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Abstract: Cardiovascular disease (CVD) is the leading cause of death in Western countries. A low
HDL-C is associated with the development of CVD. However, recent epidemiology studies have
shown U-shaped curves between HDL-C and CVD mortality, with paradoxically increased CVD
mortality in patients with extremely high HDL-C levels. Furthermore, HDL-C raising therapy using
nicotinic acids or CETP inhibitors mostly failed to reduce CVD events. Based on this background,
HDL functions rather than HDL-C could be a novel biomarker; research on the clinical utility of HDL
functionality is ongoing. In this review, we summarize the current status of HDL functions and their
future perspectives from the findings of basic research and clinical trials.
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1. Introduction

Cardiovascular disease (CVD) is the primary cause of death in Western countries and
Japan. In the 1970s, the Framingham Heart Study showed that HDL-C was negatively asso-
ciated with the development of cardiovascular disease (CVD) [1]. Accordingly, clinicians
regarded HDL as anti-atherogenic lipoprotein and expected HDL-C-raising therapy to
reduce CVD events. Unfortunately, clinical trials using niacin and cholesterol ester transfer
protein (CETP) inhibitors mostly failed to reduce CVD events [2–5]. Conversely, prospec-
tive studies showed that cholesterol efflux capacity (CEC), a principal anti-atherogenic
function of HDL, is a negative predictor of CVD, bringing about a paradigm shift from
HDL quantity (HDL-C) to functions.

Sixty years ago, Glomset proposed the concept of reverse cholesterol transport (RCT)
for HDL [6], and since then, HDL research has gained momentum in both basic and clinical
studies. In this review, we summarize the current views in HDL research, as well as future
perspectives on HDL functions.

2. HDL-C and Atherosclerosis

The Framingham Heart Study, as noted above, and the PROCAM study, have shown
that HDL-C is negatively associated with CVD risk [1,7]. Thus, high HDL-C has been
considered to be atheroprotective for a long time. However, recent prospective cohort
studies in Denmark found an increased hazard ratio for all-cause mortality in individuals
with extremely high HDL-C [8]. In addition, pooled analysis (EPOCH-JAPAN: Evidence
for Cardiovascular Prevention from Observational Cohorts in Japan), including nine cohort
studies in Japan, confirmed the above finding [9].

Using genome-wide association analysis (GWAS), Zanoni et al. reported that a loss-of-
function mutation of scavenger receptor B1 (SR-B1) increased the risk of coronary heart
disease (CHD) despite elevated HDL-C [10]. Furthermore, CETP inhibitors, potent HDL-C-
raising drugs, failed to show a protective effect against the development of CVD [2,4,5].
These findings, therefore, led to growing recognition that HDL functions are more important
than HDL-C levels.
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3. HDL Functions

Traditionally, researchers have focused on the size of HDL and the proteins and
phospholipids it contains, classifying them by density gradient ultracentrifugation, two-
dimensional gel electrophoresis, nuclear magnetic resonance spectroscopy, or ion mo-
bility [11]. In addition, recent technologies, including proteomics and lipidomics, have
uncovered the heterogeneity and complexities of HDL, that they harbor various apolipopro-
teins, lipid transfer proteins, enzymes, and phospholipids [12,13]. This has led to the
discovery that HDL has several anti-atherosclerotic functions, including reverse cholesterol
transport (RCT) and anti-inflammatory, antioxidative, vasodilatory, and anti-thrombotic
functions [14–19].

In this study, we have summarized HDL functions from the aspects of basic and
clinical research.

3.1. Reverse Cholesterol Transport

As shown in Figure 1, RCT is believed to have a major anti-atherosclerotic function.
RCT is a pathway by which HDL transports excess cholesterol from foamy macrophages
and smooth muscle cells, and peripheral tissues to the liver [20]. Cholesterol transported
to the liver by HDL is partly stored as cholesteryl esters, while the rest is excreted as bile.
RCT, as well as trans-intestinal excretion (TICE) [21], play pivotal roles in cholesterol efflux
into the intestinal tract.

Figure 1. Schematic illustration of reverse cholesterol transport (RCT). RCT is a major atheroprotective
function of HDL, a pathway by which HDL transports excess cholesterol from peripheral tissues,
transfers it to the liver, and then excretes it from bile into the intestinal tract. Abbreviations: ABCA1:
ATP-binding cassette protein A1, ABCG1: ATP-binding cassette protein G1, CETP: cholesteryl
ester transfer protein, HDL: high-density lipoprotein, SR-B1: scavenger receptor class B member 1
(illustration was created using Biorender.com accessed on 7 December 2022).

