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Abstract
Objective. Spontaneous fluctuations of cerebral hemodynamics measured by functional magnetic
resonance imaging (fMRI) are widely used to study the network organization of the brain. The
temporal correlations among the ultra-slow,<0.1 Hz fluctuations across the brain regions are
interpreted as functional connectivity maps and used for diagnostics of neurological disorders.
However, despite the interest narrowed in the ultra-slow fluctuations, hemodynamic activity that
exists beyond the ultra-slow frequency range could contribute to the functional connectivity, which
remains unclear. Approach. In the present study, we have measured the brain-wide hemodynamics
in the human participants with functional near-infrared spectroscopy (fNIRS) in a whole-head,
cap-based and high-density montage at a sampling rate of 6.25 Hz. In addition, we have acquired
resting state fMRI scans in the same group of participants for cross-modal evaluation of the
connectivity maps. Then fNIRS data were deliberately down-sampled to a typical fMRI sampling
rate of∼0.5 Hz and the resulted differential connectivity maps were subject to a k-means
clustering.Main results. Our diffuse optical topographical analysis of fNIRS data have revealed a
default mode network (DMN) in the spontaneous deoxygenated and oxygenated hemoglobin
changes, which remarkably resemble the same fMRI network derived from participants. Moreover,
we have shown that the aliased activities in the down-sampled optical signals have altered the
connectivity patterns, resulting in a network organization of aliased functional connectivity in the
cerebral hemodynamics. Significance. The results have for the first time demonstrated that fNIRS as
a broadly accessible modality can image the resting-state functional connectivity in the posterior
midline, prefrontal and parietal structures of the DMN in the human brain, in a consistent pattern
with fMRI. Further empowered by the fast sampling rate of fNIRS, our findings suggest the
presence of aliased connectivity in the current understanding of the human brain organization.

1. Introduction

The brain remains remarkably active in the absence
of explicit inputs (Shulman et al 2004). Since the
early discovery that the hemodynamic oscillations in
the functional magnetic resonance imaging (fMRI)
data are temporally correlated at a resting state

(Biswal et al 1995), a great deal of efforts have been
dedicated to understanding these correlations as
resting-state functional connectivity (RSFC) in study-
ing human brain function and organization (Fox
andRaichle 2007). For example, a widely-investigated
default mode network (DMN) described as a net-
work organization of correlated activities frommedial
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prefrontal cortex (mPFC), posterior cingulate cortex
(PCC)/precuneus, inferior parietal lobule, and lateral
temporal cortex holds important roles for the normal
neurocognitive functions of memory, consciousness
and emotion regulation (Buckner et al 2008). Then
the altered functional connectivity between anterior
and posterior midline structures of DMN is found
to be related to cognitive declining and has further
been postulated as a hallmark of the aging process
(Andrews-Hanna et al 2007) and Alzheimer’s Dis-
ease (AD) (Greicius et al 2004, Jones et al 2016), as
well as implicated in other neuropsychiatric orders
such depression and schizophrenia (Fox and Raichle
2007). The fMRI, alone or combined with electroen-
cephalogram (EEG) or magnetoencephalography for
better temporal resolution (Brookes et al 2011, Yuan
et al 2012, Yuan et al 2016), has become the main
tool for characterizing the functional organization of
the human brain in healthy conditions, aging and
developmental processes, and neurological disorders
(Zhang and Raichle 2010).

Recently, an optics-based modality to noninvas-
ively measure hemodynamics in the human brain—
functional near-infrared spectroscopy (fNIRS)—
has shown tremendous potential in studying RSFC
(White et al 2009, Lu et al 2010, Zhang et al
2010, Chen et al 2020). fNIRS offers better cost-
effectiveness, portability, and electromagnetic com-
patibility with medical devices (Scholkmann et al
2014, Naseer and Hong 2015, Chiarelli et al 2017,
Hu et al 2020). Previous fNIRS studies have suc-
cessfully mapped the resting state brain networks
with seed-based correlation analysis or independ-
ent component analysis in different brain systems,
such as prefrontal (Mesquita et al 2010), sensorimo-
tor (White et al 2009, Lu et al 2010, Mesquita et al
2010), auditory (Lu et al 2010) and visual networks
(White et al 2009, Mesquita et al 2010). Some recent
studies have further validated the resting state brain
networks obtained from fNIRS to those from fMRI
via simultaneous fNIRS–fMRI recordings (Duan et al
2012, Sasai et al 2012). Noteworthy, these pioneer
studies either utilized a sparse whole-head montage
(Mesquita et al (2010) or used partial montages that
only covered a part of the head (White et al 2009, Lu
et al 2010, Duan et al 2012, Sasai et al 2012). Although
the studies have indicated fNIRS’s capability of map-
ping functional connectivity in certain areas, whether
fNIRS can image the higher-order large-scale brain
networks, such as DMN that is important for neur-
ological and neuropsychiatric disorders (Andrews-
Hanna et al 2007, Greicius 2008, Zhang and Raichle
2010), is yet to be seen. Especially the imaging of
DMN is emphasized, since it provides critical inform-
ation on the normal aging trajectory and the patholo-
gical deviation towards diseased stages of AD (Ittner
and Götz 2011, Karran et al 2011, Beard et al 2016,
Edwards 2019), and further holds pivotal positions
of biomarkers in clinical trials of intervention and

prevention (Sperling et al 2014, Cummings et al 2016,
McDade et al 2021). Considering the overwhelming
number of people that are projected to be with AD
and an even larger number to be placed at the pre-
vention and intervention stages, a broadly accessible
instrument such as fNIRS that can image and mon-
itor the network organization of DMN and other
resting-state networks (RSN) is especially welcomed
(Chen et al 2022).

However, traditional fNIRS only provides topo-
graphic information on brain activity and has a lim-
ited spatial resolution (Obrig and Villringer 2003).
The tomographic reconstruction of fNIRS, namely
diffuse optical tomography (DOT), can integrate
MRI structural images and provide a much refined
millimeter-level spatial resolution, therefore attract-
ing great interest in research and clinics (Culver
et al 2003, Boas et al 2004). Extended from an early
DOT studymapping the sensorimotor and visual net-
works (White et al 2009), a recent study utilizing a
high-density configuration of optodes has success-
fully mapped the large-scale cognitive networks of
dorsal attention, fronto-parietal and partially DMN
in a group of healthy subjects (Eggebrecht et al 2014).
However, two important regions in DMN—mPFC
and posterior midline structures—are missing due to
the absence of the optode array coverage. Another
DOT study with two high-density patches of optodes
covering the frontal and posterior areas has repor-
ted DOT RSFC as part of DMN, which however was
still incomplete andmissed the bilateral inferior pari-
etal lobes (IPL) (Aihara et al 2020). Recent efforts
fromour own group have establishedwhole-head and
cap-based fNIRS recordings and have shown our cap-
ability of DOT to reconstruct brain-wide, voxel-wise
activity (Chen et al 2020, Khan et al 2021, Zhang et al
2021), yet RSFC of a complete DMN by DOT has not
been fully revealed and systematically benchmarked
to fMRI DMN.

In addition, fNIRS offers a high temporal resolu-
tion, typically at the rate of 2–10 Hz (Eggebrecht et al
2014, Chen et al 2020, Zhang et al 2021), which is
higher than a typical fMRI whole-brain scan of 0.5Hz
(Andrews-Hanna et al 2007, Yeo et al 2011). Despite
intrinsic oscillations of the vascular networks (Mateo
et al 2017, Drew et al 2020) and other physiological
oscillations such as respiration, cardiac pulsation and
cerebrospinal fluid that may also contribute to the
measured hemodynamics in the upper frequencies
(Liu 2016), our understanding of the human brain
functional connectivity has been primarily estab-
lished by fMRI at sub-hertz sampling rates for the
activities below 0.1 Hz (Biswal et al 1996, Mitra et al
1997, Cordes et al 2001). Since hemodynamics are res-
ulted from the interplay between local neuronal activ-
ity, oxygen consumption, and vascular circulation
(Logothetis 2008, Buxton 2013), it is critical to under-
stand how the oscillations that exist beyond those
safely sampled range could contribute to the network
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organization via the aliased activities. Recent studies
have utilized techniques such as magnetic resonance
encephalography (Huotari et al 2019), multiband
sequence (Tong and Frederick 2014, Golestani et al
2017, Demetriou et al 2018), or slice-accelerated pro-
tocol (Cordes et al 2014, Golestani et al 2017) to study
the aliasing effect due to insufficient sampling rates
and the spatial distribution of physiological, non-
neuronal contributions. Yet, the effect of sampling
rate on imaging the functional connectivity of DMN
remains elusive—some study reported consistent pat-
terns at a lowered sampling rate (Huotari et al 2019),
while others have noted strong contributions from
respiration or cardiac pulsation (Cordes et al 2014).
In this context, DOT, which has a higher sampling
rate compared with fMRI and can critically sample
the cerebral hemodynamic signals to avoid the ali-
asing of cardiorespiratory activity into low-frequency
oscillations, can be used to study the sampling effects
on RSFC.

