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Abstract: Grounding is a therapeutic technique that involves doing activities that “ground” or
electrically reconnect us to the earth. The physiological effects of grounding have been reported
from a variety of perspectives such as sleep or pain. However, its anti-stress efficacy is relatively
unknown. The present study investigated the stress-related behavioral effects of earthing mat and
its neurohormonal mechanisms in the Sprague–Dawley male rat. Rats were randomly divided into
four groups: the naïve normal (Normal), the 21 days immobilization stressed (Control), the 21 days
stressed + earthing mat for 7 days (A7) or 21 days (A21) group. The depressive-and anxiety like
behaviors were measured by forced swimming test (FST), tail suspension test (TST) and elevated
plus maze (EPM). Using immunohistochemistry, the expression of corticotrophin-releasing factor
(CRF) and c-Fos immunoreactivity were analyzed in the brain. In the EPM, time spent in the open
arm of the earthing mat groups was significantly increased compared to the Control group (p < 0.001),
even though there were without effects among groups in the FST and TST. The expression of CRF
immunoreactive neurons in the earthing mat group was markedly decreased compared to the Control
group. Overall, the earthing mat reduced stress-induced behavioral changes and expression of c-Fos
and CRF immunoreactivity in the brain. These results suggest that the earthing mat may have the
potential to improve stress-related responses via the regulation of the corticotrophinergic system.

Keywords: grounding; earthing mat; stress; elevated plus maze (EPM); corticotrophin releasing
factor (CRF); c-Fos; depressive behavior; tail suspension test (TST); forced swimming test (FST);
therapeutic technique

1. Introduction

Repeated immobilization stress is an easy and well-known method to induce chronic
physical and emotional stress [1]. The psychological and physiological changes to re-
peated immobilization stress are initiated by activation of the hypothalamic–pituitary
adrenal axis, and these results in the release of catecholamines and stress hormones such as
corticotropin-releasing factor (CRF) [2,3]. The CRF system plays a key role in a diversity of
behaviors accompanying stress, anxiety and depression [4–6]. We previously demonstrated
increased CRF expression in the paraventricular nuclei of repeated restraint-stressed rats [6].
However, little is known about the specific interventions for stress-related disorders.

Grounding, also called earthing, is a therapeutic technique that involves doing activi-
ties that “ground” or electrically reconnect us to the earth. This conductive contact of the
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human body with the surface of the earth can have intriguing benefits on our physiology.
Recently, researchers have studied the physiological effects of grounding from a variety of
perspectives [7,8]. For example, electrically conductive contact of the human body with the
surface of the Earth (grounding or earthing) produces intriguing effects on physiology and
health [9,10]. Chevalier et al. reported that grounding reduces pain and alters the numbers
of circulating neutrophils and lymphocytes, and also affects various circulating chemical
factors related to inflammation [9]. Some studies reported that environmental medicine
generally influences environmental factors with a negative impact on human health [7,9].
Mounting evidence shows that the Earth’s negative potential can produce a stable internal
bioelectrical environment for the normal functioning of all body systems [8–10]. It is known
that electrons from antioxidant molecules normalize reactive oxygen species involved in
immune, inflammatory and stress response. Therefore, it is possible that the influx of
free electrons absorbed into the body through direct contact with the Earth normalize
free radicals and may reduce stress vulnerability. However, no studies investigated the
anti-stress effects or mechanism of earthing mat underlying stress responses. The main
hypothesis of this study is that connecting the body to the earth through earthing mat may
have anti-inflammatory and antioxidant effects and, therefore, exposure with earthing mat
has an anti-stress efficacy in animal models of stress.

In this study, we aimed to investigate whether grounding in the rats could change
stress-related anxiety and depressive behaviors and the production of corticotrophin-
releasing factors in the brain region. To achieve this goal, anxiety and depressive-like
behaviors were tested via an elevated plus maze (EPM), tail suspension test (TST) and
forced swimming test (FST). Moreover, we further assessed the expression of c-Fos and
corticotrophin-releasing factor (CRF) in the paraventricular nucleus of the hypothalamus
(PVN).

