Skip to main content
. 2022 Dec 27;11(1):67. doi: 10.3390/biomedicines11010067

Table 6.

GraphATT-DTA prediction performance on the Davis testing dataset vs. baseline models.

Models Protein Compound Interaction Davis MSE Davis CI
DeepDTA 1D CNN 1D CNN Concat 0.245 0.886
GraphDTA 1D CNN GIN Concat 0.229 0.890
DeepAffinity RNN–CNN RNN–CNN Joint attention 0.302 0.870
ML-DTI 1D CNN 1D CNN Mutual learning 0.222 0.891
HyperAttentionDTI 1D CNN 1D CNN Hyperattention 0.233 0.876
FusionDTA BI-LSTM BI-LSTM Fusion layer 0.203 0.911
GraphATT-DTA 1D CNN MPNN Interaction learning 0.204 0.904

Notes: BI-LSTM, bidirectional long short-term memory; CI, concordance index; CNN, convolutional neural network; GCN, graph convolutional neural network; GIN, graph isomorphism network; MSE, mean squared error; RNN, recurrent neural network.