In the present study, we aimed to validate the
whole-head fNIRS capability in mapping distributed
functional connectivity via comparison with fMRI,
and also to characterize the aliasing effects on func-
tional connectivity due to an insufficient sampling
rate. To achieve these goals, we used a whole-head,
cap-based and high-density fNIRS array to measure
oxyhemoglobin (HbO) and deoxyhemoglobin (HbR)
at the sampling frequency of 6.25 Hz. By comput-
ing DOT based on individuals’ realistic anatomy, we
have mapped the network at a fine voxel resolution
to a standard cortical surface space, and then bench-
marked fNIRS maps of DMN to those obtained from
fMRI. Furthermore, we deliberately down-sampled
the raw optical recordings to a sub-hertz temporal
resolution and have examined the altered connectiv-
ity in the ultra-slow frequency range with regard to
the seeds located within DMN.

2. Method

2.1. Participants
The study was approved by the University of
Oklahoma Health Sciences Center Institutional
Review Board. Written consent was obtained from
all participants prior to the study. All proced-
ures were carried out in accordance with the IRB
guidelines. A total of 20 healthy participants without
any neurological or neuropsychiatric disorders were
screened and enrolled in this study. Three parti-
cipants were not able to complete all data recordings.
In addition, resting-state data from four participants
were excluded from the present study due to poor
data quality (primarily excessive motions). There-
fore, data from thirteen participants (five females,
31.7 ± 9.3 years old) were used for the analyses. Par-
ticipants received financial compensation for their
participation.

2.2. Data acquisition
fMRI data of the blood-oxygenation-level-dependent
(BOLD) contrast and fNIRS–EEG data were acquired
from each participant in two separate visits. Struc-
tural head MRI and fMRI images of participants
were acquired using a GE Discovery MR750 whole-
body 3-Tesla MRI scanner (GE Health, Milwaukee,
WI, USA). The following parameters were used for
MRI scanning: field of view (FOV) = 240 mm, axial
slices per slab = 180, slice thickness = 1 mm, image
matrix = 256 × 256, Repetition Time / Echo Time
(TR/TE) = 8.45/3.24 ms. The following parameters
were used for fMRI scanning: FOV = 240 mm, axial
slices per slab = 41, slice thickness = 4 mm, image
matrix = 64 × 64, TR/TE = 2600/60 ms. fMRI data
were recorded when participants rested in a supine
position inside the scanner with their eyes opened.
One 6-minute resting session per participant was
included for the fMRI.

Simultaneous fNIRS, EEG (not analyzed in this
study) and peripheral measurements of respiration,
pulse, and triaxial acceleration were recorded, follow-
ing the described protocol (Zhang et al 2021). The
whole-head montage of optodes for the data ana-
lyzed in current study was described the figure 1 of
our previous publication (Zhang et al 2021). Two 6-
minute recording sessions of eyes-open resting state
were acquired per participant who comfortably sit in
a dark and sound-damped room.

2.3. fNIRS data preprocessing
fNIRS data were automatically preprocessed by
adapting an automatic denoising procedure, namely
principal-component-analysis-based general linear
model (PCA-GLM) (Zhang et al 2021). As illustrated
in figure 1, the preprocessing pipeline included these
steps: (a) converting raw data to optical density (OD);
(b) computing power spectral densities using the
Welch’s method (a window length of 60 s and 50%
overlap) and excluding bad channels that showed
no heartbeat frequency peak (0.8–1.6 Hz); (c) band-
pass filtering OD with 0.008–0.2 Hz; (d) identifying
and rejecting bad time segments with excessive head
movements using the metric of global variance in
temporal derivative (GVTD) (Sherafati et al 2020).
The time points that had GVTD values larger than
three times the mean GVTD value across all time
points were identified, and then time windows of
10 s centered at these time points were masked as
bad time segments and excluded from further ana-
lyses (Sherafati et al 2020). (e) Although fNIRS has
its intrinsic advantage of high sampling frequency,
interferences from auto-regulation in the vasculature
and other physiological sources occur at various fre-
quencies (White et al 2009). By employing eight
short-separation (SS) channels that have minimal
penetration into the cortical tissue, we measured the
superficial hemodynamics in the scalp and used that
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Figure 1. Schematic framework of computations. (A) Data preprocessing of fMRI, fNIRS and down-sampled fNIRS data.
(B) Seed-based functional connectivity analyses. (C) K-means clustering on the differential functional connectivity maps between
fNIRS and down-sampled fNIRS.

combined with long-separation (LS) channels to con-
struct a superficial signal regressor, which was then
removed as one of the nuisances. Specifically, PCA
was applied to LS OD data to decompose signals into
multiple components. The spatial uniformity of each
principal component was assessed by the metric of
coefficient of spatial uniformity (Kohno et al 2007).
Because spatial uniformity indicates superficial skin
responses (Zhang et al 2005), a principal compon-
ent with the highest value of spatial uniformity was
identified, namely PC-LS. Then, instead of directly
removing the time course of PC-LS from the multi-
channel data, the PC-LS was used to select a com-
ponent from the SS measurements which capture the
absorption by superficial tissues (Saager and Berger
2005). A total of eight, evenly distributed SS OD data
were subject to a separate PCA, and the SS compon-
ent that had the highest temporal correlation with
PC-LS was chosen, representing the skin response.
The selected SS component was then used as a nuis-
ance regressor to be removed by GLM. (f) A GLM
was configurated per session to remove physiological
noise. Prior to GLM, auxiliary data of acceleration,
respiration, cardiac pulsation were processed by a
band-pass filter with 0.008 Hz–0.2 Hz, detrended by
a 3-order polynomial drift and re-sampled to 6.25 Hz
(originally acquired at 500 Hz) by a decimation ratio
of 80. The time course of the SS component, the
detrended auxiliary data (acceleration, respiration
and cardiac pulsation) and a 3-order polynomial

drift were included in the design matrix as nuisance
regressors.

In addition, in order to investigate the effect of
a low sampling rate on functional connectivity, we
have re-sampled the fNIRS data (originally acquired
at 6.25 Hz) by a decimation ratio of 13, resulting
in a sampling rate of 0.48 Hz. The down-sampled
fNIRS data were preprocessed using the same proced-
ure. For applying PCA–GLM on the down-sampled
fNIRS data, the auxiliary data of acceleration, respir-
ation, and cardiac pulsation were similarly processed
by a band-pass filter with 0.008Hz–0.2Hz, detrended
by a 3-order polynomial drift, and then re-sampled
to 0.48 Hz, i.e. the same rate as the down-sampled
fNIRS.

2.4. DOT computation
Participant-specific structural MRI data were used
to create individual finite element method (FEM)
volume meshes (Khan et al 2021). A spectrally-
constrained linear FEM-based forward model
(Srinivasan et al 2005) linking hemodynamic

responses
⇀
x (t) and scalp-based light measurements

⇀
y (t) was established as

⇀
y (t) = A

⇀
x (t), where the

sensitivity matrix A was calculated using the NIR-
FAST software (Dehghani et al 2009a). The volu-
metric inverse source space was constructed with
nodes inside the brain (enclosed by the pial surface)
and no deeper than 45 mm from the scalp, beyond
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which the sensitivity had dramatically decreased. A
single-step joint inverse reconstruction using regu-
larized minimum norm estimate (Bertero et al 1988)

yielded the volumetric inverse solution data
⇀
x (t).

The inverse data were first smoothed with a 6 mm
spherical kernel and then projected to the fsaverage5
smoothed white matter surface from FREESURFER
(Ségonne et al 2004, Fischl 2012). The projection was
performed by assigning the data to each node on the
cortical surface from the nearest finite element node
in terms of Euclidean distance. Both cortical data of
HbO and HbR concentration changes were recon-
structed. Because the deoxygenated status reflected in
HbR is a direct approximation to the T2∗ contrast in
fMRI (Ogawa et al 1990), HbR was primarily used in
the further analysis of this study for the benchmark
purpose. Tomography for the down-sampled fNIRS
data was computed in the same procedure, resulting
in down-sampled DOT (DS-DOT). The DOT and
DS-DOT data were subject to band-pass filtering of
0.009 Hz–0.08 Hz which is commonly used in fMRI
RSFC analysis.

