainer throughput prediction in [32]. Most of the approaches
ave subsumed that the time-series based data is either memory-
ess or stationary. In the series of cloud workload forecasting
orks, Ghorbani et al. [19] suggested the long-range dependence

xistence in the workload traces of Google’s cluster [33], in which

378
the past-time lags generally impacted the value of next time in-
terval. In fact, the LSTM networks are said to be more efficient and
robust to deal with such long-range dependence. Song et al. [34]
suggested a univariate LSTM networks, which rigorously analyze
the past CPU usage to forecast the future trends. In general, LSTMs
are advanced RNNs, which works well on sequential sub-time se-
ries with long-term dependencies. In addition to univariate time
series, [35,36], have observed that the multivariate approaches
produces most promising results in comparison to univariate
methods. Thus, this papers have applied all relevent features of
Google’s cluster workload traces such as CPU usage, maximum
disk I/O time, aggregated page cache usage, unmapped amount
of page cache, maximum CPU usages, per instruction memory ac-
cesses, disk I/O time and Cycles-Per-Instructions (CPIs), memory
assigned, utilized memory, maximum memory usage observed,
and space utilization of disk capacity etc. In addition to unidi-
rectional LSTM, [37], Zhao et al. presented a bidirectional way of
time-series network applying the extreme ML technique. Their
model have produced high prediction accuracy. In the works by
Gupta et al. [38], and [20], it is presented that the multivariate
LSTMs and BiLSTMs networks generated highly accurate results
on Google’s cluster traces.

2.3. Hybrid methods for cloud workload forecasting

Ensemble learning has introduced the hybrid methods inte-
grating the efficient deep learning models to detect some com-
plex time-series prediction in different areas such as wind speed,
energy load forecasting, traffic flow prediction, and financial
time-series [5,10,28,39,40]. In the work of [41] a three level multi-
model approach combining wavelet method, LSTM and ARIMA
are proposed for forecasting with chaotic time series. Some other
popular methods have combined the advantages of CNN and
bidirectional stacked LSTM networks [40] for machine health
monitoring. The authors in [42] proposed a hybrid approach
integrating 1D ConvNets with stacked LSTM blocks in workload
forecasting of Google data centers. Patel et al. proposed [43,44]
multivariate forecasting-based hotspots and coldspots mitigation
approach applying k means clustering with stacked BiLSTM net-
works for cloud workload forecasting. To explore the applications
of generative adversarial networks (GANs) for time-series fore-

casting, Yazdanian et al. [45] proposed a multiscale ensemble

Y.S. Patel and J. Bedi Future Generation Computer Systems 142 (2023) 376–392

m
t
p
p
i
M
p
m
a
h
M

3

3

h
d
f
1
e

T

w
T
s

T

s
w

J
u

T

t
m∑

w
s
i
m

H

f

λ

a

odel combining LSTM and GAN based deep learning archi-
ecture cloud workload forecasting, which has produced good
rediction results with fluctuating time-series. Behera et al. [46]
resented a multiscale deep bidirectional GRU based deep learn-
ng networks for remaining useful life (RUL) estimation on the C-
APSS dataset. In comparison with LSTM of three gates, GRU ap-
lied two gates. This method produces superior learning perfor-
ance than existing methods because of its simpler architecture
nd faster training yielding high prediction performance with
ighly fluctuating time-series and becomes one of the vertical of
AG-D architecture.

. Problem definition and theoretical background

.1. Problem definition

We have assumed the workload traces of a cloud data center
aving multiple resource usage metrics. In this context, multi-
imensional resource usage value Tru and resource usage metric
(memory or CPU usage) are recorded at regular intervals from
to n. Consequently, we can denote an individual time instance
ntry of cloud resource usage as:

ru = ⟨T 1
ru, T 2

ru, ... T n
ru⟩ (1)

here each entry T i
ru is a feature vector of the form ⟨T i1

ru , T i2
ru ...

if
ru⟩. T

if
ru represent the target resource usage metric f at ith time

tep.

n∗f
ru =

⎡⎢⎢⎢⎢⎢⎣
T 11
ru T 12

ru .. T 1f
ru

T 21
ru T 22

ru .. T 2f
ru

T 31
ru T 32

ru .. T 3f
ru

..

T n1
ru T n2

ru .. T nf
ru

⎤⎥⎥⎥⎥⎥⎦ (2)

T f
ru = ⟨T

1f
ru , T 2f

ru , ..., T nf
ru ⟩ is a multivariate time-series for

ystem’s state by implying other resource metrics T (n−1)∗(f−1)
ru

ith different time intervals.
We assume, training and testing resource usage set as H and

respectively. Now, the training and testing datasets of resource
sage can be denoted as:
train
ru = T (H)∗(f−1)

ru (3)

T test
ru = T (J)∗(f−1)

ru (4)

Ztrain = T (H)∗(f th)
ru (5)

Ztest = T (J)∗(f th)
ru (6)

So, the aim of our research study is to solve the resource usage
prediction problem by training a mapping function (F) between
he features set and the target usage values. Mathematically, the
apping function is given as:
n

i=1

Z H⇒ F(
n∑

i=1

T i∗(f−1)
ru) (7)

The optimization function can be formulated as:

minimize

√1
L

L∑
i=1

(Z i
train − F(Z i

train))2 (8)

here L denotes the total number of entries and Z i
train repre-

ents the actual resource usage at ith time instance in the train-
ng dataset. The F(Z i

train) denotes the forecasted resource usage
etric value using the mapping function F
379
Fig. 3. Unfolded RNN.

3.2. Theoretical background

3.2.1. RNNs
A typical artificial neural network (ANN) [47] has three lay-

ers namely input, output, & hidden layers. Assuming input data
denoted as x, and the output list and list of hidden states are
represented by y, and h respectively. To map the input to hidden
layer, a matrix Q is formed. To couple the hidden to hidden
layer connections, matrix R is constructed. Another matrix S maps
the output to hidden layer connections. But, the standard feed-
forward neural networks are failed in the scenarios of obtaining
patterns in input data over different timestamps. Whenever se-
quential inputs are involved, RNNs work efficiently. In general,
RNNs [48] are deep neural networks comprising a self-connected
hidden layer as shown in Fig. 3.

Let us assume a input sequence x for n time-steps data form-
ing: {x0, x1, x2, ·xn−1}, hidden state h, and output y. At time-step
t , we can express the hidden state ht as:

ht
= λ(Rht−1

+ Qxt + o1) (9)

The activation function is represented by λ and bias vector is
denoted by o1. In general, we can express the yt as:

yt = λ(Sht
+ o2) (10)

ere o2 is a bias vector for yt output.
For the non-linear activation function scenario, the sigmoid

unction can be formulated as:

(x) =
1

1+ e−x
(11)

RNNs are based on the concept of back-propagation. However,
one of the major limitation of simple RNN is ‘‘fading memory’’
due to the absence of standard structural formation. Due to
this, a traditional RNN model recollect only the most up to date
knowledge while neglecting the previous information.

3.2.2. LSTM networks
LSTMs [49] are mostly preferred to handle the long-range

dependence issue, and performs fabulously on sequence-based
tasks. The inclusion of hidden layer in the LSTM architecture
makes it different from the RNN architecture. The hidden layer
of LSTM model is also known as the LSTM cell. The fundamental
LSTM block architecture is represented in Fig. 4.

LSTM architecture includes a memory cell St , an input gate I t ,
n output gate Gt , and a forget gate F t . The activation functions

are Sigmoid and tanh denoted by σ and tanh, respectively. For
point-wise multiplication, the ⊗ is used. The xt expressed as the
input at time instant t while the ht is used for hidden state repre-
sentation. To decide the amount of input information in cell state,
K t is used as the candidate state of memory cell. (RF ,Q F) are used
for the recurrent and input weight metrics where as oF represent
the bias for forget gate. Sigmoid function σ suggests which values

t
are permitted to pass. The forget gate F is designed to validate

Y.S. Patel and J. Bedi Future Generation Computer Systems 142 (2023) 376–392

t
d

F

R
a

c

t
f

Fig. 4. LSTM.

he cell state contents. It decides which content requires to be
iscarded. It can be expressed as:
t
= σ (xt ∗ Q F

+ oF + ht−1 ∗ RF) (12)

Next, the cell state St is required to be updated with the new
contents collected via the previous cell state St−1, input and forget
gate.

St = St−1 ∗ F t
+ K t

∗ I t (13)

A tanh layer is primarily selected for constructing the new can-
didate values K t and formulated as:

K t
= tanh(oK + xt ∗ Q K

+ ht−1
∗ RK) (14)

I t = σ (oI + Q I
∗ xt−1 + RI

∗ ht−1) (15)

where (RK ,Q K , oK) and (RI ,Q I , oI) denote the weight matrices for
recurrent and input, and bias vector for the cell state of candidate
cell state and input gate correspondingly.