Apolipoprotein A-I (ApoA-I), a major apolipoprotein of HDL, is mainly secreted from
the liver and small intestine. The secreted apo A-I gains phospholipids and cholesterol via
ATP binding cassette transporter A1 (ABCA1) from peripheral tissues to form discoidal

Biorender.com
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HDL (preβ HDL) and further effluxed cellular cholesterol via ATP binding cassette trans-
porter G1 (ABCG1), and SR-BI, which leads to the formation of mature HDL particles
by lecithin cholesterol acyltransferase (LCAT) [22–25]. The majority of cholesterol ester
(HDL-CE) is transferred from HDL to VLDL and LDL by CETP and is taken up by LDL
receptor (LDLR) in the liver [26].

Many studies have revealed that enhancing RCT promoted atherosclerosis regression,
and that there were two ways of achieving this—through improvements in macrophage
cholesterol efflux, and of hepatic uptake and biliary excretion [20,27]. In these approaches,
the initial cholesterol efflux from macrophages is the primary determinant of RCT [28,29].
As indicated above, in the first step, lipid-poor ApoA-1 acts as an acceptor in ABCA1-
mediated efflux, while ABCG1 and SR-B1-mediated efflux is mediated by mature HDL.
Our laboratory previously focused on macrophage cholesterol efflux and found that over-
expression of stearoyl-coenzyme A desaturase 1 (SCD1) and proteasomal inhibition of
ATP-binding cassette transporter A1 (ABCA1) and ABCG1 in macrophages promoted
RCT in vivo [30,31]. Meanwhile, Rothblat and Rader’s group had established an assay for
cholesterol efflux capacity (CEC) [32] to assess it from macrophages in clinical research.
In their assay, ABDS (ApoB-depleted serum) was added to the cholesterol-radiolabeled
cultured cells (3H-Cholesterol). After incubation, the medium was collected, and the lipids
in the cells were extracted using hexane and isopropanol. The [3H] radioactivity of the
medium and cell extracts was measured, and the CEC was calculated by dividing the
medium count by the sum of the medium and cell counts. Therefore, CEC reflects the
ability of the patient’s HDL to expel radiolabeled cholesterol from the cultured cells.

Cross-sectional and prospective studies revealed that CEC was a negative predictor of
cardiovascular disease development independent of HDL-C in the Dallas Heart Study and
EPIC-Norfolk study [33–35]. In line with these findings, we previously reported that CEC
was a predictor of coronary artery disease (CAD) in Japanese patients [36]. In addition, the
association of CEC with CVD was confirmed in a meta-analysis, making it irrefutable that
CEC is a negative indicator for CVD. However, there are some limitations on CEC assays,
and they remain to be standardized because the protocol for CEC requires tracers and
cultured cells. To overcome these difficulties, a cell-free cholesterol efflux assay (Cholesterol
Uptake assay, CUC) has been established in Japan [37–39].

In CUC, measurements are made automatically using biotin-PEG-labeled cholesterol
and anti-ApoA-1 antibodies in a tracer- and cell-free assay. Briefly, biotin-labeled PEG-
cholesterol was added to the patients’ ABDS. The HDL was captured using an anti-ApoA-1
mouse monoclonal antibody. After enzymatic labeling with streptavidin, a chemilumines-
cent substrate was added, fluorescence intensity was measured using a spectrophotometer,
and CUC was measured. Therefore, CUC reflects the HDL’s ability to bind cholesterol.

In clinical trials, CUC was found to be negatively correlated with plaque burden (lipid
index) in an optical coherence tomography (OCT) study and associated with subsequent
revascularization after percutaneous coronary intervention (PCI) [37–39]. CUC is a practical
alternative to CEC and a promising predictor of future CVD (Table 1).

Table 1. Summary of clinical studies on HDL functionality in cardiovascular disease.