2.5. fMRI preprocessing
For the purpose of cross-modal validation, we have
also collected resting-state fMRI data in the same
group of participants. The fMRI data processing was
performed using Analysis of Functional NeuroIm-
ages software (AFNI, http://afni.nimh.nig.gov/) (Cox
1996). The first five volumes of each fMRI run were
excluded from the analysis to allow the BOLD sig-
nal to reach a steady state. The fMRI then went
through these processing steps including slice timing
and rigid-body motion correction, spatial smooth-
ing with a Gaussian kernel with a full width at half
maximum (FWHM) of 13 mm, and a bandpass fil-
tering (0.009–0.08 Hz). Notably, the 13 mm FWHM
was considered to match up with that in DOT. In
addition, six affine motion parameters and the global
signal from the entire brain were regressed from
the dataset. Data points of excessive motion (root
mean square larger than 0.2 mm) were excluded
from regression and further analysis using the cen-
soring option implemented in AFNI (afni_proc.py).
The threshold of 0.2 mm was suggested by Power
and colleagues (Power et al 2013). Specifically, the
L2-norm of the derivatives of the motion para-
meters estimated from motion registration was cal-
culated and those time points with an L2-norm
larger than the threshold of 0.2mmwere censored/ex-
cluded in the regression and the later functional con-
nectivity analysis. The fMRI data of each participant
were firstly spatially co-registered to high-resolution
individual anatomical images and then normalized to
the Talairach and Tournoux template brain (Talairach
and Tournoux 1988).

Table 1. The coordinates of seeds for the resting state functional
connectivity maps. All numbers are in Montreal Neurological
Institute (MNI) coordinates. Identical seeds are used for fNIRS
and fMRI maps.

Left hemisphere Right hemisphere

x y z x y z

mPFC −8.4 51.5 14.9 8.7 52.4 15.1
IPL −39.5 −57.0 40.7 39.0 −55.9 42.6
Precuneus −6.5 −64.5 39.8 6.6 −62.5 39.6

mPFC: medial prefrontal cortex. IPL: inferior parietal lobule.

2.6. Seed-basedmapping of resting-state functional
connectivity
After preprocessing, seed-based mapping of func-
tional connectivity was performed in fMRI, DOT
and DS-DOT by calculating the Pearson’s correlation
coefficients between the average time course of a seed
region with a radius of 10mm and the time courses of
other nodes (Power et al 2011). In order to study the
functional connectivitymaps of DMN, we considered
the key nodes of DMN as the seed regions, includ-
ingmPFC, IPL, precuneus and a compound seed (the
average of mPFC, IPL, and precuneus). Table 1 lists
the coordinates of the seeds.

For fMRI data, the correlation values were first
subject to Fisher’s Z transform. For the cross-modal
evaluation, we projected the functional connectivity
to a common space of the cortical surface. Specific-
ally, the individual-level volumetric Zmaps were pro-
jected to the fsaverage5 smoothed white matter sur-
face with 10 242 vertices per hemisphere (Fischl et al
1999) using the 3dVol2Surf in AFNI. The individual-
level Z maps in the surface space were then aver-
aged to obtain the group-level connectivity map
and subject to node-wise one-sample two-tailed Stu-
dent’s t-tests to assess the significance of functional
connectivity.

For DOT and DS-DOT data, the global signal
was first calculated by averaging the time traces of
all nodes over the cortical surface and regressed out
from the time traces of individual cortical nodes
(Desjardins et al 2001). The seed-based correlation
analysis was then performed in the surface space. The
individual maps of Pearson’s correlation coefficients
were subject to Fisher’s Z transform and smoothed
with a Gaussian kernel with FWHM of 13 mm using
the mri_surf2surf in FreeSurfer (Dale et al 1999). The
smoothed individual-level Z surface maps were then
averaged to obtain the group-level connectivity map.

The similarity between the DOT and fMRI func-
tional connectivity was quantitatively evaluated by
spatial correlation and dice coefficient (Eggebrecht
et al 2014, Yuan et al 2016). The spatial correlation
was calculated for the unthresholded DOT and fMRI
functional connectivitymaps with the same seed. The
dice coefficient was to evaluate the similarity between
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binary images based on the binary DOT and fMRI
maps after thresholding (1 for a significant p-value
after multiple-comparison correction and 0 for non-
significant). The dice coefficient was calculated as:
Dice= 2|A∩B|/(|A|+|B|), where A represents the bin-
ary DOTmap, B represents the binary fMRImap, and
| · | represents the cardinal of set A or B.

2.7. Aliased functional connectivity patterns
(AFCP)
In order to study the effect of aliased sampling on
the RSFC, we have down-sampled the fNIRS data
at the rate of 0.48 Hz. After identical procedures
of preprocessing and tomography projection, func-
tional connectivity maps were created based on DOT
and DS-DOT, respectively. Differential connectiv-
ity maps were calculated by subtracting the DOT
connectivity maps from the DS-DOT connectivity
maps. Since aliased activity led to aliased connectiv-
ity maps, we explored whether any structural organ-
ization exists in these differential connectivity maps.
Because the secondary goal of this study was to exam-
ine whether the DMN was in any way affected by
an insufficient sampling rate, we used a data-driven
approach to search for organized patterns among
all the differential maps associated with nodes in
the DMN. A two-level k-means clustering was per-
formed on the differential functional connectivity
maps based on their spatial similarities (Britz et al
2010, Michel and Koenig 2018). At each level, the
clustering was repeated 100 times to increase the
chances of escaping local minima, with randomly ini-
tialized centroid positions (Allen et al 2014). In terms
of the distance measure, we selected the ‘cosine’ dis-
tance to consider the sign of these differential val-
ues with an emphasis on the overall similarity among
patterns.

Specifically, each node in the Yeo template of
DMN (Yeo et al 2011) was selected as a seed, resulting
in a differential connectivity map associated with the
seed. The individual-session differential maps were
subject to the first-level k-means clustering. Sim-
ilar to previous studies, the number of clusters was
determined using the criterion of the cluster cost,
computed as the ratio between within-cluster dis-
tance to between-cluster distance (Allen et al 2014,
Li et al 2021), in order to minimize the within-
cluster distance and maximize the between-cluster
distance. The appropriate number of k was selected
at the elbow of the curve, which optimally balances
the cluster cost and cluster number. The individual-
session centroids were then concatenated and used as
input for the second-level clustering to yield group-
level patterns which are in the following referred to as
AFCP.

Furthermore, we utilized a region-of-interest
(ROI) approach to visualize which frequencies con-
tributed to the aliased connectivity values. Based
on each AFCP, we have selected a seed ROI that

yielded the corresponding AFCPmap and then selec-
ted a target ROI in the hemisphere-symmetric loca-
tion with representative differential values. We quan-
tified the frequency contribution to aliased con-
nectivity by decomposing the correlation coefficient
between time traces of the seed and target ROIs by
Fourier transformation of the time traces (Cordes
et al 2000, 2001). Three frequency bins were calcu-
lated: <0.05 Hz, 0.05–0.1 Hz, 0.1–0.2 Hz, for both
DOT and DS-DOT. Note that AFCP were calcu-
lated based on the DOT and DS-DOT filtered from
0.009 Hz to 0.08 Hz. Therefore, we have normalized
the frequency-specific connectivity values at each bin
to the connectivity values of 0.009–0.08 Hz in ori-
ginal DOT, in order to itemize the frequency-specific
contributions.

2.8. Statistical analysis
To assess the significance of the functional connectiv-
ity values, all group-level maps were subject to node-
wise one-sample two-tailed Student’s t-tests. The
resulted p values were corrected for multiple
comparisons using Benjamini–Hochberg method
(n = 12 021; n is the number of nodes which are
commonly available across all participants) (Ben-
jamini and Hochberg 1995), resulting in q values.
Also, to assess the significance of the AFCP, all
group-level centroids were subject to node-wise one-
sample two-tailed Student’s t-tests. The resulted stat-
istics were also corrected for multiple comparisons
using Benjamini–Hochberg method (Benjamini and
Hochberg 1995).