At-last, the output gate Gt is based on the cell state content.
The sigmoid activation function mainly determines that which
part of the fragment to be given as an output. It can be formulated
as:

Gt
= σ (oG + xt ∗ RG

+ ht−1
∗ RG) (16)

ht = Gt
∗ tanh(St) (17)

In the formulation, (RG,Q G) denote the weight metrics for re-
current and input and oG represents the output gate bias. In the
figure, the symbol ⊗ denotes the element-wise multiplication.

3.2.3. Bi-directional LSTM
In comparison with unidirectional LSTM, the bidirectional net-

works produces superior performance in several applications.
Bi-LSTMs [50] integrates the advantages of BiRNNs and LSTM
networks so that it can execute the input sequence in both the
directions. Fig. 5 represents the architecture of unfolded BiLSTM
layer.

The
−→
h expresses the forward layer output time sequence,

which is iteratively determined via the input sequence of time-
series from T − n to T − 1. Next, the

←−
h denotes the backward

layer output sequence, which is concertedly computed using the
reversed inputs sequence of time-series T − 1 to T − n. Applying
classical LSTM equations from Eqs. (12) to (17), the outputs of
forward and backward layer are obtained. Eventually, the BiLSTM
layer generates the YT output vector. In this vector, each element
is quantified by the following expression:

−→ ←−

yt = σ (h , h) (18) z

380
Fig. 5. Unfolded BiLSTM.

Fig. 6. GRU.

Here σ function merged the two output series. Next, the final
BiLSTM layer output vector is formed as, YT = [yT−n, . . . , yT−1].
Here the yT−1 describes the forecasted value of next time step.

3.2.4. GRU
GRU [51] forms a simpler architecture and widely known as

an alternative of LSTM. In the GRU architecture, the forget gate &
input gate are integrated within one unit named as update gate
utilizing only one hidden state. The fundamental structure of a
classical GRU cell is represented in Fig. 6.

Assuming input weight matrix as Q r , the recurrent weight
matrix as Rr with bias as or at a particular time-step t . The
reset gate g t is allocated to embodied past memory along with
new input. Once the r t is closed, whole associated information is
considered as unusable for the present hidden state and rejected.

g t
= σ (Rrht−1

+ Q rxt + or) (19)

Considering input weight matrix Qm, recurrent weight matrix
m, and bias om, the candidate cell ct is formulated using xt , ht−1

nd r t as:
t
= tanh(Rm((g t

⊕ ht−1
+ Qmxt + om))) (20)

While (Rz,Q z) denotes the (recurrent and input) weight ma-
rices and bias is represented as oz , update gate as zt , controls the
low on information via previous to present hidden state.
t z t−1 z t z

= σ (R h + Q x + o) (21)

Y.S. Patel and J. Bedi Future Generation Computer Systems 142 (2023) 376–392

p
p

Fig. 7. BiGRU.

Now, we can obtain the final hidden state ht through ap-
lying the addition operation of two composite expressions ap-
lying element-wise product as ⊗ for (1 − zt), ht−1 and zt , ct

correspondingly.

ht
= (1− zt)⊗ ht−1

+ zt ⊗ ct (22)

The lesser gates are advantageous and GRU to form a light-
weight and efficient architecture using lesser number of parame-
ters producing faster training in comparison with LSTM network.

3.2.5. BiGRU
GRU is useful for modeling of temporal dependency in the

sequential data across a longer period of time. Eventually, the
overall execution get degraded due to the consideration of only
past data while neglecting the future information. Bi-directional
GRUs [52] are useful to resolve these issues, a fundamental model
of BiGRU layer is shown in Fig. 7.

It is constructed using two stacked GRU layers: (i) first one
flows in the forward direction computing forward hidden states
as h⃗1, h⃗2, h⃗3, . . . h⃗t , and provided input in forward direction from
time-step 1 to t , and (ii) other one flows in backward direction
computing the backward hidden states denoted via

←−
h1 ,
←−
h2 ,
←−
h3 ,

·
←−
ht , where the input represents the opposite direction for time-
step t to 1, for any given c length of sequence. So that it can access
the information of past as well as future. The equations from
(23)–(26) represent the function of hidden layer for particular
time-step t . To formulate the functions for backward direction←−,
we utilized following equations:
←−
g t
= σ (
←−
Rr
←−−
ht+1
+
←−
Q r←−xt +

←−
or) (23)

←−
ct = tanh(

←−
Rm((
←−
g t
⊕
←−−
ht+1
+
←−
Qm←−xt +

←−
om))) (24)

←−
zt = σ (

←−
U z
←−−
ht+1
+
←−
Pz←−xt +

←−
oz) (25)

←−
ht
= (1−

←−
zt)⊕

←−−
ht+1
+
←−
zt ⊕
←−
ct (26)

Here the input weight matrices for
←−
xt input are denoted with

(
←−
Q r ,
←−
Qm,
←−
Q z) respectively.

For recurrent-weight matrices attached with hidden state
←−−
ht+1,

←−
Rr ,
←−
Rm,
←−
Rz are used respectively. To represent bias for the

backward process, we used
←−
or ,
←−
om,
←−
oz respectively. In a BiGRU

layer, the output of hidden state
←−
ht can be estimated using the

element-wise sum in both directions as follows:

ht
=
−→
ht
⊕
←−
ht (27)
381
Here ⊕ is used for performing the element-wise addition
operation, for forward direction hidden state

−→
ht , the time-series

input from 1 to t is provided. While the hidden state for backward
direction

←−
ht is computed by feeding the reverse time-series input

from t to 1.

4. Proposed MAG-D architecture for VM consolidation

The proposed MAG-D architecture is illustrated in Fig. 8. It
takes input the resource utilization dataset of VMs containing
spatial time steps data and forecasts the future CPU and memory
usage values in different time steps. Initially, the methodology
employs data preprocessing (moving average, scaling etc.) and
transformation (Eqs. (1) and (2)) steps to generate the data in
the required representation for input to the learning models.
Subsequently, the proposed strategy involving clustering and pre-
diction algorithms is applied to forecast the future resource usage
demand. The intuition behind incorporating a clustering algo-
rithm is to efficiently and accurately categorize similar usage
patterns or workload intensity samples into groups. This will
help the prediction models better delineate non-linear variations
usage patterns present in the data, thus returning better predic-
tion accuracy. An in-detailed explanation of the various phases
present in the proposed architecture are discussed as follows:

4.1. Data pre-processing

To solve workload prediction problems requires training mod-
els with past resource usage data characterizing the PM (Physical
Machine) and VM (Virtual Machine) resource usage behavior.
Nevertheless, in most of the scenarios, not all of the time in-
stances record the overall PM and VM utilization. Consequently,
applying the feature engineering process to identify trivial jobs is
suggested to minimize the model’s memory and computational
cost. For efficient cloud resource usage forecasting, we have used
multivariate analysis. This technique applies all relevant resource
usage metrics to identify the influence of all features on the target
metric. With feature engineering, the time-series decomposition
is performed, which helps to identify the data trends and the
correlation between them. The time-series decomposition applies
the moving average process to investigate the trends and seasonal
behaviors. In addition, the estimation of error components helps
to manage the undetermined events present in the time-series
data of resource usage.

4.1.1. Data normalization
The Google cluster’s traces comprises the workloads of eight

compute clusters. It keeps the information of all job submissions,
the decision of scheduling, and resource utilization data of each
job running on an individual cluster [33]. The resource usage
information is recorded for each 5-min period. We have dropped
the rows comprising the missing and incomplete information.
These resource usage data correspond to different scales. There-
fore, if we feed the data directly to the forecasting model, it may
result in out-of-proportion weights for different resource usage
metrics. It can further slow down the overall learning of the deep
learning network. Hence, we have performed the data normaliza-
tion using the min–max scaling approach to transform the input
resource usage data into some standard scale, i.e., range [0,1].