Study HDL Functionality Design Cohort Main Findings

Khera A.V. et al., 2011 [33] CEC Cross-sectional CAD: n = 442 Control:
n = 351

OR for CAD per 1SD increase
in CEC: 0.75 (0.63–0.90)

Ishikawa T. et al., 2015 [36] CEC Cross-sectional CAD: n = 182 Control: n = 72 OR for CAD in CEC: 0.23
(0.056–0.91)

Ogura M. et al., 2016 [40] CEC Cross-sectional Hetero FH with CVD: n = 76
without CVD: n = 151

OR for ASCVD per 1SD
increase in CEC 0.95

(0.90–0.99)

Rohatgi A. et al., 2014 [34] CEC Prospective
the highest quartile of CEC

(Q4) n = 731 the lowest
quartile(Q1) n = 731

HR for ASCVD (Q4 vs. Q1)
0.33 (0.19–0.55)
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Table 1. Cont.

Study HDL Functionality Design Cohort Main Findings

Saleheen D. et al., 2015 [35] CEC Prospective CAD: n = 1745, Control:
n = 1749

OR for CAD per 1SD incresase
in CEC (Top tertile of CEC vs.
Bottom tertile) 0.80 (0.70–0.90)

Fujimoto D. et al., 2022 [38] CUC Cross-sectional
CAD with revascularization
(n = 74)/non revaculariztion

(n = 183)

OR for revascularization in
CUC at the baseline 0.98

(0.969–1.000)

Ajala O.N. et al., 2020 [41] HDL inflammatory
index (HII) Prospective

CAD: n = 517 Control:
n = 517 HII: 0 to 0.5 n = 287

HII: >0.5 n = 720

HR for CVD and mortality
(HII 0 to 0.5 vs. HII > 0.5) 1.53

(1.06–2.21)

Jia C. et al., 2021 [42]
HDL

anti-inflammatory
capacity

Cross-sectional CAD: n = 340, Control:
n = 340

OR for CVD per 1SD increase
in anti-inflammatory capacity

0.74 (0.61–0.90)

Abbreviations: CAD: coronary artery disease, CEC: cholesterol efflux capacity, CUC: cholesterol uptake capacity,
CUC: cholesterol uptake capacity, FH: familial hypercholesterolemia OR: odds ratio, HR: hazard ratio.

3.2. Anti-Inflammatory Functions

Inflammation aggravates atherosclerosis progression, coordinated with a variety of
immune cells and inflammatory signaling pathways, including Toll-like receptor (TLR)
signaling and inflammasomes [43]. The CANTOS and COLCOT trials provided proof for
the pivotal role of inflammation in atherosclerosis [44,45].

Monocyte recruitment is known to be a first step in atherosclerosis formation, and
HDL has anti-inflammatory functions that target endothelial cells. In this regard, Cockerill
et al. reported that HDL exerted anti-inflammatory effects via reducing cytokine-induced
adhesion molecules, such as VCAM1 (vascular cell adhesion molecule-1) [46]. In addi-
tion, Tabet found that HDL regulated ICAM-1 (intracellular adhesion molecule-1) via
HDL-transferred microRNA-223 [47]. Furthermore, Scanu observed that HDL attenuated
monocyte activation by inhibiting MCP-1 secretion in endothelial cells [48].

As for research other than on endothelial cells, Murphy et al. focused on anti-
inflammatory effects on immune cells and reported that HDL and ApoA-1 attenuated
neutrophil activation in vitro and in vivo [49]. Additionally, De Nardo reported that HDL
reduced the expression of TLR-induced cytokines in macrophages by regulating the tran-
scription factor ATF3 [50], and Wang et al. observed that HDL and ApoA-1 attenuated T
cell activation via disruption of lipid rafts [51]. Regarding inflammasomes, which were
mentioned at the beginning of this section, Thacker showed that HDL also had the ability
to inhibit inflammasome activation induced by cholesterol crystals [52].

From another point of view, ABCA1- and ABCG1-mediated cholesterol efflux due to
HDL was reported to be modulated by the immune cell response. In particular, previous
studies revealed that myeloid ABCA1/ABCG1 deficiency activated myeloid cell prolifera-
tion and Nrp3 inflammasomes [53,54], and T cell ABCA1/ABCG1 deficiency induced T
cell activation and senescence [55]. In summary, HDL exerts anti-inflammatory functions
by affecting several factors in the formation of inflammation in vitro and in vivo.

Regarding use in clinical settings, Rader’s group evaluated the ability to inhibit LDL
oxidation in terms of a high-density lipoprotein inflammatory index (HII), and applied
it in the JUPITER (Justification for the Use of Statins in Prevention: an Intervention Trial
Evaluating Rosuvastatin) sub-analysis. They found that the HII was associated with the
incidence of CVD [41]. Other researchers had focused on the inhibitory effect of tumor
necrosis factor-α (TNF-α)-induced VCAM1 mRNA expression by HDL, known as the HDL
anti-inflammatory function [56], and noted that anti-inflammatory capacity was inversely
associated with CHD risk in the PREVEND (Prevention of Renal and Vascular End Stage
Disease) study [42] (Table 1).