3. Results

3.1. Hemodynamic activity at sensor level
In the present study, resting-state hemodynamic
activity in the human participants are measured by
pairing optical sources and detectors in a whole-head,
cap-based system. The time traces of a fNIRS channel
in two wavelengths (760 nm and 850 nm) are illus-
trated in figure 2(A), with time segments of motion
artifacts that are excluded from further analyses.
The power spectrums of the time traces are shown
in figure 2(B). Notably in the representative parti-
cipant, the cerebral hemodynamics show a peak in the
range of < 0.1 Hz, in addition to peaks associ-
ated with the cardiac pulse (∼1.3 Hz) and res-
piration (∼0.23 Hz). After band-pass filtering of
0.008–0.2 Hz, the time traces present resting-state,
spontaneous fluctuations in figure 2(C).

In addition, in order to examine the effect of
a low sampling rate on the hemodynamic activity
and connectivity, we have deliberately down-sampled
the time traces of the fNIRS data from originally
6.25 Hz to 0.48 Hz (figure 2(D)). As a result, there
are considerable differences in the amplitudes of PSDs
between fNIRS and down-sampled data (figure 2(E)).
Notably, down-sampled data present higher power
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Figure 2. fNIRS time courses and spectrums. Temporal traces of raw data in fNIRS (A) and down-sampled fNIRS (D) are plotted
in two wavelengths (W1: 760 nm, W2: 850 nm), with gray shaded areas indicating the rejected time segments with motion
artifacts. Power spectrums of fNIRS and down-sampled fNIRS are shown in (B) and (E), with black squares indicating the range
from 0.009 to 0.08 Hz. Panel (E) is the enlarged portion of Panel (B) from 0 to 0.5 Hz. Band-pass filtered time courses in fNIRS
(C) and down-sampled fNIRS (F) are illustrated. An arrow labeled with ‘P’ indicates the peak associated with cardiac pulses in the
signal. An arrow labeled with ‘R’ indicates the peak associated with respirations in the signal. Red and blue lines indicate
originally sampled data, while pink and cyan lines indicate down-sampled data.

amplitudes than the original data, due to the aliasing
of cardiac and respiratory activities into the ultra-
slow range. After band-pass filtering of 0.008–0.2 Hz,
there appears a greater amount of and faster-evolving
fluctuations in the down-sampled data (figure 2(F)).

3.2. RSFCmaps between DOT and fMRI
We evaluated the cross-modal correspondence of
DOT and fMRI regarding the default mode net-
work obtained in the same group of participants.
The seed regions and corresponding seed-based func-
tional connectivity maps with mPFC, IPL, precuneus
and a compound seed (the average of mPFC, IPL,
and precuneus) are shown in figure 3, with maps
thresholded at q < 0.05 after multiple-comparison
correction. Supplemental figure 1 shows the
unthresholded maps. The seed-based functional con-
nectivity maps of DOT in both figure 3 and supple-
mental figure 1 present spatial patterns comparable
with those of fMRI, which is consistent with high spa-
tial correlations and dice coefficient values between
DOT and fMRI functional connectivity maps, as
listed in table 2. The compound-seeded functional
connectivity maps of DOT depict the DMN hubs
including mPFC, IPL, and precuneus, which spatially
resembles to those of fMRI (figure 3(A)). The mPFC-
seeded functional connectivity maps of DOT show
functional connectivity between left and right mPFC,
similar to that of fMRI (figure 3(B)). The IPL-seeded
functional connectivity maps of DOT exhibit similar
spatial patterns to that of fMRI and reveal functional

connectivity between left and right IPL (figure 3(C)).
The precuneus-seeded functional connectivity maps
of DOT show functional connectivity at left and
right precuneus as depicted in fMRI (figure 3(D)).
Since the HbR contrast approximates the imaging
mechanism of fMRI, we primarily focused our cross-
modal investigation on HbR data. In addition, sup-
plemental figure 2 shows the HbO-derived default
mode network that also presents a consistently high
spatial resemblance with fMRI, which is consist-
ent with the quantitative values of spatial correl-
ations and dice coefficients listed in supplemental
table 1.

3.3. AFCP
In the next step, we examined whether aliased activity
due to insufficiently low sampling rate led to aliased
functional connectivity. By exploring a data-driven
analysis on the differential connectivitymaps between
DOT and DS-DOT, we have identified a set of four
structurally organized patterns that represent the
aliased connectivity. Figure 4 shows the spatial maps
of seeds and centroids of the AFCP generated by the
two-level k-means clustering. The numbers of clusters
(k1 = 5, k2 = 4) were determined based on the L-
curves of the ratio between within-cluster distance
to between-cluster distance of the first- and second-
level clustering, respectively (shown in supplemental
figure 3). Figure 4(A) visualizes the spatial distribu-
tion of the seeds that drive each AFCP, via a winner-
take-all strategy to map the seeds associated with the
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Figure 3. Resting state functional connectivity by fNIRS HbR and fMRI. Connectivity maps are based on seeds of (A) a
compound seed (the average of mPFC, IPL and precuneus) (B) mPFC, (C) IPL and (D) precuneus. All maps are thresholded
according to q< 0.05 after multiple comparison correction. Walm colors from red to yellow indicate the positive z values after
thresholding. Cold colors from blue to green indicate the negative z values after thresholding. The threshdolded connectivity
maps are overlaid on the standard cortical surface with grey colors indicating the curvature profile of the surface. mPFC: medial
prefrontal cortex, IPL: inferor parietal lobules.

highest occurrence of clusters. Interestingly, for each
AFCP, seeds that led to a common aliasing pattern
exhibit as cortical patches with spatial continuity and
bilateral hemispheric symmetry. For example, seeds
for AFCP1 are aggregated at IPL, AFCP2 at prefrontal
cortex, AFCP3 at mPFC and AFCP4 at temporal
cortex, while all AFCPs involve seeds from bilateral
hemispheres (figure 4(A)). Furthermore, AFCPs are
distinct spatial patterns that include both increases
and decreases in functional connectivity that are
produced after down-sampling the signals to a low
rate (figure 4(B)). Although the seeds were con-
fined to be within the Yeo template of DMN, the
aliased connectivity values extend to the whole cor-
tical space. AFCP1 shows decreased functional con-
nectivity in bilateral IPL and increased functional
connectivity in frontal and visual cortices after down-
sampling, while the AFCP1 is associated with seeds
from IPL only. AFCP2 shows decreased functional
connectivity in bilateral mPFC and temporal cor-
tex and increased functional connectivity in bilateral
visual cortex, with AFCP2 associated with seeds at
prefrontal cortex. AFCP3 shows decreased functional

Table 2. Comparison between resting state functional connectivity
maps by fNIRS HbR and fMRI. Spatial correlations are calculated
based on unthresholded maps. Dice coefficients are calculated
based on thresholded maps at q< 0.05 after multiple-comparison
correction.

Spatial correlations Dice coefficients

Compound 0.47 0.20
mPFC 0.56 0.29
IPL 0.49 0.22
Precuneus 0.57 0.23

connectivity in bilateral mPFC and motor cortex and
increased functional connectivity in bilateral tem-
poral cortex. Meanwhile, AFCP4 shows an almost
reversed pattern against AFCP3, with increased func-
tional connectivity in bilateral mPFC, motor cortex,
IPL and precuneus and decreased functional con-
nectivity in bilateral temporal cortex. Interestingly,
despite their inversely related patterns, AFCP3 and
AFCP4 are associated with distant seed patches, cen-
tering at mPFC and temporal cortices respectively.