4.2. Proposed multivariate attention bidirectional GRU network

Algorithm 1 illustrates the step-by-step phases of the MAG-
D prediction model. At-first it performs the data preprocessing
(explained in Section 4.1), data transformation (Eqs. (1) and (2))

Y.S. Patel and J. Bedi Future Generation Computer Systems 142 (2023) 376–392

a
u

p
w
t
a
t
t
m

Fig. 8. MAG-D architecture for VM consolidation.
nd data segmentation [Algorithm 1: Steps 3 and 4 performed
sing Eqs. (3)–(6)] to form the time series inputs.
Further, the clustering analysis [Algorithm 1: Step 5] is im-

lemented on the time series inputs, which recognizes the group
ith similar intra-cluster patterns and varying inter-clusters pat-
erns. The current research study employs k-means clustering
pproach with DTW (Dynamic Time Warping) distance measure
o group input time series of the train set into G number of clus-
ers [Algorithm 1: Step 5]. The reason behind using DTW distance
easure is to efficiently utilize the time-varying characteristics
382
patterns of the input time series to identify clusters, which might
not be feasible through several other available distance measures
such as Euclidean, Manhattan etc. Another critical aspect of the
k-means algorithm is to determine the optimal value of k (num-
ber of clusters). In the current study, the value of the critical
clustering parameter k is determined using the elbow method.
Fig. 9 demonstrates the results of the elbow method applied to
the input resource usage dataset. From Fig. 9, it can be seen
that the optimal ‘k’ value for the dataset used in the present
study is 3. So, the k-means clustering with DTW is applied to

Y.S. Patel and J. Bedi Future Generation Computer Systems 142 (2023) 376–392

f
i
1
a

c
t
f
t
F
T
p
w
F
e
p
S
b
t
K
s
l
e
S
t

Algorithm 1: Proposed Algorithm
1 Input: Input Time-series T = {T1, T2, ... , Tn} where

Ti = {Ti1, Ti2, ..., Tix} here, n represents the samples and
x represents the features. Total iterations N;

2 Output: Proposed MAG-D model
3 Training TrainTi= Ti[0 : tr, :] where tr= len (Ti) * 0.80
4 Testing TestTi= Ti[tr :, :]
5 Apply Clustering process with DTW distance measure to

cluster input time-steps TrainTi into G clusters
{C1, C2, ..., CG}.

6 for each cluster Ci:
7 begin
8 Divide the time-series into two phases:
9 Training TrainCi= TrainTi [0 : tr, :] where tr= len

(TrainTi) * 0.90
10 Testing TestCi= TrainTi [tr :, :]
11 Train a prediction model amalgamating Bi-GRU and

Bi-LSTM with Attention Mechanism
12 begin
13 O1 ← Bi− GRU(W1, TrainCi)
14 O2 ← Bi− GRU(W2, O1), where W2 represents the

weights at layer 2.
15 O3 ← Bi− GRU(W3, O2)
16 O4 ← Bi− LSTM(W4, O3)
17 O5 ← Attention(W5, O4)
18 O6 ← Dense(W6, O5)
19 O7 ← Dense(W7), where O7 is the target output
20 Calculating the difference of actual and forecasted

values
21 Adjusting the weights of final layer and

intermediate hidden layers using
back-propagation strategy

22 Until the change in the error value during
successive iterations falls below the threshold
value (0.001)

23 For each testsample ∈ TestTi
24 begin
25 Computes the similarity with each Cluster Ci where i ∈

(0, G)
26 Identify the cluster Cs with maximum similarity
27 Use the Cluster model for test sample prediction.
28 Evaluate the forecasting performance of MAG-D approach

on complete test dataset.

identify three groups in the dataset. For out-of-sample prediction
in each cluster, we have divided the time series into two parts
[Algorithm 1: Steps 8–10]: (i) the training set having 90% of
resource usage samples and (ii) the test set having 10% of re-
source usage samples. The training set comprising training (80%)
and validation data (10%) is used for constructing the prediction
models. For building the deep learning architecture, we have
integrated the Bi-GRU and Bi-LSTMwith the attention mechanism
[Algorithm 1: Steps 13–21], which helps to extract relevant input
time series segments at individual timestamps and perform the
weight allocation process. It manages the temporal sequences
present in the dataset through such complex hidden feature
extraction. Each cluster is trained by applying the stacked Bi-GRU
and BiLSTM deep network learners. These stacked deep learner,
first comprises n Bi-GRU layers, which works as the primary
eature-learning layer, followed by an additional Bi-LSTM layer
s used for exhaustive and complex feature learning [Algorithm
: Steps 13–17]. The stacked networks can perform multi-step-
head forecasting using the past utilization of resource traces.
383
Fig. 9. Analysis for optimal value of k using Elbow method.

Moreover, the extracted weighted input resource utilization se-
ries are then fed to the fully connected network layers [Algorithm
1: Steps 18–19]. Once we get the target output, the model com-
putes the difference between the actual and forecasted resource
usage values to improve the model’s performance. It adjusts the
final layer’s weights and intermediate hidden layers using the
back-propagation technique [Algorithm 1: Step 21]. To evalu-
ate the model’s performance, we have the 10% of the test set
comprising the multivariate resource usage values. For each test
sample of the test set, it computes the similarity with each cluster
to identify the cluster having maximum similarity [Algorithm 1:
Steps 25–26] and then applies the cluster model for test sample
prediction [Algorithm 1: Step 27]. The overall performance of
the prediction model is evaluated on the complete test dataset
(Algorithm 1: Step 28).

4.3. Analysis of computational complexity

For estimating the overall computational complexity of pro-
posed model, we adopted the fundamental model of neural net-
work with R cells of hidden layer, V and Y number of inputs,
and outputs respectively [43,46]. Now, the total parameters for a
simple multi-layer perceptron (MLP) comprising a single hidden
layer expressed as: TPMLP = VR+RY . In the case of RNN, the total
parameters for all the hidden layer cells having RNN units, can be
expressed as: TPRNN = VR+R2

+RY , here R2 is used for recurrent
onnection. For LSTM cell having three gates with cell state, the
otal parameters expressed as TPLSTM = 4VR+4R2

+3R+RY . Now,
or a GRU cell having architecture of 2 gates with a hidden state,
he number of parameters are: TPGRU = 3VR + 3R2

+ 3R + RY .
or two stacked BiLSTM layers, the total parameters will be:
PBiLSTM = 2 ∗ PLSTM . Similarly for M number of layers, the com-
lexity is: SPBiLSTM = M ∗ PLSTM . For bi-directional GRUs (BiGRU),
e can represent the overall parameters as TPBiGRU = 2 ∗ PGRU .
or N number of stacked BiGRU layers, the total parameters are
xpressed through SPBiGRU = N ∗ PGRU . In the similar way, the total
arameters of attention layer can be expressed as TPatt = V 2

∗ R.
imilarly for J stacked attention layers, the total parameters will
e SPatt = J ∗ TPatt . For K fully connected layers, we can express
he total parameters of stacked fully connected layers as: SPFC =
∗ TPMLP . The architecture of MAG-D network comprises three

tacked BiGRU layers, one stacked Bi-LSTM layer, one attention
ayer, followed by two fully connected layers. Therefore, the gen-
ralized parameters for proposed network is: TMAG−D ≈ SPBiGRU +
PBiLSTM + SPatt + SPFC + in∗TPMLP . Here, we used in to express the
otal layers for intermediary features extraction and aggregation

Y.S. Patel and J. Bedi Future Generation Computer Systems 142 (2023) 376–392

f

T
c
d

5

5

r
T
i
m
a
h
r
d
o
t
t
e
t
o
v

or forwarding in the K fully connected layers. For ϱ training
epochs, the computational complexity of MAG-D architecture
will be: CompMAG−D ≈ O(TMAG−D ∗ ϱ). If we assume the same
input layer for all stacked networks. Finally, the computational
complexity of the MAG-D architecture for ϱ training epochs will
be: CompMAG−D ≈ O(R(R+ Y) ∗ ϱ).