2. Materials and Methods
2.1. Animals and Experimental Procedures

All the experiments were approved by the Kyung Hee University institutional animal
care (approval No. KHUAP(SE)-13-041) and in accordance with the US National Institutes
of Health “Guide for the Care and Use of Laboratory Animals” (NIH Publication number
80-23, revised 1996). Sprague–Dawley rats (Orient Animal Co, Kyonggido, Korea) that
weighed 220–240 g (6–7 weeks old) each were used for the experiment. The male rats were
housed under a controlled temperature (22–24 ◦C) with a 12 h light/dark cycle. The lights
were on from 8:00 to 20:00. Food and water were made available ad libitum. The rats
were allowed at least 1 week to adapt to their environment before the experiments. All the
experiments were approved by the Kyung Hee University institutional animal care and
use committee. The male rats were randomly divided into four groups: the naïve Normal
(Normal), the 21 days stressed group (Control), the 21 days stressed and the earthing mat
used the group for 7 days (A7) or 21 days (A21) (Figure 1).
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Immobilization stress was applied by forcing the animals into an immobilization
device (a disposable rodent restraint cone, Yusung, Korea) 2 h (10:00–12:00 a.m.) per
day for 21 consecutive days. For the 21 days immobilization stressed group (Control),
immobilization stress was applied by placing rats into a disposable rodent restraint cone 2 h
per day for 21 consecutive days, and they were not placed in cage with earthing mattress
during experiments. For 7 days (A7) or 21 days (A21) groups, they received immobilization
stress for 21 consecutive days and were placed in cage with earthing mattress, as shown in
Figure 2. Neither immobilization stress nor earthing mat was applied to the normal group
(Normal). When the mats were destroyed by rat, they were replaced. Otherwise, the same
one was used for one rat. They were cleaned and sanitized with 70% alcohol swab every
other day during experiment.
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2.2. Earthing Mat

The earthing mat was provided by the World Home Dr. Company (Anyang City,
Kyunggido, Republic of Korea). The earthing mat system consists of cotton sheet, and
electric emission plate is connected to a ground port of an electrical outlet, as shown in
Figure 2. The grounding port helps reconnect the conductive rats’ bodies to the Earth’s
natural and subtle surface electric charge. Rats were placed on the earthing mat before
behavioral tests.

2.3. Tail Suspension Test (TST)

All mice were isolated in plastic boxes (20 × 10 × 10 cm) between the injection and the
test. It is easy to measure the length of immobility, and these measurements were always
made under blind conditions [11–13]. The recording duration was 6 min.

2.4. Forced Swimming Test (FST)

Transparent Plexiglas cylinders (height: 50 cm × diameter: 20 cm) were required for
forced swimming test (FST). The room temperature water was filled to a 30 cm depth.
Before test, all rats were taken pre-test for 15 min. After 24 h, rats were tested for 5 min. We
used a video camera, and swimming behaviors were analyzed. Total duration of immobility
(lack of motion of the whole body, climbing (vigorous movements) and swimming (large
forepaw movements displaced the body around the cylinder) were examined [6,14–16].
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2.5. Elevated Plus Maze (EPM)

The plus-maze apparatus was constructed with black wood. It consisted of two
open arms (the arms extended from a central 50 × 10 cm space) and two enclosed arms
(50 × 10 × 40 cm). The arms extended from a central platform (10 × 10 cm). The apparatus
was elevated 50 cm above the floor. The animals were transported to the testing room at
least 1 h prior to starting the experiment. The rats were individually placed in the central
platform facing a closed arm, and they were allowed to explore the maze for a 5-min test
period. The duration of time spent in the open and closed arms, and activity of each arm
were the behavioral measures that were recorded for each rat [17–22]. The apparatus was
wiped clean with a damp sponge and dried with paper towels between tests.

2.6. Immunohistochemistry of c-Fos and Corticotrophin Releasing Factor (CRF)

After the behavioral tests, rats were perfused through a needle in the left ventricle
of the heart, under sodium pentobarbital (100 mg/kg, i.p.) with 100 mL of saline for
5 min, followed by approximately 500 mL of a 4% solution of formaldehyde in PBS. After
perfusion, the brains were removed from skull and post-fixed in the same fixative solution
for 2 h at 4 ◦C and then placed overnight at 4 ◦C in 20% sucrose in PBS. They were frozen
and cut on microtome. The coronal sections were sliced to 30 µm-thickness. CRF [23–28]
and c-Fos [29–35] immunohistochemistry were performed separately. Primary antibodies
were diluted with blocking solution (rabbit CRF polyclonal antibody, concentration 1:500;
Santacruz biotechnology, Delaware Avenue Santa Cruz, CA, USA.) and c-Fos immunore-
activity using rabbit c-Fos polyclonal antibody (c-Fos, concentration 1:2000; Santacruz
biotechnology, Delaware Avenue Santa Cruz, CA, USA). Sections were incubated overnight
18 h–24 h, free-floating) at room temperature with gentle agitation. Following rinsing
in PBS, the sections were incubated for 2 h at room temperature in biotinylated rabbit
anti-rabbit serum (Vector Laboratories, Burlingame, CA, USA) that was diluted 100:1 in
PBST containing 2% normal goat serum. The sections were placed in Vectastain Elite
ABC reagent (Vector Laboratories, Burlingame, CA, USA) for 2 h at room temperature.
Following a further rinsing in PBS, the tissue was developed using diaminobenzidine
chromogen with nickel intensification. Sections were washed in 1× PBS three times for
3 min, mounted on gelatin-coated slides, air-dried (2 h) and cover-slipped with mounting
solution. Microscopy was used to acquire digital images of CRF immunohistochemistry in
paraventricular nucleus using a 100× objective from 3–4 tissue sections from each animal.
Then, a micro rectangular grid (200 × 200 µm) was placed on PVN area (Bregma ML:
0~−0.8 mm, AP: −1.5~−2 mm, DV: −7.8~−8 mm) according to the atlas of Paxinos and
Watson [36].