3.3. Anti-Oxidative Functions

The anti-oxidative function of HDL is to remove lipid hydroperoxide (LOOH) and oxi-
dized phospholipids (oxPL) from atherogenic oxidized low-density lipoprotein (oxLDL) [57].
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Previous articles in this regard focused on HDL-associated hydrolases with an inhibitory
effect of LDL oxidation. For example, paraoxonase (paraoxonase1:PON1), bound to ApoA-
1, reduced lipid peroxidation [58], and mice lacking paraoxonase were susceptible to LDL
oxidation and atherosclerosis [59].

In clinical studies, a PON1 genotype (PON1 QQ192) with decreased serum PON1
activity was associated with cardiovascular risk [60]. A platelet-activating factor acetyl hy-
drolase (PAF-AH), also known as lipoprotein-associated phospholipase A2 (Lp-PLA2), had
the ability to hydrolyze phosphatidylcholine hydroperoxide (PLCOOH) and ox-PL [61,62].
In addition to these proteins, lecithin-cholesterol acyltransferase (LCAT), an enzyme for
cholesterol esterification, had the ability to hydrolyze ox-PL [63].

Garner showed that methionine residues of apolipoprotein AI and AII played a pivotal
role in the reduction in LOOH [64]. Davidson et al. focused on the association of HDL
composition with anti-oxidative functions and found that apoD, apoF, apoJ, apoL1, and
apo M were associated with LDL oxidation [65]. In summary, HDL exerted anti-oxidative
functions in coordination with several apolipoproteins and HDL-associated hydrolases.

3.4. Vasodilatory and Antithrombotic Functions

Endothelial dysfunction is mainly involved in early atherosclerosis progression by
disrupting homeostasis of nitric oxide (NO) production [66]. HDL regulates endothelial
NO synthase (eNOS), thereby modulating endothelial homeostasis. In 2001, Yuhanna
first reported that HDL upregulated eNOS in endothelial cells via scavenger receptor
B1 (SR-B1) [67]. Then, stimulated by HDL, eNOS was reported to be regulated by Akt,
mitogen-activated protein (MAP) kinase, lysophospholipid receptor (S1P3), and the PDZ
domain of SR-B1 in the endothelial cell [68–70].

From another point of view, Besler showed that HDL isolated from patients with CAD,
including acute coronary syndrome (ACS), reduced NO production via the inhibition of
eNOS phosphorylation [71]. Platelet and coagulation cascades also play an essential role in
the formation of thrombosis and atherosclerosis lesions. In addition to vasodilatory func-
tions, HDL has anti-thrombotic functions, which modulate platelet activity and coagulation
cascades by affecting Protein C and Protein S [72].

3.5. Anti-Infectious Activity

In recent years, the clinical utility of HDL for sepsis has drawn much attention.
In 1993, Levine discovered that HDL was bound to lipopolysaccharide (endotoxin),

present in the outer membrane of Gram-negative bacteria [73]. Guo et al. found that
ApoA-1 knockout in mice reduced the survival rate from sepsis, which was remedied in
an ApoA-1 transgenic mouse [74]. Trinder et al. found that a CETP inhibitor (anacetrapib)
increased the survival rate in CLP (cecal ligation and puncture)-mouse models [75]. In a
2022 study, reconstituted HDL (ETC-642) exerted beneficial effects on sepsis by attenuating
LPS, LTA (lipoteichoic acid), and TNF-α-induced inflammation [76]. Therefore, an apoA-1
mimetic or a CETP inhibitor could be a novel therapy for sepsis in the future.

4. HDL Components

HDL consists of several apolipoproteins (A-I, A-II, E, etc.) and lipid components
such as cholesterol, phospholipids, and triglycerides (TG). Recent studies using lipidomics,
proteomics, and transcriptomics have discovered the disease-associated heterogenicity of
HDL. Recent omics analyses on HDL components are summarized below.