5. Result discussions

5.1. Workload data

For performance validation, we have used the real traces of
Google cluster [33]. The workload data of the Google cluster has
12,500 PMs recorded in May 2011. This trace provides a complete
insight into the real cloud data center environment. In general,
the workload arrives at the cluster as jobs. It has the running-time
traces for more than 650 thousand real-time jobs performing dif-
ferent scheduling operations, including start, end and execution
times for 29 days. These jobs are scheduled on heterogeneous
physical machines with different cores and RAM. Each job in the
cluster trace is associated with a set of resource usage metrics
collected at different periods. The resource tables of all the traces
are divided into three classes, namely, Jobs & Tasks, Machines,
and Resource utilization. In which different features accompany
each class. For model testing, we have used the resource usage
table only. A brief summary of these resource usage metrics is
tabulated in Table 1. The tabulated resource metrics are available
in the resource usage table of Google cluster trace. The resource
usage values are accumulated at each 10-second time-steps. The
resource usage table has 20 columns and 12 types of resource
usage features. CPU usage is one of the most crucial resource
metrics. If jobs are taking longer to run than expected, then it
is typically the first place to observe. Memory usage forecasting
plays a vital role in the case of memory-intensive applications.
This work primarily focused on predicting future CPU usage and
memory utilization trends. Although, the proposed approach can
be extended for forecasting other resource metrics as well. We
have adopted univariate, bi-variate, and multivariate predictions
with Google cluster traces. For multivariate CPU and memory
usage prediction, all resource metrics are used. For univariate CPU
usage prediction, only the CPU usage metric is adopted. In the
case of univariate memory usage prediction, only the memory
usage metric is considered. For bivariate CPU and memory usage
prediction, we have considered both memory and CPU usage
metrics. During the pre-processing data phase, we dropped the
rows with incomplete and missing information. Moreover, we
have consolidated the rows to transform the 5 min of usage data
for a single row of forecasting. For deep learning models training,
in total, 86,880 samples comprising ten days of total workload
are utilized. The dataset is divided into training, validation, and
test sets. During the validation phase, hyper-parameter tuning is
performed. Afterwards, we have selected the best fitting param-
eters for the individual model for future workload forecasting in
the next 90, 180, and 270 steps, respectively. These three predic-
tion horizons are useful for analyzing out-of-sample predictions.
Generally, the computational load of a cloud data center is highly
fluctuating and time-varying in nature; thus, if a forecasting
model captures trends for one forecasting horizon may not be
suitable for another forecasting horizon [53]. Therefore, in this
study, we have analyzed three prediction horizons to obtain the
best one. A machine with Ubuntu 20.04, 64-bit, 48 cores Intel
Xeon Gold Processor, 256 GB RAM and A4000 GPU is used for
training of models.
 s

384
Table 1
Resource utilization metrics.
Type of metrics Description

CPU Aggregated CPU utilization
MEM Aggregated memory usage
MAXM Maximum memory usage observed
VM Allocated memory
MAXC Maximum CPU usage
TPC Total page cache utilization
CPI CPI over all nodes
UPC Aggregated unmapped page cache
MAI Memory accesses per instruction
MAXD Maximum disk I/O time detected
DSP Disk capacity space usage
DIO Disk I/O time over all disks

5.2. Performance parameters

Estimating the prediction capability and reliability of the pre-
diction models is a critical task. In this research work, we have
utilized two widely adopted performance metrics for MAG-D
approach efficacy validation, namely MAE: Mean Absolute Error
and RMSE: Root Mean Squared Error. The details of these listed
measures are given as follows:

• RMSE: determines the quality of the predictions by measur-
ing the standard deviation of the error. Mathematically, it is
formulated as follows:

RMSE =

√∑T
t=1(atr − ptr)2

T
(28)

where r represents the resource usage metric (CPU or Mem-
ory), T represents the prediction time horizon or number of
samples to consider (90, 180 and 270 steps), and the actual
values & predicted values at timestamp t are denoted as at
and pt respectively.
• MAE: estimates the quality of predictions by determining

the average magnitude of forecasting errors. The mathemat-
ical equation for MAE is given as:

MAE =
∑T

t=1 |a
t
r − ptr |

T
(29)

he current research work implies the repetitive multi-step fore-
asting to predict the usages of CPU & memory resources at three
ifferent time horizons.

.3. Experimental results and discussions

.3.1. Effect of network parameters
Parameters that control the learning or define the architectural

epresentation of a neural model are termed hyper-parameters.
hey are critical as their value may impact the overall general-
zation capability, learning and forecasting accuracy of the target
odel. Deciding the best/optimal value of hyper-parameters for
given problem is a challenging task. There are no universal
yper-parameters’ value that can be well-adopted for solving
esearch problems pertaining to different application domains or
atasets. In this context, a process employed to determine the
ptimal value of models’ parameters is termed hyper-parameter
uning. There are different ways to perform hyper-parameters
uning, such as random search, grid search, bayesian optimization
tc. In the current study, the grid search strategy is employed
o estimate the optimal hyper-parameters value of the devel-
ped neural models. The strategy begins by defining the possible
alues of all hyper-parameters related to a target model. Sub-

equently, the model is trained for all possible combinations

Y.S. Patel and J. Bedi Future Generation Computer Systems 142 (2023) 376–392

6
f
a
l
t
t

‘
l
h
R
s

Table 2
Hyper-parameters estimation for MAG-D.
Activation function : ReLU

RMSE/Batch size CPU usage (In steps) Memory usage (In steps)

90 180 270 90 180 270

16 0.00506 0.00511 0.00514 0.00382 0.00385 0.00385
32 0.00522 0.00527 0.00529 0.00378 0.00380 0.00381
64 0.00510 0.00516 0.00518 0.00388 0.00390 0.00391
128 0.00514 0.00519 0.00521 0.00380 0.00383 0.00384
256 0.00521 0.00526 0.00528 0.00389 0.00390 0.00392

Activation function : Tanh

RMSE/Batch size CPU usage (In steps) Memory usage (In steps)

90 180 270 90 180 270

16 0.00514 0.00518 0.00520 0.00397 0.00399 0.00399
32 0.00513 0.00517 0.00519 0.00394 0.00396 0.00397
64 0.00510 0.00515 0.00517 0.00390 0.00392 0.00393
128 0.00515 0.00520 0.00522 0.00387 0.00389 0.00390
256 0.00511 0.00515 0.00517 0.00403 0.00404 0.00404
a
h
c

5

i
p
p
G
g
D
e
f
a
t
t
v
u
h
o
m
s
i
o
a
t

t
M
a
1
s
p
t
T
p
e
a
a
f
s
o
i
e

f

Table 3
Hyper-parameter specification.
Architecture Details

Name of parameter Range

Input layer neurons Depends on input features dimension
BiLSTM layer neurons [4–60]
Final layer (Dense) neurons 1
Training step/epochs [70–400]
Dropout rate [0.01–0.3]
Batch size [16–256]
Optimizer adam
Activation function ReLU/Tanh
Loss function Mean squared error

of hyper-parameters values, and the corresponding error val-
ues are evaluated. Finally, the combination of hyper-parameters
value with the least error is selected for the model building
and prediction activities. To demonstrate the working of the
grid approach, an example representation considering two hyper-
parameters (Activation Function and Batch Size) is presented.
Initially, the possible values for both parameters are specified
i.e., Activation Function: {‘Tanh’, ‘ReLU ’} and Batch Size: {16, 32,
4, 128, 256}. Subsequently, the target Proposed model is trained
or all possible combinations of both hyper-parameters values,
nd the corresponding RMSE error values are recorded. Table 2
ist the RMSE value obtained for the different combinations of
hese hyper-parameters values. From the results listed in Table 2,
he following observations are drawn:

• Performance comparison achieved by two activation func-
tions combined with different batch sizes is highly compa-
rable. However, the best performance has been achieved by
employing the ‘ReLU ’ activation function in both CPU usage
and Memory usage prediction tasks.
• Increasing Batch size (>64) has resulted in increased RMSE

for both ‘Tanh’ and ‘ReLU ’ activation functions. The best per-
formance has been achieved by keeping batch_size = 16 in
case of CPU usage prediction. A similar trend in RMSE vari-
ations is observed in the memory usage prediction model,
and the best results were obtained by setting batch_size
equal to 32.

Finally, the hyper-parameters (‘ReLU ’ + batch_size_16 and
ReLU ’ + batch_size_32) combinations with least RMSE are se-
ected for the target model building and prediction tasks. The
ighlighted value in Table 2 represents the best models’ (least
MSE values) hyper-parameters. The aforementioned grid search
trategy has been adopted to determine the optimal value of
385
ll hyper-parameters of the proposed approach. The details of
yper-parameters related to the proposed MAG-D approach and
orresponding values are listed in Table 3.

.3.2. Comparison with other recurrent neural networks
This section entails discussing the performance of the var-

ous forecasting models at the CPU usage and Memory usage
rediction tasks. In the current study, we have developed eight
rediction models, namely ARIMA [13], Linear Regression [43],
RU [43], LSTM [20,38] Bi-LSTM [43], Bi-GRU [46], CNN inte-
rated LSTM (CNN + LSTM) [40] and proposed Approach (MAG-
) for the target prediction tasks. Moreover, three variants of
ach model have been developed and trained covering different
eatural aspects of the input dataset, i.e. uni-variate, bi-variate
nd all features. Hence, a total of (8 ∗ 3) = 24 models, including
raditional and deep neural models, were built for conducting
he comparative performance evaluation. The performance in-
estigation of these models is done for out-of-the-sample CPU
tilization & Memory usage prediction at three different time
orizons (i.e., 90, 180, and 270 steps). The comparative analysis
f the models is performed by utilizing two popular performance
etrics (RMSE and MAE) discussed in the section. The corre-
ponding evaluation results of the different models are listed
n Tables 4–9. Tables 4 and 5 summarize the prediction results
f the eight models considering all features of the CPU usage
nd Memory usage tasks. The prediction results are presented in
erms of RMSE (Table 4) and MAE values (Table 5).