2.7. Statistical Analysis

The values of the experimental results were expressed as the mean ± S.E.M. Statistical
analysis was used with SPSS 25.0 software (SPSS 25 Inc., Chicago, IL, USA). Differences
among groups were analyzed using one-way ANOVA and LSD post hoc test. p-value of
less than 0.05 was considered statistically significant. Graph generations were followed
with GraphPad Prism 6.0 software.

3. Results
3.1. Forced Swimming Test (FST) and Tail Suspension Test (TST)

As shown in Figure 3A–C, in the FST, the immobility time was not significantly
different among groups (immobility (F (3, 50) = 0.53, p = 0.67, Figure 3A), climbing
(F (3, 50) = 0.08, p = 0.97, Figure 3B) and swimming (F (3, 50) = 0.07, p = 0.98, Figure 3C). In
the FST and TST, the immobility time of the earthing mat groups (A7 and A21) tended to
decrease more compared to the Control group. (Figure 3A,D).
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3.2. Elevated Plus Maze

As shown in Figure 4A–C, the one-way ANOVA revealed a significant difference
among groups regarding the time to the open arms (%) (F (3, 19) = 9.2, p = 0.0006, Figure 4A)
and the closed arm (%) (F (3, 19) = 3.6, p = 0.03, Figure 4B). The control group decreased
the time spent in the open arms (p < 0.05) compared to that of the normal group. Earthing
mat-used groups showed a significantly longer period of time spent in the open arms than
that of the control group (p < 0.001). The control group increased the time spent in the
closed arms (p < 0.05) compared to that of the normal group. The group using the Earthing
mat for seven days showed a significantly shorter period of time spent in the closed arms
than that of the control group (p < 0.05). However, the total distance was not significantly
different among groups (F (3, 19) = 1.3, p = 0.29, Figure 4C). This result showed that earthing
mat-used groups produced an anxiolytic effect on the EPM.

3.3. Immunohistochemistry
3.3.1. Corticotrophin-Releasing Factor (CRF) Immunohistochemistry

The evaluation of the CRF immunoreactive cells per section of the paraventricular
area is shown in Figure 5A,B. The number of CRF positive neurons in the paraventricular
nucleus (PVN) area was 53.3.0 ± 6.2 in the Normal group, 89.9.8 ± 6.7 in the Control
group, 63.5 ± 7.1 in the 7-day earthing mat group, 70.0 ± 4.6 in the 21-day earthing
mat group [F (3, 188) = 6.1, p = 0.0005]. When resulted in the expression of the CRF, CRF
immunoreactive neurons in the control group were significantly increased compared to the
Normal group. However, the expression of CRF immunoreactive neurons in the earthing
mat groups was markedly decreased compared to the Control group.
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Figure 5. (A) Effect of earthing mat on CRF expression. (A) Data represent means ± SEM. *** < 0.001
compared to Normal group, # p < 0.05, ## p < 0.01 compared to Control group. (B) Photographs
showing the distribution of CRF immunoreactive cells in the PVN of the (a) Normal group, (b)
Control group, (c) A7 group, (d) A21 group. Coronal sections were 30 µm thick, and the scale bar
represents 100 µm.