In order to further delineate the frequency-
specific contributions of the aliased connectivity
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Figure 4. Aliased functional connectivity patterns (AFCP) after down-sampling. (A) Four AFCPs are discovered and their
associated seeds. At each seed, the AFCP which has the highest number of sessions in all differential functional connectivity maps
was assigned. (B) Spatial distribution of each AFCP. All maps are thresholded according to q< 0.05 after multiple-comparison
correction. Red–yellow colorbar indicates increase of functional connectivity after thresholding. Blue–green indicates decrease of
functional connectivity caused by the insufficient sampling frequency, after thresholding. The thresholded connectivity maps are
overlaid on the standard cortical surface with grey colors indicating the curvature profile of the surface.

values, we have utilized a ROI approach to visu-
alize the connectivity values before and after
down-sampling. Figure 5 illustrates the seed
and target ROIs circumscribed at hemispherical
symmetric regions per each AFCP. Since RSFC are
calculated in the filtered signals of 0.009–0.08 Hz as
commonly in fMRI, the RSFC of original DOT of
0.009–0.08 Hz served as the normalizing baseline
to compare the values across all frequency bins.
Regarding the left and right IPL as representative
ROIs (figure 5(A)), down-sampling has induced a
significant decrease in the RSFC of 0.009–0.08 Hz.
Meanwhile, the original DOT shows lower con-
nectivity values in the upper frequencies (0.05–
0.1 Hz and 0.1–0.2 Hz) that are below the bar at
the ultra-slow frequencies (<0.05 Hz), suggesting
that unsynchronized activities in upper frequencies
are associated with the RSFC decreases after down-
sampling. Figures 5(B)–(D) show additional ROIs
at hemispheric symmetric positions in other AFCP,
where the DS-DOT data present RSFC decreases of

0.009–0.08 Hz. Likewise, relative lower connectivity
values are seen in the upper frequency range (0.05–
0.1 Hz and 0.1–0.2 Hz), compared to those in the
ultra-slow range (<0.05 Hz), again indicating the
unsynchronized activities coincide with decreases
of RSFC. In the contrary, increase of connectivity do
occur in the down-sampledDOT as shown in another
representative seed ROI at the mPFC (figure 5(E)).
In this case, the upper frequencies 0.05–0.1 Hz and
0.1–0.2 Hz show DOT connectivity values as high as
those in ultra-slow range (<0.05 Hz), which is noted
for presenting much higher upper-frequency con-
nectivity than other ROI of figures 5(A)–(D). Inter-
estingly, accompanying such a strong connectivity
in the higher frequency components is a multi-fold
increase of connectivity in the DS-DOT. Notably,
in the range of <0.05 Hz, the DS-DOT has reached
almost four folds than DOT. These results suggest
that the strong connectivity that already exists in
the upper-frequency components may leak into in
the ultra-slow range at an insufficient sampling rate,

9
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Figure 5. Frequency contributions to resting state functional connectivity in ROIs. Rows (A)–(D) present representative seed and
target regions selected to show a decrease in functional connectivity in HbR DOT due to aliasing effects. Row E presents
representative seed and target regions to show an increase in functional connectivity in HbO DOT. In the maps of DOT RSFC, all
connectivity values are thresholded according to q< 0.05 after multiple-comparison correction. Walm colors from red to yellow
indicate the positive z values after thresholding. Cold colors from blue to green indicate the negative z values after thresholding.
The thresholded connectivity maps are overlaid on the standard cortical surface with grey colors indicating the curvature profile
of the surface. In the bar graphs of ROI RSFC, the connectivity values (mean and standard errors) are normalized to the mean
connectivity of DOT in the range from 0.009 Hz to 0.08 Hz, per each ROI pair. ∗ indicates a significant difference in the DS-DOT
than the DOT, at p< 0.05. ∗∗ indicates a significant difference in DS-DOT than DOT, at p< 0.01.

by bringing in aliased and substantially amplified
contributions.

4. Discussion

In this study, we have demonstrated the feasibility of
whole-head, cap-based and high-density fNIRS sys-
tem in mapping large-scale DMN using conventional
seed-based RSFC analysis. Previous fNIRS studies
with partial or sparse montages have been able to
map the RSFC concerning prefrontal (Mesquita et al
2010), sensorimotor (White et al 2009, Lu et al
2010, Mesquita et al 2010), auditory (Lu et al 2010)
and visual areas (White et al 2009, Mesquita et al
2010). However, the capability of fNIRS in mapping
large-scale brain networks has not been fully estab-
lished, especially in those cognitively related brain
networks such as DMN, dorsal attention network
and frontoparietal control network that involve mul-
tiple distanced regions (Andrews-Hanna et al 2007,
Greicius 2008, Zhang and Raichle 2010). Recent
fNIRS studies have made progress in mapping part of
DMN (Eggebrecht et al 2014), yet important midline

regions or IPL are still missing due to lacking optodes
to fully cover those. Here we reported a novel fNIRS–
DOT study based on a whole-head and cap-based
fNIRS array. Especially, our tomographic fNIRS data
as illustrated in figure 3 have for the first time shown
a complete DMN system including mPFC, posterior
midline, and bilateral IPLs, which exhibits remark-
able spatial similarity to fMRI RSFC maps derived
from the same group of participants. In addition,
the maps from fNIRS data also show correspond-
ence with the template DMN generated in a large-
scale fMRI study (Yeo et al 2011). The cross-model
evaluation between DOT and fMRI has now included
midline regions of DMN, which were missing in pre-
vious literature (Eggebrecht et al 2014). The seed-
based approach employed in the current investiga-
tion allowed a direct comparison between fMRI and
DOT in the same cohort of subjects, while the work
by Khan et al (2021) used a data-driven approach and
only reported the DOT results. Nonetheless, the net-
work patterns derived from seeded nodes of DMN
shown coherent organization with those from a data-
driven approach.
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Our demonstration of a fNIRS system in ima-
ging DMN is especially important for monitoring the
brain at aging and progressive AD states. Our res-
ults have revealed the functional connectivity among
mPFC, precuneus and IPL, all of which are closely
associated with memory and other cognitive func-
tions (Sperling et al 2010). The inclusion of these
key regions in the DMN has significant clinical val-
ues. Andrews-Hanna et al (2007) have shown that the
anterior–posterior functional connectivity between
midline DMN structures at semantic classification
and passive fixation tasks is reduced in normal aging
and positively correlated with cognitive perform-
ance. Similarly, Damoiseaux et al (2008) demon-
strated that, in the resting state, the reduced RSFC
in DMN is associated with aging years and cor-
related with declined performance in neuropsycho-
logical tests. A number of studies across individu-
als with AD or prodromal AD have documented
altered functional connectivity within DMN, includ-
ing precuneus/PCC, mPFC and inferior parietal cor-
tex (Greicius et al 2004, Sorg et al 2007, Zhou et al
2010, Koch et al 2012). Intriguingly, it has been noted
that the amyloid-β accumulation distribution in AD
strikingly overlaps with the cortical hubs of high
activity andmetabolism (Buckner et al 2009), includ-
ing mPFC, PCC and left/right IPL, which indicates
the association between the functional connectiv-
ity at these cortical hubs and amyloid-β deposition
(Buckner et al 2009). It is further postulated that
the pathological process in these key DMN regions
also extends to the aging individuals at the preclinical
stage of AD even before clinical symptoms develop
(Sperling et al 2009, Bateman et al 2012). Therefore,
neuroimaging of such resting-state connectivity in
DMNandother cognitive networks has been placed at
pivotal positions, such as biomarkers, in clinical trials
of intervention and prevention studies (Cavedo et al
2014, Sperling et al 2014). However, notably fMRI has
been the primary modality, in many cases the only
modality, to be included for functional neuroimaging
in these studies. Power analysis for the prevention tri-
als in AD usually yielded more than 1000 individu-
als are needed (Hsu andMarshall 2017). Considering
the overwhelming number of people that are projec-
ted to be with AD and an even larger number to be
placed at the prevention and intervention stages, the
limited accessibility and high expenses ofMRI instru-
ment become a bottleneck in the workflow. There-
fore, the fNIRS–DOT capability as demonstrated in
our study provides an economic and practically feas-
ible option for assessing the anterior–posterior DMN
connectivity as biomarkers for monitoring aging and
AD in large populations.

