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Abstract: Idiopathic pulmonary fibrosis is a chronic interstitial lung disease whose pathogenesis in-
volves a complex interaction of cell types and signaling pathways. Lung epithelial cells responding to
repeated injury experience persistent inflammation and sustained epithelial–mesenchymal transition
(EMT). The persistence of EMT-induced signals generates extracellular matrix accumulation, thereby
causing fibrosis. Ferroptosis is a newly characterized iron-dependent non-apoptotic regulated cell
death. Increased iron accumulation can increase iron-induced oxidant damage in alveolar epithelial
cells. Studies have demonstrated that iron steady states and oxidation steady states play an important
role in the iron death regulation of EMT. This review summarizes the role of ferroptosis in regulat-
ing EMT in pulmonary fibrosis, aiming to provide a new idea for the prevention and treatment of
this disease.

Keywords: pulmonary fibrosis; ferroptosis; epithelial-mesenchymal transition transforming growth
factor beta/Smad signaling pathway; nuclear factor erythroid 2–related factor 2 signaling pathway;
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1. Introduction

Pulmonary fibrosis is a progressive, irreversible and usually fatal diffuse lung intersti-
tial disease. Currently, there is no effective radical cure and the prognosis is extremely poor;
the average life expectancy is 3–5 years after diagnosis [1]. The main pathological features
include alveolar structure destruction, lung fibroblast proliferation and extracellular matrix
(ECM) deposition, which result in decreased lung compliance and gas exchange disorders,
ultimately leading to extensive scarring, lung failure and even death [2–4]. The inflamma-
tory cells release some key regulatory factors, such as pro-fibrotic cytokines, chemokines,
and growth factors, which can induce the epithelial–mesenchymal transition (EMT) [5,6].
Importantly, EMT contributes to the early development of interstitial fibrosis through
paracrine signaling from the alveolar epithelium to potential fibroblasts [7]. The initiation
and progression of pulmonary fibrosis involve many factors, which may be related to
long-term smoking, viral infection, genetics, aging and environmental factors [8]. The
impact of the coronavirus disease 2019 (COVID-19) infection on lung diseases is notewor-
thy in recent years. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a
highly transmissible and pathogenic coronavirus that emerged in late 2019 and has caused
a pandemic of acute respiratory disease named ‘coronavirus disease 2019’ (COVID-19)
which threatens human health and public safety. SARS-CoV-2 enters the nasal epithelium,
spreads to the respiratory system and causes diffuse alveolar damage by binding to the an-
giotensin converting enzyme-2 (ACE-2) receptors on the surface of lung epithelial cells [9].
SARS-CoV-2 can lead to acute lung inflammation by mobilizing iron in the vascular space
to activate the hepcidin-Fpn pathway and promote ferroptosis [10]. Pulmonary fibrosis
is further promoted by alveolar thrombosis and airway inflammatory viral injury, and
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SARS-CoV-2 can also induce pulmonary fibrosis by promoting the upregulation of TGF-β
and other pro-fibrosis signaling molecules [11].