4.1. HDL Lipidome

The HDL lipidome reflects the biological activities of HDL. In particular, phosphatidyl-
choline and sphingomyelin, major phospholipids in HDL [12], have been observed to
modulate cholesterol efflux from macrophages in vitro [77]. In addition, plasmalogen
levels of HDL have been clinically associated with cholesterol efflux capacity in patients
with chronic kidney diseases [78]. Furthermore, S1P binding with ApoM in HDL exerts
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anti-inflammatory functions by inhibiting cytokine-stimulated ICAM-1 and VCAM1 in
endothelial cells [79].

4.2. HDL Proteome

Technological advances in proteomic analysis have uncovered the diversity of the
HDL proteome. According to the HDL Proteome Watch 2021 database, the HDL proteome
was altered in atherosclerotic disease, renal disease, cirrhosis, and COVID-19 [13,80–84].
Gordon et al. found that 16 proteins in the HDL proteome were altered and associated with
CEC in patients with CAD [85,86]. Additionally, the HDL proteome caused inflammatory
remodeling in patients with psoriasis, which was associated with a higher incidence of
CVD [87].

In evaluating the direct causality of the HDL proteome with functionality, Vaisar et al.
showed that endotoxin treatment increased SAA (serum amyloid A) protein levels in the
HDL proteome and decreased CEC, which was abolished in SAA KO mice [88]. Their
findings indicate that inflammatory remodeling of the HDL proteome has a direct impact
on HDL functionality in vivo.

However, HDL proteome analysis has certain limitations. First, because the methodol-
ogy of proteomics analysis on HDL is not standardized, the proteins detected have varied
among institutions. Second, conventional proteomics does not evaluate protein modifi-
cation, such as the oxidation of ApoA-1, which affected HDL CEC [89,90]. However, by
combining lipidomics with proteomics data, more detailed HDL functional analysis can be
performed [91].

4.3. HDL-MicroRNA

MicroRNA (miRNA) is single-strand RNA with 21–25 nucleotides that regulate post-
transcriptional gene expression in eukaryotes. MicroRNA 33 (mir-33), the target for
sterol-regulatory element-binding factor-2, regulates HDL biogenesis by regulating liver
ABCA1 [92]. In 2011, Vickers et al. reported that microRNA was encapsulated in HDL,
and the microRNA profile differed in familial hypercholesterolemia as compared with
healthy controls [93]. They also showed that HDL-delivered microRNA was dependent on
SR-B1 and affected recipient cells. Research on HDL-microRNA is ongoing and may lead
to clinical applications.

5. Environmental Factors and HDL Function

Environmental factors, including diet and nutrition, are associated with the develop-
ment of atherosclerosis. Recently, a high-fat diet was found to modulate immune cells and
induce inflammation in vivo [94]. Therefore, dietary and nutritional interventions are seen
as important in preventing atherosclerosis and are attracting attention. This section focuses
on environmental factors and HDL function.

5.1. Nutrition and HDL Functionality

Diet and nutrition contribute to atherosclerosis progression or prevention by affecting
cholesterol homeostasis [95]. Polyphenols are bitter, pigmented compounds found in most
plants and have anti-oxidative effects that are expected to prevent atherosclerosis. Some
polyphenols enhance HDL functions in vivo and in humans. Previously, we reported that
caffeic acid and ferulic acid, the prominent phenolic acids of coffee, upregulated ABCG1
and SR-B1 expression, and coffee consumption enhanced HDL-mediated cholesterol efflux
in an ex vivo study [96]. We then showed that ferulic acid increased whole-body (in vivo)
RCT in mice. In another study, Hirata and one of our colleagues reported that xanthohumol,
a prenyl flavonoid from the hop plant (Humulus lupulus L.), promoted in vivo RCT in
hamsters [97]. Another flavonoid, Quercetin, contained in onions, apples, and strawberries,
upregulated cholesterol efflux via increased ABCA1 expression in THP-1 macrophages [98].
In addition, polyphenol-rich (366 mg/kg) olive oil consumed for 3 weeks improved HDL
functionality, including cholesterol efflux and oxidative status in humans [99]. Furthermore,
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consuming a Mediterranean diet in a 1-year intervention enhanced HDL function, including
CEC, HDL antioxidant properties, and HDL vasodilatory capacity [100]. Other research
groups have focused on carotenoids, plant-derived natural pigments with anti-oxidative
and atheroprotective properties. McEneny found that lycopene-rich diets (224–350 mg
lycopene/week) increased HDL-PON1 activity in a randomized controlled trial [101].
In the past, we reported that Astaxanthin increased ABCA1 and ABCG1 expression in
macrophages [102]. In addition to polyphenols and carotenoids, monounsaturated and
polyunsaturated fats in the diet can enhance cholesterol efflux capacity [103]. In this
regard, Yang found that saury oil, a fish oil rich in LCMUFAs (omega-11 long-chain
monounsaturated fatty acids), increased HDL-C and CEC in double-blind, cross-over
clinical trials [104].