In addition, we have shown that a sampling
rate that is much lower than the respiration and
cardiac pulse frequency will introduce spatially
organized aliased connectivity to RSFC. By delib-
erately down-sampling the raw fNIRS recordings to a

sub-hertz frequency, we demonstrated that dif-
ferences in the activity as well as connectivity do
occur in the down-sampled data. Furthermore, our
data-driven analysis on the differential RSFC maps
between DOT and DS-DOT has revealed that the
aliasing effect is seed-/region-dependent (e.g. AFCP3
vs. AFCP4), and that the resulted spurious connectiv-
ity exist within the DMN regions and extend bey-
ond in other cortical areas, appearing as aliased net-
works (figure 4). Although fNIRS offers the advant-
age of high temporal resolution, maintaining a high
sampling rate while using a large number of optodes
can become a challenge, or sometimes compromise,
for the deployment of full-head coverage and high-
density measurement. Despite that a low sampling
has been widely used in similar fMRI studies, our
findings have emphasized that maintaining a suffi-
ciently high sampling rate of fNIRS is crucial, espe-
cially when RSFC of DMN is considered as biomark-
ers. For example, the functional connectivity between
IPL and mPFC has been shown to be associated
with normal aging (Andrews-Hanna et al 2007) and
AD (Koch et al 2012). However, we demonstrated
that when the seed is placed at mPFC, the aliasing
effects can cause inflated and deflated functional con-
nectivity in temporal cortex and mPFC, respectively
(AFCP3 in figure 4). Another example is AFCP1 in
figure 4, where down-sampling has led to decreased
connectivity in hemispherically symmetrical left and
right IPL regions, which is consistent with the fMRI
findings that the IPL connectivity is decreased in the
down-sampled data than the original data at short
repetition time (Golestani et al 2017). Our analysis of
the frequency decomposition on these connectivity
values (figures 5(A)–(D)) has pointed out that the
unsynchronized upper frequency range is likely the
origin of the alternations seen in down-sampled data
in the 0.009–0.08 Hz. The aliased activity from the
respirational and cardiac frequencies could become
unsynchronized noises to attenuate the correlations
in cerebral hemodynamics, which is also supported
by Huotari et al (2019) when down-sampled fMRI
data with TR = 3 s had significantly lowered correla-
tion coefficients than raw data. Meanwhile, aliasing-
related increases to RSFC is also possible, as shown
in figure 5(E), which suggests that the physiological
noises in synchronization may be a significant con-
tributor or even dominating the RSFC in insuffi-
ciently sampled cerebral hemodynamics. Since the
aliasing effects on RSFC may obscure our current
understanding, accurate imaging without aliasing is
especially important in understanding AD stages,
because of the high comorbidity of vascular diseases
in aging populations.

Furthermore, implications of the organized
aliased patterns are relevant to other means of meas-
uring the cerebral hemodynamics, such as fMRI. Typ-
ically, whole-brain fMRI has a TR of 2 s and can only
theoretically sample the signals up to 0.25 Hz, which
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is unfortunately lower than the necessary Nyquist rate
for respiratory (∼0.3 Hz) and cardiac (∼1 Hz) activ-
ities. Earlier fMRI studies have already shown that
aliased activities do exist in the voxel-wise measure-
ments (Cordes et al 2000, 2001). In addition, cardiac
pulsation (Glover et al 2000, Chang et al 2009) and
respiration (Birn et al 2006, 2008) are major origins
for aliased activity in typical fMRI scans. However,
the aliasing effects on functional connectivity are still
poorly understood. Our study has taken a novel data-
driven approach and revealed, for the first time, sev-
eral whole-brain patterns attributed to the aliasing.
The AFCPs discovered in our study are supported
by a number of fMRI studies. Tong et al (2011) has
demonstrated that the aliased cardiac signals appear
in a spatial distribution that consists of dense arter-
ies and large veins, which appears similar to AFCP3
and AFCP4. Other studies using ultrafast fMRI at
TR = 0.35 s (Boubela et al 2013) or 0.1 s (Huotari
et al 2019) also identified similar patterns associated
with cardiac pulsation. Importantly, our analysis has
pointed out that the aliasing could contribute to not
only increases but also decreases of connectivity in
a reversed spatial pattern, depending on the differ-
ent seed regions (mPFC drives AFCP3 vs. middle
temporal cortex drives AFCP4). Meanwhile, studies
utilizing ultrafast fMRI has demonstrated that respir-
ation affects prefrontal and occipital regions (Tong
and Frederick 2014), which also appears in AFCP1
and AFCP2. Noteworthy, the standard normalization
procedure for human brain imaging focuses on nor-
malizing the brain tissues into a homogenous space.
However, the anatomy of vasculature is outside of
the scope of such normalization. Nonetheless, our
data-driven analysis that focuses on segregating the
differential connectivity maps was able to discover
several organized aliased connectivity patterns at a
group level. Interestingly, recent emerging evidence
has demonstrated that BOLD spontaneous activity
might exist in frequency bands above 0.1 Hz, the con-
ventional cutoff for functional connectivity (Boubela
et al 2013, Chen and Glover 2015, Jahanian et al
2019). Although it is not clear whether or to what
extent these high-frequency connectivity patterns
are driven by noises or neuronal activity, delineating
aliasing contributions from valid neuronal-driven
hemodynamics is crucial in understanding the func-
tional organization of the human brain.

There are a few limitations in the current study
that should be noted. Although in this study we
demonstrated that DOT has the capability of meas-
uring the cerebral hemodynamic signals in most of
the superficial cortices, however, DOT in principle
has a limited penetration depth (∼3 cm) (Strangman
et al 2002, Dehghani et al 2009b) and is not suited
to measure functional activity in the deep brain tis-
sue. This can potentially hinder DOT from mapping
RSFC across all hubs in RSN which comprise deeper
brain tissues. In this study, we selected the seed within

the precuneus of DMN, which allowed us to com-
pare the DOT and fMRI RSFC maps. However, PCC,
an important hub in DMN that is also connected to
the precuneus, is likely not reachable by DOT due to
its depth and has been excluded in the tomographic
reconstruction. Similarly, other deeper structures in
the medial prefrontal areas, such as the subgenual
cingulate cortex that has been found to be disrup-
ted in major depression (Greicius et al 2007, Fox et al
2012), is likely not reachable by fNIRS because of the
limited penetration depth. Nevertheless, mPFC, pre-
cuneus and IPL are still very important hubs of DMN.
Therefore, although restricted to the superficial cor-
tex, fNIRS can still monitor the RSFC in a great por-
tion of functional hubs of RSN and identify biomark-
ers for neurological disorders. Another limitation of
the current study is the sample size of 13 subjects to
be included in the group-level analysis. Although the
number is empirically sufficient in reaching a group-
level activation, it is only at the par bar with some of
the early proof-of-concept studies (Brookes et al 2011,
Eggebrecht et al 2014, Yuan et al 2016). Nonetheless, a
larger sample sized study should be warranted to rep-
licate the initial pilot study and further examine the
robustness of these findings.

5. Conclusion

In summary, functional neuroimaging of resting-
state brain networks especially the default mode
network has been placed at pivotal positions—as
biomarkers—in studies of aging and clinical trials for
AD. However, notably fMRI has been the primary
modality, in many cases the only modality, to be
included for functional neuroimaging in these stud-
ies. Our study has demonstrated that the cap-based,
brain-wide fNIRS recordings can map the RSFC in
the posterior midline, prefrontal and parietal struc-
tures of the default mode network, in a consistent
pattern with fMRI. Furthermore, the high sampling
rate in fNIRS can prevent the physiological noises
from contributing to the network organization in
the cerebral hemodynamic measurements. fNIRS as a
broadly accessible modality may be able to accelerate
aging research, especially in large populations.

Data availability statement

The data generated and/or analysed during the cur-
rent study are not publicly available for legal/eth-
ical reasons but are available from the corresponding
author on reasonable request.

Acknowledgments

This work was supported by the National Science
Foundation (RII Track-2 FEC 1539068, RII Track-
4 2132182), National Institute of General Medical
Sciences (P20GM135009), Oklahoma Center for the

12



J. Neural Eng. 20 (2023) 016012 F Zhang et al

Advancement of Science & Technology (HR16-057),
and Institute for Biomedical Engineering, Science and
Technology at The University of Oklahoma.

Conflict of interest

None of authors disclose any potential conflict of
interest.

Credit authorship contribution statement

Fan Zhang: Investigation, Formal analysis, Meth-
odology, Writing—original draft, Writing—review
& editing. Ali F. Khan: Formal analysis, Writing—
original draft. Lei Ding: Conceptualization, Method-
ology, Funding acquisition, Writing—original draft.
Han Yuan: Conceptualization, Methodology, Fund-
ing acquisition, Supervision,Writing—original draft,
Writing—review & editing.