3.3.2. c-Fos Immunohistochemistry

The evaluation of the c-Fos immunoreactive cells per section of the paraventricular
area is shown in Figure 6A,B. The number of c-Fos positive neurons in the paraventricular
nucleus (PVN) area was 45.3 ± 4.6 in the Normal group, 42.4 ± 4.4 in the Control group,
39.6 ± 2.7 in the 7-day earthing mat group, 46.9.0 ± 3.3 in the 21-day earthing mat group,
[F (3, 187) = 0.7, p = 0.54]. The expression of the c-Fos immunoreactive neurons in the
earthing mat seven-day group had a trend of more decreased c-Fos neurons compared to
the control group. However, there were no significant differences among the groups.
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4. Discussion

The present study showed that in the elevated plus maze (EPM), the Control group
decreased spent time in the open arm compared to the Normal group. However, earthing
mat groups significantly increased spent time in the open arm compared to the Control
group. When resulted in the expression of the CRF, CRF immunoreactive neurons in the
Control group were significantly increased compared to the Normal group. However, the
expression of CRF immunoreactive neurons in the earthing mat groups was markedly
decreased compared to the Control group. The expression of the c-Fos immunoreactive
neurons in the seven-day earthing mat group trended to decrease more than in the Control
group. However, there were no significant differences among the groups.

Immobilization stress is one of the main and potent sources of stress, inducing a strong
hormonal and behavioral reaction [37]. The HPA axis is activated in rodents to a different
degree when the stress is mild (e.g., mild handling, needle stick, time in elevated plus
maze [38], common symptoms of stress-related behavior [39,40]. A decrease in general
exploratory activity in an open arena after restraint stress has been previously described [41].
In the elevated plus-maze, most studies found a decrease in the percentage of open-arm
entries and/or time spent in them [41,42]. Consistent with the previous study, the present
result showed a decrease in time spent in the open arm after repeated stress. However, an
increase in time spent in the open arms was shown in earthing mat groups. Our result also
showed that the earthing mat decreased anxiety-like behavior compared to the Control
group. Another pilot study showed that grounding improves measurements of mood
within 1 h, suggesting a potentially positive effect on health [43–48]. Therefore, it can be
assumed that earthing mat may be effective against stress-related anxiety.

It is well known that repeated stress has an effect on the central nervous system (CNS)-
neuroendocrine behavior. The immunohistochemical expression of c-Fos-like proteins
in the nervous system is considered a marker of neuronal activation. The logic of this
methodology is based on the demonstration that the expression of this protein is increased
in neurons after stress exposure [49,50]. The expression of the c-Fos immunoreactive
neurons in the seven-day earthing mat group trended to decrease more than in the Control
group. However, there were no significant differences among the groups.

Corticotropin-releasing factor (CRF) is a key component of stress responsivity, mod-
ulating related behaviors, including anxiety and reward. The primary stress response
involves the activation of hypothalamic neurons producing CRF, an initial step in the
cascade that leads to the synthesis and release of glucocorticoids [51–57]. Our data also
showed the activation of CRF immunoreactive neurons in the PVN after repeated 21 days
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of restraint stress. However, earthing mat groups decreased the CRF-ir expression in the
PVN compared to the Control group. Mounting evidence suggests that the Earth’s negative
potential can create a stable internal bioelectrical environment for the normal functioning
of all body systems [43–46]. Moreover, oscillations of the intensity of the Earth’s potential
may be important for setting the biological clocks regulating diurnal body rhythms, such as
cortisol secretion [51]. The results of the study were consistent with previous studies [18,51].

Earthing means reconnecting the conductive body to the Earth’s natural electric charge.
Earthing influences the basic bioelectrical function of the body. The present study showed
that earthing influenced corticosterone secretion and stress-related behavioral changes
such as anxiety and learned helplessness. These results suggest that connecting the whole
body to the earth can free electrons and diurnal electrical rhythms to enter the body,
setting the biological clocks for hormones that regulate stress responses, consistent with
previous studies proving that Earthing stabilizes the physiology, reduces inflammation
and pain and improves sleep [43–47,58,59]. Another study reported that through the
electrodynamics of red blood cells earthing significantly reduced blood viscosity and
cardiovascular disease [60].

Taken together, these data suggest that earthing mats may be helpful in stress manage-
ment via the regulation of corticotrophinergic mechanisms. In light of such limitations, our
finding provides preliminary evidence of the safety of earthing mats and their potential
to decrease stress responses in an animal model. Moreover, we are planning to analyze
stress-related neurotransmitter markers such as serotonin, dopamine and GABA synthesis
and release in the future study.

5. Conclusions

In summary, earthing mat reduced anxiety-like behavior and learned helplessness
behavior. These behavioral alterations may be mediated via the regulation of the corti-
cotrophinergic pathway. Overall, connecting the whole body to the earth can free electrons
and diurnal electrical rhythms to enter the body, setting the biological clocks for hormones
that regulate stress responses.
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