Ferroptosis is an iron-dependent non-apoptotic regulated cell death [12,13]. The
accumulation of excessive intracellular iron, depletion of glutathione (GSH), inactivation of
glutathione peroxidase 4 (GPX4) and upregulation of lipid peroxidation are essential to the
development and progression of ferroptosis [14]. Followingacute inflammation and injury,
the lungs undergo repair and remodeling to restore homeostasis, accompanied by fibrosis
and scar formation which may lead to pulmonary fibrosis [15]. In the pathological process
of acute lung injury, the release of various reactive oxygen species and the generation
of free radicals can damage alveolar epithelial cells. Iron overload can further promote
the transformation of hydrogen peroxide into free radicals through the Fenton reaction,
thus increasing cytotoxicity and promoting the occurrence and development of acute lung
injury [16]. Meanwhile, it has been reported that there exist eight ferroptosis-related genes
signatures (including NRAS, EMP1, SLC40A1, MYC, ANGPTL4, PRKCA, MUC1, and
GABARAPL1) in the bronchoalveolar lavage fluid of patients with idiopathic pulmonary
fibrosis (IPF) that are associated the diagnosis and prognosis of IPF [17]. He J et al. [18] found
1692 differential genes, of which 20 genes were associated with ferroptosis, by comparing
IPF lung tissue with the normal lung tissue of mice. These genes were divided into driving
factors of ferroptosis (CA9, EPAS1, CDO1, CDKN2A, and ALOX15), inhibiting factors of
ferroptosis (TP63, CAV1, PROM2, and JUN) and markers of ferroptosis (NOS2, HNF4A,
RGS4, SLC2A1, GDF15, SLC2A12, NGB, DRD5, and GPX2). Meanwhile, increased iron
levels directly promoted the proliferation, proinflammatory cytokines and ECM response
of lung fibroblasts. However, deferoxamine reduces the number of Tfr1+ macrophages with
M2-like phenotypes in pulmonary fibrosis induced by bleomycin. The M2-like macrophages
are known to play an important role in fibrosis [19]. Studies have shown that iron chelators
ameliorate pulmonary fibrosis induced by bleomycin and alleviate leukocyte migration
in mice. Yuan L. et al. [20] found that dihydroquercetin plays an anti-fibrosis role by
inhibiting iron death in human bronchial epithelial cells. Pei Z. et al. [21] showed that
bleomycin and lipopolysaccharide directly induce iron overload and ferroptosis in lung
epithelial cells in the early inflammatory period. Transferrin receptor protein 1 promotes
the transition from fibroblasts to myofibroblasts in advanced fibrosis through moderate
intracellular accumulation of unstable ferrous iron mediated by the TGF-β-TAZ-TEAD
signaling pathway. This suggests that ferroptosis may be involved in the development and
progression of IPF.

The question is whether ferroptosis promotes pulmonary fibrosis by regulating EMT.
Increased iron accumulation makes alveolar epithelial cells vulnerable to iron-induced
oxidative damage [22]. An imbalance between oxidation and antioxidant has been observed
in patients with pulmonary fibrosis, and iron deposition has been observed in lung tissue
sections [23]. Meanwhile, iron metabolism may regulate transforming growth factor-β
(TGF-β)-induced EMT through reactive oxygen species (ROS) production in the alveolar
epithelium, after which pulmonary fibrosis occurs [24]. Furthermore, in vivo TGF-β1
induces ROS production in epithelial cells and inhibits antioxidant enzymes, leading to
redox imbalance. ROS, in turn, induces or activates TGF-β1 and causes pulmonary fibrosis,
creating a vicious cycle [25]. Understanding the role of ferroptosis in pulmonary fibrosis
may provide a novel therapeutic direction for the prevention and treatment of this disease.

2. EMT and Pulmonary Fibrosis

The development of pulmonary fibrosis results from a complex interplay between
epithelial cells, fibroblasts, immune cells and endothelial cells. Recently, there is increasing
evidence that the alveolar epithelium plays a central role [26]. Senescent cells are the
driver of IPF, and their dysfunction plays a key role in the activation and type-II alveolar
epithelial proliferation of lung fibroblasts [27]. TGF-β is upregulated and activated in
fibrotic diseases, inducing myofibroblast transdifferentiation and promoting EMT of type-II
alveolar epithelial cells [28].
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EMT is a process by which epithelial cells lose their cell–cell adhesion and apico-
basal polarity and acquire mesenchymal properties that migrate, invade and produce
ECM components [29,30]. The common markers of EMT are the loss of E-cadherin and
cytokeratin, as well as the upregulation of matrix metalloproteinase, vimentin and α-
smooth muscle actin (α-SMA). EMT plays a central role in organ fibrosis and cancer
progression because it involves numerous morphological features of hyperproliferative
diseases, such as cell plasticity, anti-apoptosis, dedifferentiation and proliferation [31,32].
The occurrence of pulmonary fibrosis is related to the upstream-related signaling pathways
of EMT, and the occurrence and development direction of pulmonary fibrosis can be
inhibited by intervening or blocking the relevant effector molecules of EMT [33,34]. EMT is
divided into three types according to the specific biological environment. Type I is primary
and occurs in the early stages of zygote implantation, embryogenesis and organogenesis.
Type II is secondary and occurs during trauma healing, tissue regeneration and organ
development. Type III occurs during tumor metastasis, and malignant epithelial cells
acquire a migration phenotype associated with tumor invasion and metastasis. Pulmonary
fibrosis is classified as a type II EMT [7,35,36].