ORCID iDs

Lei Ding https://orcid.org/0000-0003-2277-267X
Han Yuan https://orcid.org/0000-0003-0055-9691

References

Aihara T, Shimokawa T, Ogawa T, Okada Y, Ishikawa A, Inoue Y
and Yamashita O 2020 Resting-state functional connectivity
estimated with hierarchical Bayesian diffuse optical
tomography Front. Neurosci. 14 32

Allen E A, Damaraju E, Plis S M, Erhardt E B, Eichele T and
Calhoun V D 2014 Tracking whole-brain connectivity
dynamics in the resting state Cereb. Cortex 24 663–76

Andrews-Hanna J R, Snyder A Z, Vincent J L, Lustig C, Head D,
Raichle M E and Buckner R L 2007 Disruption of large-scale
brain systems in advanced aging Neuron 56 924–35

Bateman R J, Xiong C, Benzinger T L, Fagan A M, Goate A,
Fox N C, Marcus D S, Cairns N J, Xie X and Blazey T M
2012 Clinical and biomarker changes in dominantly
inherited Alzheimer’s disease New Engl. J. Med. 367 795–804

Beard J R et al 2016 The World report on ageing and health: a
policy framework for healthy ageing Lancet 387 2145–54

Benjamini Y and Hochberg Y 1995 Controlling the false discovery
rate: a practical and powerful approach to multiple testing J.
R. Stat. Soc. B 57 289–300

Bertero M, De Mol C and Pike E R 1988 Linear inverse problems
with discrete data: II stability and regularisation Inverse
Probl. 4 573

Birn R M, Diamond J B, Smith M A and Bandettini P A 2006
Separating respiratory-variation-related fluctuations from
neuronal-activity-related fluctuations in fMRI NeuroImage
31 1536–48

Birn R M, Smith M A, Jones T B and Bandettini P A 2008 The
respiration response function: the temporal dynamics of
fMRI signal fluctuations related to changes in respiration
NeuroImage 40 644–54

Biswal B, Deyoe E A and Hyde J S 1996 Reduction of physiological
fluctuations in fMRI using digital filtersMagn. Reson. Med.
35 107–13

Biswal B, Zerrin Yetkin F, Haughton V M and Hyde J S 1995
Functional connectivity in the motor cortex of resting
human brain using echo-planar MRIMagn. Reson. Med.
34 537–41

Boas D A, Dale A M and Franceschini M A 2004 Diffuse optical
imaging of brain activation: approaches to optimizing image
sensitivity, resolution, and accuracy NeuroImage 23 S275–88

Boubela R N, Kalcher K, Huf W, Kronnerwetter C, Filzmoser P
and Moser E 2013 Beyond noise: using temporal ICA to
extract meaningful information from high-frequency fMRI
signal fluctuations during rest Front. Hum. Neurosci. 7 168

Britz J, Van De Ville D and Michel C M 2010 BOLD correlates of
EEG topography reveal rapid resting-state network
dynamics NeuroImage 52 1162–70

Brookes M J, Woolrich M, Luckhoo H, Price D, Hale J R,
Stephenson M C, Barnes G R, Smith S M and Morris P G
2011 Investigating the electrophysiological basis of resting
state networks using magnetoencephalography Proc. Natl
Acad. Sci. USA 108 16783–8

Buckner R L, Andrews-Hanna J R and Schacter D L 2008 The
brain’s default network: anatomy, function, and relevance to
disease Ann. New York Acad. Sci. 1124 1–38

Buckner R L, Sepulcre J, Talukdar T, Krienen F M, Liu H,
Hedden T, Andrews-Hanna J R, Sperling R A and
Johnson K A 2009 Cortical hubs revealed by intrinsic
functional connectivity: mapping, assessment of stability,
and relation to Alzheimer’s disease J. Neurosci. 29 1860–73

Buxton R B 2013 The physics of functional magnetic resonance
imaging (fMRI) Rep. Prog. Phys. 76 096601

Cavedo E, Lista S, Khachaturian Z, Aisen P, Amouyel P,
Herholz K, Jack C Jr, Sperling R, Cummings J and
Blennow K 2014 The road ahead to cure Alzheimer’s disease:
development of biological markers and neuroimaging
methods for prevention trials across all stages and target
populations J. Prev. Alzheimer’s Dis. 1 181

Chang C, Cunningham J P and Glover G H 2009 Influence of
heart rate on the BOLD signal: the cardiac response function
NeuroImage 44 857–69

Chen J E and Glover G H 2015 BOLD fractional contribution to
resting-state functional connectivity above 0.1 Hz
NeuroImage 107 207–18

Chen Y, Tang J H, De Stefano L A, Wenger M J, Ding L, Craft M A,
Carlson B W and Yuan H 2022 Electrophysiological resting
state brain network and episodic memory in healthy aging
adults NeuroImage 253 118926

Chen Y, Tang J, Chen Y, Farrand J, Craft M A, Carlson B W and
Yuan H 2020 Amplitude of fNIRS resting-state global signal
is related to EEG vigilance measures: a simultaneous fNIRS
and EEG study Front. Neurosci. 1265

Chiarelli A M, Zappasodi F, Di Pompeo F and Merla A 2017
Simultaneous functional near-infrared spectroscopy and
electroencephalography for monitoring of human brain
activity and oxygenation: a review Neurophotonics
4 041411

Cordes D, Haughton V M, Arfanakis K, Carew J D, Turski P A,
Moritz C H, Quigley M A and Meyerand M E 2001
Frequencies contributing to functional connectivity in the
cerebral cortex in “resting-state” data Am. J. Neuroradiol.
22 1326–33

Cordes D, Haughton V M, Arfanakis K, Wendt G J, Turski P A,
Moritz C H, Quigley M A and Meyerand M E 2000 Mapping
functionally related regions of brain with functional
connectivity MR imaging Am. J. Neuroradiol. 21 1636–44

Cordes D, Nandy R R, Schafer S and Wager T D 2014
Characterization and reduction of cardiac- and
respiratory-induced noise as a function of the sampling rate
(TR) in fMRI NeuroImage 89 314–30

Cox R W 1996 AFNI: software for analysis and visualization of
functional magnetic resonance neuroimages Comput.
Biomed. Res. 29 162–73

Culver J P, Siegel A M, Stott J J and Boas D A 2003 Volumetric
diffuse optical tomography of brain activity Opt. Lett.
28 2061–3

Cummings J, Aisen P S, DuBois B, Frölich L, Jack C R, Jones R W,
Morris J C, Raskin J, Dowsett S A and Scheltens P 2016 Drug
development in Alzheimer’s disease: the path to 2025
Alzheimer’s Res. Ther. 8 39

Dale A M, Fischl B and Sereno M I 1999 Cortical surface-based
analysis: i. Segmentation and surface reconstruction
NeuroImage 9 179–94

13

https://orcid.org/0000-0003-2277-267X
https://orcid.org/0000-0003-2277-267X
https://orcid.org/0000-0003-0055-9691
https://orcid.org/0000-0003-0055-9691
https://doi.org/10.3389/fnins.2020.00032
https://doi.org/10.3389/fnins.2020.00032
https://doi.org/10.1093/cercor/bhs352
https://doi.org/10.1093/cercor/bhs352
https://doi.org/10.1016/j.neuron.2007.10.038
https://doi.org/10.1016/j.neuron.2007.10.038
https://doi.org/10.1056/NEJMoa1202753
https://doi.org/10.1056/NEJMoa1202753
https://doi.org/10.1016/S0140-6736(15)00516-4
https://doi.org/10.1016/S0140-6736(15)00516-4
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1088/0266-5611/4/3/004
https://doi.org/10.1088/0266-5611/4/3/004
https://doi.org/10.1016/j.neuroimage.2006.02.048
https://doi.org/10.1016/j.neuroimage.2006.02.048
https://doi.org/10.1016/j.neuroimage.2007.11.059
https://doi.org/10.1016/j.neuroimage.2007.11.059
https://doi.org/10.1002/mrm.1910350114
https://doi.org/10.1002/mrm.1910350114
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1016/j.neuroimage.2004.07.011
https://doi.org/10.1016/j.neuroimage.2004.07.011
https://doi.org/10.3389/fnhum.2013.00168
https://doi.org/10.3389/fnhum.2013.00168
https://doi.org/10.1016/j.neuroimage.2010.02.052
https://doi.org/10.1016/j.neuroimage.2010.02.052
https://doi.org/10.1073/pnas.1112685108
https://doi.org/10.1073/pnas.1112685108
https://doi.org/10.1196/annals.1440.011
https://doi.org/10.1196/annals.1440.011
https://doi.org/10.1523/JNEUROSCI.5062-08.2009
https://doi.org/10.1523/JNEUROSCI.5062-08.2009
https://doi.org/10.1088/0034-4885/76/9/096601
https://doi.org/10.1088/0034-4885/76/9/096601
https://doi.org/10.14283/2Fjpad.2014.32
https://doi.org/10.14283/2Fjpad.2014.32
https://doi.org/10.1016/j.neuroimage.2008.09.029
https://doi.org/10.1016/j.neuroimage.2008.09.029
https://doi.org/10.1016/j.neuroimage.2014.12.012
https://doi.org/10.1016/j.neuroimage.2014.12.012
https://doi.org/10.1016/j.neuroimage.2022.118926
https://doi.org/10.1016/j.neuroimage.2022.118926
https://doi.org/10.3389/fnins.2020.560878
https://doi.org/10.1117/1.NPh.4.4.041411
https://doi.org/10.1117/1.NPh.4.4.041411
https://doi.org/10.1016/j.neuroimage.2013.12.013
https://doi.org/10.1016/j.neuroimage.2013.12.013
https://doi.org/10.1006/cbmr.1996.0014
https://doi.org/10.1006/cbmr.1996.0014
https://doi.org/10.1364/OL.28.002061
https://doi.org/10.1364/OL.28.002061
https://doi.org/10.1186/s13195-016-0207-9
https://doi.org/10.1186/s13195-016-0207-9
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.1006/nimg.1998.0395