5.2. Exercise and HDL Functions

Regular physical activity has beneficial effects on cardiometabolic parameters, in-
cluding reduced cardiovascular mortality risk [105], improved glucose control [106], and
anti-inflammatory functions [107]. Regarding effects on HDL functions, Sarzynski et al.
found that regular prolonged exercise (20 kcal/kg per week) upregulated cholesterol efflux
in two randomized clinical trials [108,109]. Additionally, walk–run training enhanced
HDL’s anti-oxidative function by increasing PON1 activity in patients with metabolic syn-
drome [110]. In addition, in combination with a Mediterranean diet, 12 weeks of exercise
improved CEC by attenuating the MPO (Myeloperoxidase) oxidation of HDL. Furthermore,
physical training, including high-intensity interval training upregulated HDL-mediated
eNOS phosphorylation and PON1 activity in heart failure with preserved ejection frac-
tion [111]. However, the threshold of exercise intensity that ameliorates HDL function
remains unknown and further studies will be needed.

5.3. Cigarette Smoking, Air Pollution, and Chemicals

Smoking is a well-known risk factor for CVD, and passive smoking affects lipid pro-
files in children and females [112–115]. In addition, ambient air pollution promotes early
atherosclerosis and oxidative stress [116]. As underlying mechanisms for their increased
atherogenicity, smoking, and air pollution are reported to attenuate HDL functions, includ-
ing CEC and anti-oxidation [117,118]. As expected, smoking cessation improves CEC and
increases HDL anti-inflammatory function [119]. Recently, plastic-associated chemicals,
including bisphenol A (BPA) and phthalates, have been the focus of research owing to
their atherogenicity [120]. In particular, BPA is associated with atherosclerosis [121–123]
and exerts proinflammatory effects [124]. Although it also downregulated ApoA-1 expres-
sion [125], the effect of BPA on HDL function remains to be elucidated, and further studies
are warranted.

6. HDL Functions in Diseases
6.1. Cardiovascular Disease (CVD)

As noted earlier, growing evidence for HDL atheroprotective effects has emerged
in recent years and clinical trials on CVD have focused on HDL functionality. Khera
suggested that CEC is an important predictor of CVD; this has been a driver of clinical
research on the utility of HDL functionality as a biomarker [33]. In a cross-sectional
study, our group focused on the clinical utility of CEC in Japanese CVD patients [36] and
Thakkar highlighted the clinical usefulness of HDL functionality in ACS [126]. Ogura
reported an inverse association of CEC with CVD risk in Japanese patients with familial
hypercholesterolemia [40]. Rohatgi had also provided proof of this concept in a prospective
cohort study [34], and studies following it found that CEC was inversely associated with the
future development of CVD [127,128]. Based on these findings, a meta-analysis concluded
that CEC was a negative risk factor for CVD. Lipid-lowering drugs for the prevention
of CVD affect HDL functionality. For instance, we reported that ezetimibe enhanced
in vivo RCT in hamsters [129]. In addition, Khera reported that a peroxisome-proliferator-
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activated-α (PPAR-α) agonist increased CEC in a randomized control trial [130]. Going
beyond conventional lipid-lowering drugs, ApoA-1 mimetics, which enhance cholesterol
efflux, have been receiving attention regarding inhibition of atherosclerosis progression.
AEGIS-II, a phase 3 clinical trial on an ApoA-1 mimetic (CSL112), is ongoing, and it could
be a promising novel treatment for reducing CVD.

6.2. Chronic Kidney Disease (CKD)

CKD is independently associated with increased CVD morbidity and mortality [131,132].
Previous studies highlighted impairment of HDL function in CKD. For instance, Moradi found
impaired PON1 activity in end-stage renal disease (ESRD) [133], and RCT was impaired in
HDL isolated from ESRD patients [134]. In addition to RCT, Holzer et al. focused on an altered
HDL proteome in patients on hemodialysis and showed that HDL-mediated cholesterol efflux
was reduced [135]. Although altered HDL function may translate into increased CVD in CKD,
Chindhy did not find this to be the case.