3. Ferroptosis and EMT
3.1. Discovery of Ferroptosis

Ferroptosis is a type of programmed non-apoptotic cell death that is mainly caused by
the imbalance between oxidative stress and antioxidant response and is characterized by the
accumulation of iron-dependent lipid peroxides [37,38]. A variety of organelles—including
mitochondria, the endoplasmic reticulum, the Golgi apparatus and lysosomes—are in-
volved in the regulation of ferroptosis which manifests as reduced mitochondrial volume,
increased mitochondrial membrane density, decreased or disappeared mitochondrial crest,
increased ROS in the cytoplasm and mitochondrial outer membrane rupture [39]. It is
caused by increased ROS levels due to increased intracellular iron concentration and lipid
peroxidation due to depletion of the antioxidant GSH [40]. Ferroptosis is closely related to
respiratory diseases, cancer, nervous system diseases and cardiovascular diseases, among
others. In recent years, studying the mechanism of ferroptosis has become a new direction
for the treatment of many diseases [41–44]. GSH biosynthesis and the normal function of
phospholipid hydroperoxide glutathione GPX4 are key to the control of ferroptosis [45].
As a fourth member of the selenium-containing GPX family, GPX4 suppresses lipid per-
oxidation and oxidative stress-related cell death, which occurs when GPX4 is reduced or
inactivated and is followed by mitochondrial damage [46]. As the most upstream compo-
nent of the xc-/GSH/GPX4 axis, the transmembrane cystine-glutamate reverse transport
system xc- is the heterodimer amino acid transporter family member composed of light
chain xCT (SLC7A11) and heavy chain 4F2 (SLC3A2) [47]. The primary role of ferroptosis
is the production of GPX4 catalyzed by active iron, which is counteracted by endogenous
levels of system xc-. The oxidized form of cysteine exchange glutamate at a ratio of 1:1 and
extracellular glutamate are competitive inhibitors of cysteine uptake.

3.2. Role of Ferroptosis in EMT

Some ferroptosis inducers such as erastin, sorafenib, sulfasalazine and glutamate
can drain GSH and inactivate the enzymatic activity of GPX4 by blocking the import of
cystine by the system xc- [48]. Upregulation of ChaC glutathione-specific γ-glutamyl cyclo-
transferase 1 (CHAC1) gene expression provides a selective pharmacodynamic marker for
systemic xc- inhibitor-induced ferroptosis (CHAC1/BOTCH) with γ-glutathione aminoacyl
cyclotransferase activity, and reduces intracellular GSH levels by digesting glutathione
into 5-oxoproline and cysteine glycine dipeptides [49]. GPX4, as an antioxidant protein
with glutathione peroxidase activity, is mainly responsible for phospholipid oxidation
and ROS production during ferritization [50,51]. Excess free iron content reduces GPX4
activity, which in turn leads to GSH depletion. Decreased GPX4 activity is associated
with increased ROS. When GSH is depleted, the ability of cells to remove ROS decreases,
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leading to membrane oxidation and ultimately to ferroptosis [52]. The expression of GPX4
was decreased in bleomycin-induced pulmonary fibrosis in mice, and the fibrosis was
more severe when GPX4 gene was knocked out. Therefore, GPX4 regulation of pulmonary
fibrosis induced by bleomycin in mice can be attributed to changes in ferroptosis [53]. ROS
regulates the AKT/mammalian target of rapamycin (mTOR) signaling, and mTOR plays
a role in TGF-β1-induced EMT [54]. Mefunidone, an antifibrotic drug, can reduce ROS
production and inhibits the TGF-β1/Smad pathway, phosphorylation levels of ERK1/2,
JNK and P38, thereby inhibiting EMT [55]. Studies have reported that NaHS can prevent
cigarette smoke extract-induced oxidative damage in bronchial epithelial cells, which is
mediated by decreased ROS production and increased antioxidant enzyme activity [56]. In
addition, higher levels of ROS trigger DNA damage, p53 activation, cell cycle blockade and
cell death due to apoptosis and/or necrosis, all of which may be important in the ultimate
fibrotic response [57].