Similarly, Tables 6 and 7 represents the prediction result of
he uni-variate prediction models on the target CPU usage and
emory usage tasks. The prediction performance is estimated
nd represented at three different time intervals, i.e., 90 steps,
80 steps and 270 steps ahead. Following this pattern, the re-
ults of bi-variate prediction models in terms of RMSE and MAE
rediction errors are listed in Tables 8 and 9, respectively. From
he comparative evaluation of RMSE and MAE results listed in
ables 4–9, it has been investigated that the proposed MAG-D ap-
roach outperforms all other conventional and deep neural mod-
ls considering different sets of features (uni-variate, bi-variate
nd all features). However, the proposed approach (MAG-D) has
chieved the best prediction performance while considering all
eatures aspects of the Google cluster dataset. Also, we have ob-
erved that as the step size increases, the prediction performance
f all developed models degrades. The possible reason behind this
s the accumulation of errors from performing multi-steps ahead
xecution of out-of-the-sample forecasting.
Furthermore, to have an in-depth analysis of the model per-

ormance, we have plotted radar graphs representing the results

Y.S. Patel and J. Bedi Future Generation Computer Systems 142 (2023) 376–392
Table 4
RMSE analysis for all features.
RMSE CPU usage (In steps) Memory usage (In steps)

Model All features

90 180 270 90 180 270

ARIMA [13] 0.00762 0.00773 0.00777 0.00535 0.00535 0.00536
Linear Regression [43] 0.00531 0.00535 0.00537 0.00424 0.00424 0.00425
GRU [43] 0.00539 0.00545 0.00547 0.00409 0.00411 0.00412
LSTM [38] 0.00533 0.00537 0.00539 0.00411 0.00413 0.00414
BiLSTM [20] 0.00539 0.00544 0.00547 0.00411 0.00413 0.00414
BiGRU [46] 0.00527 0.00534 0.00537 0.00390 0.00393 0.00395
CNN + LSTM [40] 0.00529 0.00534 0.00536 0.00399 0.00403 0.00404
Proposed approach 0.00506 0.00511 0.00514 0.00378 0.00380 0.00381
Table 5
MAE analysis for all features.
MAE CPU usage (In steps) Memory usage (In steps)

Model All features

90 180 270 90 180 270

ARIMA [13] 0.00513 0.00515 0.00516 0.00313 0.00314 0.00315
Linear Regression [43] 0.00382 0.00383 0.00383 0.00262 0.00262 0.00263
GRU [43] 0.00383 0.00383 0.00383 0.00275 0.00275 0.00275
LSTM [38] 0.00390 0.00390 0.00391 0.00279 0.00280 0.00280
BiLSTM [20] 0.00388 0.00389 0.00390 0.00281 0.00282 0.00282
BiGRU [46] 0.00369 0.00372 0.00373 0.00248 0.00250 0.00251
CNN + LSTM [40] 0.00390 0.00391 0.00392 0.00256 0.00257 0.00258
Proposed approach 0.00349 0.00351 0.00352 0.00228 0.00230 0.00230 -
Table 6
RMSE analysis for univariate.
RMSE CPU usage (In steps) Memory usage (In steps)

Model Univariate

90 180 270 90 180 270

ARIMA [13] 0.00667 0.00674 0.0064 0.00488 0.00488 0.00485
Linear Regression [43] 0.00553 0.00557 0.00559 0.00475 0.00475 0.00476
GRU [43] 0.00555 0.00559 0.0056 0.00449 0.0045 0.0045
LSTM [38] 0.00555 0.00559 0.00561 0.00451 0.00451 0.00452
BiLSTM [20] 0.00555 0.00559 0.00561 0.00450 0.0045 0.00451
BiGRU [46] 0.00555 0.00559 0.00560 0.00451 0.00452 0.00451
CNN + LSTM [40] 0.00586 0.00589 0.00590 0.00467 0.00466 0.00467
Proposed approach 0.00553 0.00556 0.00558 0.00433 0.00434 0.00434
Table 7
MAE analysis for univariate.
MAE CPU usage (In steps) Memory usage (In steps)

Model Univariate

90 180 270 90 180 270

ARIMA [13] 0.00461 0.00461 0.00463 0.00488 0.00489 0.00485
Linear Regression [43] 0.00394 0.00395 0.00395 0.00298 0.00298 0.00299
GRU [43] 0.00402 0.00402 0.00403 0.00292 0.00292 0.00293
LSTM [38] 0.00403 0.00404 0.00404 0.00287 0.00287 0.00288
BiLSTM [20] 0.00403 0.00404 0.00404 0.00287 0.00287 0.00288
BiGRU [46] 0.00397 0.00399 0.00399 0.00293 0.00294 0.00294
CNN + LSTM 0.00442 0.00443 0.00443 0.00320 0.00321 0.00321
Proposed approach 0.00383 0.00385 0.00389 0.00264 0.00265 0.00265
Table 8
RMSE analysis for bivariate.
RMSE CPU usage (In steps) Memory usage (In steps)

Model Bivariate

90 180 270 90 180 270

ARIMA [13] 0.01087 0.01113 0.01122 0.00545 0.00546 0.00546
Linear Regression [43] 0.00549 0.00553 0.00555 0.00473 0.00473 0.00473
GRU [43] 0.00546 0.0055 0.00552 0.00444 0.00445 0.00445
LSTM [38] 0.00542 0.00546 0.00548 0.00451 0.00451 0.00451
BiLSTM [20] 0.0054 0.00545 0.00546 0.00456 0.00456 0.00457
BiGRU [46] 0.00541 0.00545 0.00546 0.00445 0.00446 0.00447
CNN + LSTM [40] 0.00591 0.00594 0.00595 0.00464 0.00464 0.00465
Proposed approach 0.00533 0.00538 0.00540 0.00429 0.00430 0.00430
386

Y.S. Patel and J. Bedi Future Generation Computer Systems 142 (2023) 376–392

f
F
o
(
m
a
t
i
a

5

b
t
a
p
t
p
a
v
a
T
o
m
o

Table 9
MAE analysis for bivariate.
MAE CPU usage (In steps) Memory usage (In steps)

Model Bivariate

90 180 270 90 180 270

ARIMA [13] 0.00482 0.00484 0.00489 0.00314 0.00315 0.00316
Linear Regression [43] 0.00396 0.00395 0.00396 0.00296 0.00296 0.00296
GRU [43] 0.00395 0.00394 0.00394 0.00278 0.00279 0.00279
LSTM [38] 0.00396 0.00396 0.00397 0.00279 0.00279 0.00280
BiLSTM [20] 0.00395 0.00396 0.00396 0.00277 0.00277 0.00278
BiGRU [46] 0.00391 0.00392 0.00392 0.00274 0.00274 0.00275
CNN + LSTM [40] 0.00459 0.00459 0.00460 0.00309 0.00310 0.00310
Proposed approach 0.00357 0.00358 0.00359 0.00246 0.00247 0.00247
Table 10
Comparison of model training time (in ms).
Time (ms) CPU Memory

Models Univariate Bivariate Multivariate Univariate Bivariate Multivariate

ARIMA [13] 1 180000 1230000 1590000 1149000 1273000 1446000
Linear Regression [43] 27.78 24.44 52.499 16.25 26.90 79.90
GRU [43] 5 4 4 3 4 4
LSTM [38] 5 5 4 4 3 4
BiLSTM [20] 5 8 5 4 8 5
BiGRU [46] 7 8 8 7 5 8
CNN + LSTM [40] 4 4 11 5 4 8
Proposed approach 3 4 3 2 3 3
of all models developed in the present study. The charts are
demonstrated in Figs. 10 and 11. Figs. 10 and 11 represent graphs
depicting the RMSE and MAE errors of all models at three dif-
ferent timestamps ahead forecasting (90 steps, 180 steps and
270 steps), respectively. The triangular area covered by each
model is representative of the model prediction accuracy. The
more area covered by a model, the less accurate the model is at
future patterns estimation. From Figs. 10 and 11, it can be easily
observed that the triangular area covered by the proposed ap-
proach is significantly very less than all other models developed
in the study. Hence, it can be concluded that the proposed MAG-
D approach attains the best forecasting accuracy than all other
existing models developed in the current work.

The present study also involves analyzing the aggregated per-
ormance of the MAG-D approach at the target prediction tasks.
or this purpose, the stacked graphs representing the RMSE error
f the different prediction models are presented in Fig. 12(a)–
c). These graphs demonstrate the aggregated performance of the
odels for out-of-the-sample forecasting at 90 steps, 180 steps
nd 270 steps ahead forecasting. These graphs clearly represent
hat the proposed approach has the least error, thus, validat-
ng the prediction performance and reliability of the MAG-D
pproach.

