Skip to main content
. 2022 Dec 27;11(1):67. doi: 10.3390/biomedicines11010067

Table 4.

Graph neural network variants used for drug embedding matrix generation.

Model Message Passing Function Update Function
GCN mv(t+1)=wN(v) {v}1cwvhw(t) 
cwv=1|N(v)||N(w)|
hv(t+1)=σ(mv(t+1)Wt)
GAT mvt+1=σ(wN(v) {v}αvwW(t)hw(t)),
αvw= softmaxv(evw),
evw=LeakyReLU(Whv,Whw)
hv(t+1)=k=1Kmvt+1,
where ‖ is concatenation.
GIN mvt+1 = wN(v)MLP(hw(t)) hv(t+1)=MLP(hv(t)+mvt+1)
MPNN mvt+1 = wN(v)A(evw) hwt hvt+1=GRU(hvt,mvt+1)
DMPNN mvwt+1 = k{N(v)w}hkvt hvwt+1= τ(hvw0+Wmmvwt+1)

Notes: DMPNN, directed message-passing neural network; GAT, graph attention network; GCN, graph convolutional neural network; GIN, graph isomorphism network; MPNN, message-passing neural network.