During ferroptosis, ROS produced during oxidative stress can induce autophagy.
The degradation of ferritin by autophagy plays an important role in the pathogenesis
of ferroptosis. At the same time, autophagy can regulate the progression of EMT [58].
ROS plays a dual role in EMT; moderate ROS promotes EMT, and large ROS production
reverses EMT [59]. Erastin stimulates iron overload in mouse lung epithelial cell lines
in vitro which causes an oxidative stress response in the cytoplasm and increases cell death,
activates autophagy and secretes pro-fibrotic factors, resulting in EMT [22]. However,
ferritinophagy-mediated ROS production contributing to the EMT inhibition and ferritin
phagocytosis refers to the selective autophagic degradation of ferritin, which leads to the
accumulation of cytosolic iron in the form of ferrous iron, and ultimately to the occurrence
of ferroptosis [60,61]. Ferritinophagic flux (nuclear receptor coactivator 4 [NCOA4]/ fer-
ritin) can regulate EMT; that is, NCOA4 is involved in the EMT process. EMT inhibition
induced by 2,2′-di-pyridylketone hydrazone dithiocarbamate butyric acid (DpdtbA) is
involved in the production of ROS and activation of prolyl hydroxylase domain protein 2
(PHD2) mediated by ferritin phagocytosis, indicating that ferritin phagocytosis-mediated
accumulation of ferrous ions leads to the activation of PHD2 and p53 and EMT inhibi-
tion [62]. This raises the following question: Do ferroptosis and EMT occur simultaneously?
Ferrostatin-1, a ferroptosis inhibitor, can cause the loss of GPX4 function, inducing fer-
roptosis in mesenchymal-state GPX4-knockout cells, whereas GPX4-knockout cells in the
epithelial state remain unaffected, resulting in mesenchymal cells that are more likely to
cause ferroptosis [63]. Therefore, ferroptosis and EMT do not occur simultaneously.

Yao et al. [64] found that some ferroptosis markers (GPX4, SCP2, and CAV1) have
strong regulatory effects on EMT. SCP2 is a driver of ferroptosis, promoting other ferropto-
sis drivers (PRKAA1, PRKAA2) and EMT markers (N-cadherin) but inhibiting ferroptosis
inhibitors such as GPX4 and caveolin-1 (CAV1). CAV1 is an integral membrane protein
involved in cell signal transduction and transport. It is highly expressed in adipocytes,
endothelial cells, fibroblasts and cancer cells [65]. Knockdown of CAV1 can reduce the ex-
pression of GPX4, and it is negatively correlated with ROS. CAV1 is a negative regulator of
TGF-β1 activity; it reduces the subsequent effects of TGF-β1, leading to a decrease in colla-
gen type I and fibronectin and an increase in MMP mRNA expression [66]. CAV1-deficient
peritoneal mesothelial cells acquire the ability to degrade ECM, which is characteristic
of cells that have undergone EMT. In the absence of CAV1, expression of E-cadherin and
other proteins located at cell junctions is reduced, so CAV1 depletion promotes the EMT
phenotype [67]. Meanwhile, the cross-talk between DPP-4, CAV1 and integrin β1 plays a
key role in DPP-4 and TGF-β1-induced signal transduction and EMT induction in epithelial
cells [68].