J. Neural Eng. 20 (2023) 016012 F Zhang et al

Damoiseaux J S, Beckmann C F, Arigita E J, Barkhof F, Scheltens P,
Stam C J, Smith S M and Rombouts S A 2008 Reduced
resting-state brain activity in the “default network” in
normal aging Cereb. Cortex 18 1856–64

Dehghani H, Eames M E, Yalavarthy P K, Davis S C, Srinivasan S,
Carpenter C M, Pogue B W and Paulsen K D 2009a Near
infrared optical tomography using NIRFAST: algorithm for
numerical model and image reconstruction Commun.
Numer. Methods Eng. 25 711–32

Dehghani H, White B R, Zeff B W, Tizzard A and Culver J P 2009b
Depth sensitivity and image reconstruction analysis of dense
imaging arrays for mapping brain function with diffuse
optical tomography Appl. Opt. 48 D137–43

Demetriou L, Kowalczyk O S, Tyson G, Bello T, Newbould R D
and Wall M B 2018 A comprehensive evaluation of
increasing temporal resolution with multiband-accelerated
protocols and effects on statistical outcome measures in
fMRI NeuroImage 176 404–16

Desjardins A E, Kiehl K A and Liddle P F 2001 Removal of
confounding effects of global signal in functional MRI
analyses NeuroImage 13 751–8

Drew P J, Mateo C, Turner K L, Yu X and Kleinfeld D 2020
Ultra-slow oscillations in fMRI and resting-state
connectivity: neuronal and vascular contributions and
technical confounds Neuron 107 782–804

Duan L, Zhang Y J and Zhu C Z 2012 Quantitative comparison of
resting-state functional connectivity derived from fNIRS
and fMRI: a simultaneous recording study NeuroImage
60 2008–18

Edwards F A 2019 A unifying hypothesis for Alzheimer’s Disease:
from plaques to neurodegeneration Trends Neurosci.
42 310–22

Eggebrecht A T, Ferradal S L, Robichaux-Viehoever A,
Hassanpour M S, Dehghani H, Snyder A Z, Hershey T and
Culver J P 2014 Mapping distributed brain function and
networks with diffuse optical tomography Nat. Photon.
8 448–54

Fischl B 2012 FreeSurfer NeuroImage 62 774–81
Fischl B, Sereno M I, Tootell R B and Dale A M 1999

High-resolution intersubject averaging and a coordinate
system for the cortical surface Hum. Brain Mapp. 8 272–84

Fox M D, Buckner R L, White M P, Greicius M D and
Pascual-Leone A 2012 Efficacy of transcranial magnetic
stimulation targets for depression is related to intrinsic
functional connectivity with the subgenual cingulate Biol.
Psychiatry 72 595–603

Fox M D and Raichle M E 2007 Spontaneous fluctuations in brain
activity observed with functional magnetic resonance
imaging Nat. Rev. Neurosci. 8 700

Glover G H, Li T Q and Ress D 2000 Image-based method for
retrospective correction of physiological motion effects in
fMRI: RETROICORMagn. Reson. Med. 44 162–7

Golestani A M, Kwinta J B, Khatamian Y B and Chen J J 2017 The
effect of low-frequency physiological correction on the
reproducibility and specificity of resting-state fMRI metrics:
functional connectivity, ALFF, and ReHo Front. Neurosci.
11 546

Greicius M D, Flores B H, Menon V, Glover G H, Solvason H B,
Kenna H, Reiss A L and Schatzberg A F 2007 Resting-state
functional connectivity in major depression: abnormally
increased contributions from subgenual cingulate cortex
and thalamus Biol. Psychiatry 62 429–37

Greicius M D, Srivastava G, Reiss A L and Menon V 2004
Default-mode network activity distinguishes Alzheimer’s
disease from healthy aging: evidence from functional MRI
Proc. Natl Acad. Sci. USA 101 4637–42

Greicius M 2008 Resting-state functional connectivity in
neuropsychiatric disorders Curr. Opin. Neurol. 21 424–30

Hsu D and Marshall G A 2017 Primary and secondary prevention
trials in Alzheimer disease: looking back, moving forward
Curr. Alzheimer Res. 14 426–40

Hu Z, Liu G, Dong Q and Niu H 2020 Applications of
resting-state fNIRS in the developing brain: a review from
the connectome perspective Front. Neurosci. 14 476

Huotari N et al 2019 Sampling rate effects on resting state fmri
metrics Front. Neurosci. 13 279

Ittner L M and Götz J 2011 Amyloid-β and tau—a toxic pas de
deux in Alzheimer’s disease Nat. Rev. Neurosci. 12 67–72

Jahanian H, Holdsworth S, Christen T, Wu H, Zhu K, Kerr A B,
Middione M J, Dougherty R F, Moseley M and Zaharchuk G
2019 Advantages of short repetition time resting-state
functional MRI enabled by simultaneous multi-slice
imaging J. Neurosci. Methods 311 122–32

Jones D T, Knopman D S, Gunter J L, Graff-Radford J, Vemuri P,
Boeve B F, Petersen R C, Weiner MW and Jack C R Jr.
Alzheimer’s Disease Neuroimaging, I 2016 Cascading
network failure across the Alzheimer’s disease spectrum
Brain 139 547–62

Karran E, Mercken M and Strooper B D 2011 The amyloid
cascade hypothesis for Alzheimer’s disease: an appraisal for
the development of therapeutics Nat. Rev. Drug Discov.
10 698–712

Khan A F, Zhang F, Yuan H and Ding L 2021 Brain-wide
functional diffuse optical tomography of resting state
networks J. Neural Eng. 18 046069

Koch W, Teipel S, Mueller S, Benninghoff J, Wagner M,
Bokde A L, Hampel H, Coates U, Reiser M and Meindl T
2012 Diagnostic power of default mode network resting
state fMRI in the detection of Alzheimer’s disease Neurobiol.
Aging 33 466–78

Kohno S, Miyai I, Seiyama A, Oda I, Ishikawa A, Tsuneishi S,
Amita T and Shimizu K 2007 Removal of the skin blood
flow artifact in functional near-infrared spectroscopic
imaging data through independent component analysis J.
Biomed. Opt. 12 062111

Li R, Mayseless N, Balters S and Reiss A L 2021 Dynamic
inter-brain synchrony in real-life inter-personal
cooperation: a functional near-infrared spectroscopy
hyperscanning study NeuroImage 238 118263

Liu T T 2016 Noise contributions to the fMRI signal: an overview
NeuroImage 143 141–51

Logothetis N K 2008 What we can do and what we cannot do with
fMRI Nature 453 869

Lu C-M, Zhang Y-J, Biswal B B, Zang Y-F, Peng D-L and Zhu C-Z
2010 Use of fNIRS to assess resting state functional
connectivity J. Neurosci. Methods 186 242–9

Mateo C, Knutsen P M, Tsai P S, Shih A Y and Kleinfeld D 2017
Entrainment of arteriole vasomotor fluctuations by neural
activity is a basis of blood-oxygenation-level-dependent
“resting-state” connectivity Neuron 96 936–48.e933

McDade E, Llibre-Guerra J J, Holtzman D M, Morris J C and
Bateman R J 2021 The informed road map to prevention of
Alzheimer disease: a call to armsMol. Neurodegener. 16 49

Mesquita R C, Franceschini M A and Boas D A 2010 Resting state
functional connectivity of the whole head with near-infrared
spectroscopy Biomed. Opt. Express 1 324–36

Michel C M and Koenig T 2018 EEG microstates as a tool for
studying the temporal dynamics of whole-brain neuronal
networks: a review NeuroImage 180 577–93

Mitra P P, Ogawa S, Hu X and Uǧurbil K 1997 The nature of
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