Recently, genetic variants of ApoL-1, a key functional component of the trypanolytic
factor of HDL, were reported to be associated with susceptibility to CKD in African Ameri-
cans [136]. ApoL1 gene variants were also associated with hypertension-induced nephropathy,
focal segmental glomerulosclerosis, and HIV-associated nephropathy [137,138]. Thus, further
evidence will be needed to determine whether ApoL1 is a potential therapeutic target.

6.3. Diabetes Mellitus

Diabetes mellitus (DM) is characterized by low HDL-C dyslipidemia with elevated
CVD morbidity and mortality [139]. There is ample of evidence that DM significantly
modulates HDL functionality, such as by altering the phospholipid composition of HDL
and affecting RCT [140,141]. Vries was the first to report reduced cellular cholesterol efflux
in type 1 DM [142] and Morgantini found that type 2 DM impaired anti-inflammatory and
anti-oxidative functions of HDL [143] In addition, He et al. showed that ABCA1-CEC of
small HDL was impaired in type 2 DM and SERPINA1 (serpin family A member 1) levels
in the HDL proteome were altered, which was highly correlated with ABCA1-CEC [144].
Regarding pancreatic β cell functions, anti-oxidative capacity and cellular cholesterol efflux
were positively associated with HOMA-β, an estimate of β cell function in T2DM [145].
Furthermore, Yalcinkaya reported that HDL inhibited the apoptosis of pancreatic β cells
due to endoplasmic reticulum stress (ER) [146]. Other researchers highlighted the effects of
ApoA-1 on insulin synthesis and secretion, finding that ApoA-1 enhanced insulin secretion
and Irs, Ins, and Pdx1 gene expression via the G-protein-cAMP-PKA-FoxO1 axis in β

cells [147]. The anti-diabetic effects of HDL are promising, but further clinical studies
are warranted.

6.4. Autoimmune Disease

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease accompa-
nied by increasing CVD risk [148]. Some clinical studies have uncovered HDL dysfunc-
tionality in RA. For instance, Charles found that RA with a high disease activity score
(DAS28 > 5.1) impaired CEC in a cross-sectional study [149]. With quantification by tandem
mass spectrometry, Vivekanandan reported MPO-oxidation of HDL and reduced choles-
terol efflux in RA [150]. Additionally, a meta-analysis of interventional studies showed
that anti-rheumatic treatment ameliorated CEC independently of HDL-C [151]. In addi-
tion to RA, psoriasis, a chronic inflammatory skin disease, also increased risk of CVD as
well as of stroke, and altered the HDL proteome and CEC [88]. Furthermore, impaired
PON1 activity and elevated MPO levels were reported in systemic lupus erythematosus
(SLE) [152]. Regarding inflammatory bowel disease (IBD), the antioxidative function of
HDL was impaired in active Crohn’s disease [153]. However, because there have been few
studies on the role of HDL function in autoimmune diseases, further research is needed.
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6.5. Cancer

As a new aspect of HDL functionality, its pivotal role in cancer has been investigated
in recent years [154]. For instance, ApoA-1 was found to exert an anti-tumorigenic effect
on melanoma and ovarian cancer in vitro and vivo [155,156]. In addition, HDL inhibited
cancer cell proliferation in prostate and breast cancer [157,158]. Furthermore, SR-B1 was
shown to be upregulated in cancer cells [159], and PON1 activity was reduced in patients
with cancer.

Although it is likely that HDL functionality, including cholesterol efflux and anti-
oxidative functions, would affect the cancer microenvironment, the mechanism remains
unclear, and the clinical application of HDL in anti-cancer therapy is a future issue to
be addressed.

In recent years, the initiation of immune checkpoint inhibitors (ICI) has been associated
with the risk of cardiovascular disease by modulating the inflammatory pathway [160,161].
Whether ICI affects HDL functionality and the anti-inflammatory function of HDL is
expected to modulate ICI-mediated atherogenicity remains to be elucidated; however,
further clinical studies are needed.

7. Conclusions and Future Perspective

As described in this review, research on HDL has a history of over 60 years and
the time has come to focus on HDL functions rather than HDL-C concentration alone.
Numerous clinical and basic studies have shown that HDL functions are impaired in various
diseases and environments. Furthermore, HDL has become a potential therapeutic target
for cardiovascular disease and cancer. In future research, a comprehensive understanding
of HDL functionality will be essential for unveiling new aspects of HDL.
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