.3.3. Prediction results visualization on Google cluster dataset:
The current section demonstrates the prediction plots of the

est prediction model on the Google Cluster Trace dataset. From
he comparative evaluation of the prediction models, it has been
nalyzed that the proposed MAG-D model has shown the best
rediction accuracy for out-of-the sample prediction at different
ime horizons (90 steps, 180 steps and 270 steps). Hence, the
rediction plots corresponding to the proposed MAG-D approach
re presented in Fig. 13(a)–(f). These plots visualize the actual
alues and predicted output of the proposed approach on the CPU
nd memory usage tasks at different step sizes ahead forecasting.
he blue line in these figures represents the actual output, and the
range line represents the generated output from the prediction
odel. The x-axis and y-axis of the figures represent the number
f samples/timestamps and CPU/Memory usage, respectively. The
387
figures show that the MAG-D approach effectively captures the
sudden chaotic and non-linear variations of the trend patterns.
Hence, the approach can be reliably employed in real-time sce-
narios to predict the CPU and Memory usage patterns at different
step sizes.

5.3.4. Comparison of model training time
In this subsection, we compare the training time of all the

models. The experimental environment setup comprises Ubuntu
20.04, a 64-bit system with 48 cores Intel Xeon Gold Proces-
sor, 256 GB RAM and A4000 GPU. Table 10 presents the model
training time of ARIMA, Linear Regression, GRU, LSTM, BiLSTM,
BiGRU, CNN+LSTM, and the proposed approach. The training time
is recorded for each epoch, and their mean value is presented in
the table. We have compared the training time for univariate, bi-
variate, and multivariate prediction models for CPU and memory
usage separately. As shown in Table 10, it is observed that the
training time of ARIMA was longer than the other approaches.
While, the Linear Regression takes more training time than the
GRU, LSTM, BiLSTM, BiGRU, CNN+LSTM, and proposed approach.
The model training time of the proposed approach is the least.
In the case of CPU usage, it took about 3 ms, 4 ms, and 3 ms
per epoch to train a model for univariate, bi-variate, and mul-
tivariate prediction models, respectively. In the case of memory
usage, it took nearly 2 ms, 3 ms, and 3 ms per epoch to train
a model for univariate, bi-variate, and multivariate prediction
models correspondingly. In addition to the above-listed model
training time, the proposed approach takes additional time (‘t
seconds’) to perform single pass time-series clustering, which
increases the total model building time of the proposed approach.
However, as we perform clustering only once, the aforemen-
tioned executing requirements are relatively easy to accomplish,
thus, making the proposed approach more applicable in practice.

Discussion Regarding Model Retraining Requirements:
Cloud workload forecasting is a complex and challenging task due
to the non-linear and abrupt variations in the usage demand. The
varying usage demand comprises input patterns from two major
classes, namely known or estimated deviations (growth over
the years) and unknown irregular demand patterns (completely

Y.S. Patel and J. Bedi Future Generation Computer Systems 142 (2023) 376–392

u
C
a
a
t
b
r
e
S
p

Fig. 10. Models’ performances (RMSE) comparison.
npredictable such as the number of users increased during the
OVID period). In the present approach, we proposed an efficient
pproach ‘MAG-D’ to estimate the future cloud workload patterns
ccurately. However, one critical aspect that needs attention in
his context is model retraining, i.e. when the model needs to
e retrained over the new incoming data to maintain desired
eliability and accuracy. No global method exists to determine the
xact time after which the retraining process must be executed.
o, the machine learning or deep learning models need to be
eriodically updated with new data to maintain the desired
388
performance. Besides this, there are several other factors on
which the model retraining may depend, such as performance
degradation over new data, changes in the target features or data
(prediction variable) distribution patterns.

6. Conclusion

This study presents ‘MAG-D’, a multivariate attention bidirec-
tional GRU-based deep learning architecture for multistep-ahead
workload forecasting in cloud data centers. It takes the input

Y.S. Patel and J. Bedi Future Generation Computer Systems 142 (2023) 376–392
Fig. 11. Models’ performances (MAE) comparison.
resource utilization dataset of VMs containing data of spatial
time steps and forecasts the CPU and memory usage values in
different time steps. For building the deep learning architecture,
we have integrated the stacked Bi-GRU and Bi-LSTM with the
attention mechanism, which helps to extract relevant input time
series segments at individual timestamps and perform the weight
389
allocation process. The stacked networks are capable of perform-
ing the multi-step-ahead cloud resource predictions implying
the past resource utilization traces. Firstly, it forecasts the CPU
and memory usage using the MAG-D deep learning architecture.
The forecasting of future resource usage helps in VM consoli-
dation during energy-efficient cloud resource management. This
study performs trace-driven simulations utilizing Google’s cluster

Y.S. Patel and J. Bedi Future Generation Computer Systems 142 (2023) 376–392
Fig. 12. Aggregated RMSE performance comparison for proposed approach with state-of-the-art prediction models’.
traces. The results are promising and achieve notable improve-
ments over recent prediction models in terms of RMSE and MAE
performance matrices. In future, we will extend this work to
carbon emission reduction in geo-distributed cloud data centers.

CRediT authorship contribution statement

Yashwant Singh Patel: Conceived the study, Performed the
numerical experiments, Analyzed the data, Wrote the manuscript.
Jatin Bedi: Conceived the study, Performed the numerical exper-
iments, Analyzed the data, Wrote the manuscript.
390
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data is publicly available.

Y.S. Patel and J. Bedi Future Generation Computer Systems 142 (2023) 376–392

R

Fig. 13. Visualization of prediction results of the proposed approach.
eferences

[1] J. Kumar, R. Goomer, A.K. Singh, Long short term memory recurrent
neural network (LSTM-RNN) based workload forecasting model for cloud
datacenters, Procedia Comput. Sci. 125 (2018) 676–682, http://dx.doi.org/
10.1016/j.procs.2017.12.087.

[2] Q. Zhang, L.T. Yang, Z. Yan, Z. Chen, P. Li, An efficient deep learning model
to predict cloud workload for industry informatics, IEEE Trans. Ind. Inform.
14 (2018) 3170–3178, http://dx.doi.org/10.1109/TII.2018.2808910.

[3] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, Ivona
Brandic, Cloud computing and emerging IT platforms: Vision, hype, and
reality fordelivering computing as the 5th utility, Future Gener. Comput.
Syst. 25 (6) (2009) 599–616.

[4] S. Jeddi, S. Sharifian, A hybrid wavelet decomposer and GMDH-ELM
ensemble model for network function virtualization workload forecasting
in cloud computing, Appl. Soft Comput. (2020) http://dx.doi.org/10.1016/j.
asoc.2019.105940.

[5] A. Mozo, B. Ordozgoiti, S. Gómez-Canaval, Forecasting short-term data
center network traffic load with convolutional neural networks, PLoS ONE
(2018) http://dx.doi.org/10.1371/journal.pone.0191939.

[6] M. Amiri, L. Mohammad-Khanli, R. Mirandola, An online learning model
based on episode mining for workload prediction in cloud, Future Gener.
Comput. Syst. 87 (2018) 83–101, http://dx.doi.org/10.1016/j.future.2018.04.
044.

[7] S. Sharifian, M. Barati, An ensemble multiscale wavelet-GARCH hybrid SVR
algorithm for mobile cloud computing workload prediction, Int. J. Mach.
Learn Cybern. 10 (2019) 3285–3300, http://dx.doi.org/10.1007/s13042-
019-01017-.

[8] J. Kumar, A.K. Singh, R. Buyya, Ensemble learning based predictive frame-
work for virtual machine resource request prediction, Neurocomputing
(2020) http://dx.doi.org/10.1016/j.neucom.2020.02.014.

[9] Deborah Magalhães, et al., Workload modeling for resource usage analysis
and simulation in cloud computing, Comput. Electr. Eng. 47 (2015) 69–81.

[10] Jatin Bedi, Durga Toshniwal, Energy load time-series forecast using decom-
position and autoencoder integrated memory network, Appl. Soft Comput.
93 (2020).

[11] J. Bedi, Attention based mechanism for load time series forecasting: AN-
LSTM, in: International Conference on Artificial Neural Networks, Springer,
Cham, 2020, pp. 838–849.

[12] S. Subramanian, A. Kannammal, Real time non-linear cloud workload
forecasting using the holt-winter model, in: Proc. 10th International
Conference on Computing, Communication and Networking Technologies,
ICCCNT, Kanpur, India, 2019, pp. 1–6.

[13] Qi Zhang, Mohamed Faten Zhani, Shuo Zhang, Quanyan Zhu, Raouf
Boutaba, Joseph L. Hellerstein, Dynamic energy-aware capacity provision-
ing for cloud computing environments, in: Proc. International Conference
391
on Autonomic Computing, ICAC, ACM, New York, NY, USA, 2012, pp.
145–154.

[14] V. Podolskiy, A. Jindal, M. Gerndt, Y. Oleynik, Forecasting models for self-
adaptive cloud applications: A comparative study, in: Proc. IEEE 12th
International Conference on Self-Adaptive and Self-Organizing Systems,
SASO, Trento, Italy, 2018, pp. 40–49.

[15] Z. Gong, X. Gu, J. Wilkes, PRESS: PRedictive Elastic ReSource Scaling for
cloud systems, in: Proc. International Conference on Network and Service
Management, CNSM, IEEE, Niagara Falls, ON, Canada, 2010, pp. 9–16.

[16] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, J. Wilkes, AGILE: elastic distributed
resource scaling for infrastructure-as-a-service, in: Proc. 10th International
Conference on Autonomic Computing, ICAC, USENIX, San Jose, CA, 2013,
pp. 69–82.

[17] Y.S. Patel, R. Misra, Performance comparison of deep VM workload pre-
diction approaches for cloud, in: P. Pattnaik, S. Rautaray, H. Das, J. Nayak
(Eds.), Progress in Computing, Analytics and Networking, in: Advances in
Intelligent Systems and Computing, vol. 710, Springer, Singapore, 2018.

[18] S. Hochreiter, J.U. Schmidhuber, Long shortterm memory, Neural Comput.
9 (1997) 1735–1780.

[19] M. Ghorbani, Y. Wang, Y. Xue, M. Pedram, P. Bogdan, Prediction and
control of bursty cloud workloads: a fractal framework, in: Proc. Interna-
tional Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2014, pp. 1–9.

[20] S. Gupta, A.D. Dileep, T.A. Gonsalves, A joint feature selection framework
for multivariate resource usage prediction in cloud servers using stability
and prediction performance, J. Supercomput. 74 (11) (2018) 6033–6068.

[21] Maryam Amiri, Leyli Mohammad-Khanli, Raffaela Mirandola, A sequen-
tial pattern mining model for application workload prediction in cloud
environment, J. Netw. Comput. Appl. 105 (2018) 21–62.

[22] Li Ruan, et al., Workload time series prediction in storage systems: a deep
learning based approach, Cluster Comput. (2021) 1–11.

[23] Jing Bi, et al., Integrated deep learning method for workload and resource
prediction in cloud systems, Neurocomputing 424 (2021) 35–48.

[24] P. Singh, P. Gupta, K. Jyoti, TASM: technocrat ARIMA and SVR model for
workload prediction of web applications in cloud, Clust. Comput. 22 (2)
(2018) 619–633.

[25] Mohammad S. Aslanpour, et al., AutoScaleSim: A simulation toolkit for
auto-scaling Web applications in clouds, Simul. Model. Pract. Theory 108
(2021) 102245.

[26] F. Caglar, A. Gokhale, iOverbook: Intelligent resource overbooking to sup-
port soft real-time applications in the cloud, in: Proc. IEEE 7th International
Conference on Cloud Computing, CLOUD, IEEE, Anchorage, AK, USA, 2014,
pp. 538–545.

[27] Sun-Yuan Hsieh, Cheng-Sheng Liu, Rajkumar Buyya, Albert Y. Zomaya,
Utilization-prediction-aware virtual machine consolidation approach for
energy-efficient cloud data centers, J. Parallel Distrib. Comput. 139 (C)
(2020) 99–109, (May 2020).

http://dx.doi.org/10.1016/j.procs.2017.12.087
http://dx.doi.org/10.1016/j.procs.2017.12.087
http://dx.doi.org/10.1016/j.procs.2017.12.087
http://dx.doi.org/10.1109/TII.2018.2808910
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb3
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb3
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb3
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb3
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb3
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb3
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb3
http://dx.doi.org/10.1016/j.asoc.2019.105940
http://dx.doi.org/10.1016/j.asoc.2019.105940
http://dx.doi.org/10.1016/j.asoc.2019.105940
http://dx.doi.org/10.1371/journal.pone.01919 39
http://dx.doi.org/10.1016/j.future.2018.04.044
http://dx.doi.org/10.1016/j.future.2018.04.044
http://dx.doi.org/10.1016/j.future.2018.04.044
http://dx.doi.org/10.1007/s13042-019-01017-
http://dx.doi.org/10.1007/s13042-019-01017-
http://dx.doi.org/10.1007/s13042-019-01017-
http://dx.doi.org/10.1016/j.neucom.2020.02.014
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb9
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb9
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb9
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb10
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb10
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb10
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb10
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb10
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb11
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb11
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb11
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb11
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb11
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb12
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb12
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb12
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb12
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb12
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb12
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb12
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb13
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb13
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb13
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb13
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb13
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb13
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb13
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb13
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb13
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb14
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb14
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb14
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb14
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb14
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb14
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb14
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb15
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb15
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb15
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb15
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb15
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb16
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb16
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb16
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb16
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb16
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb16
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb16
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb17
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb17
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb17
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb17
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb17
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb17
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb17
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb18
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb18
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb18
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb19
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb19
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb19
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb19
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb19
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb19
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb19
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb20
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb20
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb20
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb20
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb20
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb21
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb21
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb21
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb21
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb21
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb22
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb22
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb22
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb23
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb23
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb23
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb24
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb24
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb24
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb24
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb24
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb25
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb25
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb25
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb25
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb25
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb26
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb26
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb26
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb26
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb26
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb26
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb26
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb27
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb27
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb27
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb27
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb27
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb27
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb27

Y.S. Patel and J. Bedi Future Generation Computer Systems 142 (2023) 376–392
[28] H. Wang, G. Li, G. Wang, J. Peng, H. Jiang, Y. Liu, Deep learning based
ensemble approach for probabilistic wind power forecasting, Appl. Energy
188 (2017) 56–70.

[29] H. Assem, S. Ghariba, G. Makrai, P. Johnston, L. Gill, F. Pilla, Urban water
flow and water level prediction based on deep learning, in: Computer Sci-
ence (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
in: LNAI, vol. 10536, 2017, pp. 317–329.

[30] A.J. Hussain, D. Al-Jumeily, H. Al-Askar, N. Radi, Regularized dynamic self-
organized neural network inspired by the immune algorithm for financial
time series prediction, Neurocomputing 188 (2016) 23–30.

[31] S. Jeddi, S. Sharifian, A water cycle optimized wavelet neural network
algorithm for demand prediction in cloud computing, Clust. Comput. 22
(2019) 1397–1412.

[32] L. Mo, L. Xie, X. Jiang, G. Teng, L. Xu, J. Xiao, GMDH-based hybrid model
for container throughput forecasting: Selective combination forecasting
in nonlinear subseries, Appl. Soft Comput. J. 62 (2018) 478–490, http:
//dx.doi.org/10.1016/j.asoc.2017.10.033.

[33] C. Reiss, J. Wilkes, J.L. Hellerstein, Google cluster-usage traces: format +
schema, 2011, https://github.com/google/cluster-data.

[34] B. Song, Y. Yu, Y. Zhou, et al., Host load prediction with long short-term
memory in cloud computing, J. Supercomput. 74 (2018) 6554–6568.

[35] K. Chakraborty, K. Mehrotra, C.K. Mohan, S. Ranka, Forecasting the behavior
of multivariate time series using neural networks, Neural Netw. 5 (6)
(1992) 961–970.

[36] P. Aboagye-Sarfo, et al., A comparison of multivariate and univariate time
series approaches to modelling and forecasting emergency department
demand in Western Australia, J. Biomed. Inform. 57 (2015) 62–73.

[37] Y. Zhao, L. Ye, Z. Li, X. Song, Y. Lang, J. Su, A novel bidirectional mechanism
based on time series model for wind power forecasting, Appl. Energy 177
(2016) 793–803.

[38] S. Gupta, D.A. Dinesh, Resource usage prediction of cloud workloads
using deep bidirectional long short term memory networks, in: Proc.
International Conference on Advanced Networks and Telecommunications
Systems, ANTS, IEEE, Bhubaneswar, 2017, pp. 1–6.

[39] G. Lai, W.C. Chang, Y. Yang, H. Liu, Modeling long- and short-term temporal
patterns with deep neural networks, in: 41st International ACM SIGIR
Conference Research Development Information Retrieval, SIGIR 2018, 2018,
pp. 95–104.

[40] R. Zhao, R. Yan, J. Wang, K. Mao, Learning to monitor machine health with
convolutional Bi-directional LSTM networks, Sensors (Switzerland) (2017).

[41] T. Zhongda, L. Shujiang, W. Yanhong, S. Yi, A prediction method based
on wavelet transform and multiple models fusion for chaotic time series,
Chaos Solitons Fractals 98 (2017) 158–172.

[42] J. Azar, A. Makhoul, R. Couturier, J. Demerjian, Robust IoT time series
classification with data compression and deep learning, Neurocomputing
(2020).

[43] Y.S. Patel, R. Jaiswal, R. Misra, Deep learning-based multivariate resource
utilization prediction for hotspots and coldspots mitigation in green cloud
data centers, J. Supercomput. (2021).

[44] Y.S. Patel, R. Jaiswal, S. Pandey, R. Misra, K Stacked bidirectional LSTM
for resource usage prediction in cloud data centers, in: R. Misra, N.
Kesswani, M. Rajarajan, V. Bharadwaj, A. Patel (Eds.), Internet of Things and
Connected Technologies. ICIoTCT 2020, in: Advances in Intelligent Systems
and Computing, vol. 1382, Springer, Cham, 2021.

[45] P. Yazdanian, S. Sharifian, E2LG: a multiscale ensemble of LSTM/GAN deep
learning architecture for multistep-ahead cloud workload prediction, J.
Supercomput. 77 (2021) 11052–11082.
392
[46] S. Behera, R. Misra, A. Sillitti, Multiscale deep bidirectional gated recur-
rent neural networks based prognostic method for complex non-linear
degradation systems, Inform. Sci. 554 (2021) 120–144.

[47] P.J. Braspenning, F. Thuijsman, A.J.M.M. Weijters, Artificial Neural Net-
works: An Introduction to ANN Theory and Practice, Vol. 931, Springer
Science Business Media, 1995.

[48] J.T. Connor, R.D. Martin, L.E. Atlas, Recurrent neural networks and robust
time series prediction, IEEE Trans. Neural Netw. 5 (2) (1994) 240–254.

[49] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput.
9 (8) (1997) 1735–1780.

[50] A. Graves, S. Fernández, J. Schmidhuber, Bidirectional LSTM networks
for improved phoneme classification and recognition, in: International
Conference on Artificial Neural Networks, Springer, Berlin, Heidelberg,
2005, pp. 799–804.

[51] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of gated
recurrent neural networks on sequence modeling, 2014, arXiv preprint
arXiv:1412.3555.

[52] Y. Su, C.C.J. Kuo, On extended long short-term memory and depen-
dent bidirectional recurrent neural network, Neurocomputing 356 (2019)
151–161.

[53] Shaifu Gupta, Aroor Dinesh Dileep, Timothy A. Gonsalves, Online sparse
blstm models for resource usage prediction in cloud datacentres, IEEE
Trans. Netw. Serv. Manag. 17.4 (2020) 2335–2349.

Dr. Yashwant Singh Patel is currently working as
an Assistant Professor in the Computer Science and
Engineering Department (CSED) at Thapar Institute of
Engineering & Technology, Punjab, India. He received
his Ph.D. in Computer Science and Engineering from IIT
Patna India, under the supervision of Prof. Rajiv Misra,
in 2021. His research interests include resource allo-
cation and consolidation problems for geo-distributed
cloud datacenters. His current work is related to Net-
work Function Virtualization, Cloud Computing, Edge
Computing, IoT, Augmented Reality and Virtual Reality

(AR/VR), and Deep Learning. Till now, he has published more than ten papers
in reputed journals, two book chapters, one text book, and 22 papers in the
proceedings of international conferences and workshops. He has also worked in
a DST sponsored project undertaken by IIT Patna in course of PhD. He was also
a recipient of Visvesvaraya Research fellowship.

Dr. Jatin Bedi is presently working as Assistant
Professor in the Department of Computer Science
and Engineering, Thapar University. He obtained his
B.Tech. with distinction from Kurukshetra University,
Kurukshetra, India, and M.Tech. degree from DCSA,
Kurukshetra University, Kurukshetra, India. He received
his Ph.D. degree from Indian Institute of Technology
Roorkee, Uttarakhand, India in 2020. He has many
publications in high impact SCI indexed journals and
internationally reputed conferences including SIAM
SDM, ICANN, ECML/PKDD, MLDM and many more.

http://refhub.elsevier.com/S0167-739X(23)00002-X/sb28
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb28
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb28
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb28
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb28
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb29
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb29
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb29
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb29
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb29
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb29
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb29
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb30
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb30
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb30
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb30
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb30
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb31
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb31
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb31
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb31
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb31
http://dx.doi.org/10.1016/j.asoc.2017.10.033
http://dx.doi.org/10.1016/j.asoc.2017.10.033
http://dx.doi.org/10.1016/j.asoc.2017.10.033
https://github.com/google/cluster-data
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb34
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb34
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb34
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb35
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb35
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb35
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb35
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb35
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb36
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb36
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb36
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb36
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb36
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb37
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb37
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb37
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb37
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb37
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb38
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb38
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb38
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb38
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb38
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb38
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb38
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb39
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb39
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb39
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb39
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb39
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb39
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb39
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb40
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb40
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb40
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb41
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb41
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb41
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb41
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb41
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb42
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb42
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb42
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb42
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb42
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb43
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb43
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb43
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb43
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb43
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb44
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb44
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb44
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb44
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb44
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb44
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb44
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb44
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb44
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb45
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb45
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb45
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb45
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb45
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb46
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb46
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb46
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb46
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb46
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb47
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb47
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb47
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb47
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb47
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb48
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb48
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb48
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb49
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb49
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb49
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb50
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb50
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb50
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb50
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb50
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb50
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb50
http://arxiv.org/abs/1412.3555
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb52
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb52
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb52
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb52
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb52
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb53
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb53
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb53
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb53
http://refhub.elsevier.com/S0167-739X(23)00002-X/sb53
https://www.google.com/url?q=https%3A%2F%2Fwww.iitp.ac.in%2Findex.php%2Fen-us%2F&sa=D&sntz=1&usg=AOvVaw1Srfx-1uk0QgwkoeHWqRTp
https://www.google.com/url?q=https%3A%2F%2Fwww.iitp.ac.in%2Findex.php%2Fen-us%2F&sa=D&sntz=1&usg=AOvVaw1Srfx-1uk0QgwkoeHWqRTp
https://www.google.com/url?q=https%3A%2F%2Fwww.iitp.ac.in%2Findex.php%2Fen-us%2F&sa=D&sntz=1&usg=AOvVaw1Srfx-1uk0QgwkoeHWqRTp
https://www.google.com/url?q=https%3A%2F%2Fwww.iitp.ac.in%2Findex.php%2Fen-us%2F&sa=D&sntz=1&usg=AOvVaw1Srfx-1uk0QgwkoeHWqRTp
https://www.google.com/url?q=https%3A%2F%2Fwww.iitp.ac.in%2Findex.php%2Fen-us%2F&sa=D&sntz=1&usg=AOvVaw1Srfx-1uk0QgwkoeHWqRTp
https://www.google.com/url?q=https%3A%2F%2Fwww.iitp.ac.in%2Findex.php%2Fen-us%2F&sa=D&sntz=1&usg=AOvVaw1Srfx-1uk0QgwkoeHWqRTp
https://www.google.com/url?q=https%3A%2F%2Fwww.iitp.ac.in%2Findex.php%2Fen-us%2F&sa=D&sntz=1&usg=AOvVaw1Srfx-1uk0QgwkoeHWqRTp
https://www.google.com/url?q=https%3A%2F%2Fwww.iitp.ac.in%2Findex.php%2Fen-us%2F&sa=D&sntz=1&usg=AOvVaw1Srfx-1uk0QgwkoeHWqRTp

	MAG-D: A multivariate attention network based approach for cloud workload forecasting
	Introduction
	Related Work
	Statistical and Machine learning based cloud workload forecasting Approaches
	Deep learning based cloud workload forecasting Approaches
	Hybrid methods for cloud workload forecasting

	Problem definition and theoretical background
	Problem definition
	Theoretical background
	RNNs
	LSTM networks
	Bi-directional LSTM
	GRU
	BiGRU

	Proposed MAG-D Architecture for VM Consolidation
	Data pre-processing
	Data normalization

	Proposed Multivariate Attention Bidirectional GRU Network
	Analysis of computational complexity

	Result discussions
	Workload data
	Performance parameters
	Experimental results and discussions
	Effect of network parameters
	Comparison with other recurrent neural networks
	Prediction Results Visualization on Google Cluster Dataset:
	Comparison of model training time

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References