TGF-β1 may directly inhibit the cystine/glutamate anti-transporter system xc- and
promote ferroptosis [69]. Short-term treatment of fibroblasts with TNF induces ROS and
promotes ferroptosis. However, long-term exposure to TNF failed to further induce ROS,
inhibit NAPDH oxidase and promote cystine uptake and GSH biosynthesis to protect
fibroblasts from ferroptosis [70]. Meanwhile, TNF-α enhanced TGF-β-induced EMT in A549
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cells. A549 cells treated with TGF-β and TNF-α exhibit a more severe loss of cell adhesion
characteristics and obtain the migration and invasion abilities unique to mesenchymal
cells [71]. TNF-α is usually produced more in the early stages of inflammation, and high
levels of TNF-α can increase collagen deposition and lead to alveolar damage. Therefore,
TNF-α is related to the early stage of pulmonary fibrosis and EMT and ferroptosis can be
regulated by TNF [72].

4. Multiple Signaling Pathways Associated with Ferroptosis Regulate EMT in
Pulmonary Fibrosis

The differential gene expression between epithelioid cells and fibroblasts has revealed
that TGF-β and Wnt signaling pathways are most affected, and that both pathways are
critical for the EMT and mesenchymal–epithelial transition processes [73]. Other signaling
pathways, such as the Notch, phosphoinositide 3-kinase-AKT-mTOR, Janus kinase 2-signal
transducer and activator of transcription 3, epidermal growth factor receptor-Ras-mitogen-
activated protein kinases and Hippo signaling pathways can also induce or control the
EMT process and participate in the process of pulmonary fibrosis [74,75]. Among them,
the TGF-β/Smad, nuclear factor erythroid 2–related factor 2 (Nrf2) and Wnt signaling
pathways are also involved in ferroptosis [21,76,77]. The regulation of ferroptosis in EMT-
induced pulmonary fibrosis involves the TGF and Nrf2 signaling pathways, while the Wnt
pathway is worth exploring.

4.1. TGF-β/Smad Signaling Pathway

The TGF-β signaling pathway plays a central role in the pathogenesis of idiopathic
pulmonary fibrosis. TGF-β binds to the latency-associated peptide (LAP) to form the
small latent complex (SLC) by non-covalent bonds and inhibits TGF-β binding to its
receptor [78,79]. Then, the complex binds to the latent TGF-β binding protein in the
endoplasmic reticulum to form the large latent complex (LLC) [80]. αvβ6 causes increased
TGF-β autocrine signaling during EMT by activating TGF-β1 [81,82]. The binding of
TGF-β to TGFβR-II causes phosphorylation of TGFβR-II, which activates TGFβR-I and
then phosphorylates Smad2 and Smad3 in the cells. Phosphorylated Smad2 and Smad3
interact with Smad4 and translocate into the nucleus to regulate target gene transcription by
binding to DNA-binding transcription factors [81,83]. TGF-β1 has a particularly prominent
role in inducing the differentiation of progenitors into myofibroblasts that rapidly produce
large amounts of ECM to maintain the repair of damaged tissues [84].

Zinc finger E-box-binding homeobox 1 (ZEB1), Ras-selective lethal 3 (RSL3), SETDB1,
long non-coding RNA (lncRNA), erastin and N-Myc downstream regulated 1 (NDRG1)
can regulate ferroptosis and induce EMT through the TGF-β/Smad signaling pathway.
ZEB1 is one of the key factors controlling EMT [85]. TGF-β promotes EMT in cancer cells
by inducing ZEB1 while increasing susceptibility to GPX4 inhibitors and statins [86]. In
addition, ZEB1 directly inhibits GPX4 promoter transcription activity and GPX4 activity by
binding to the E-box motif, and promotes ROS accumulation in vitro [87]. Notably, ROS
accumulation promotes the increase of intracellular unstable iron and thus induces the
occurrence of ferroptosis [88]. As a ferroptosis activator, RSL3 can cause the occurrence of
cellular ferroptosis and idiopathic pulmonary fibrosis by directly inhibiting GPX4, which
is associated with the redox imbalance in the lung. As such, the expression of GPX4 is
decreased in lung tissue of idiopathic pulmonary fibrosis. When GPX4 is downregulated,
TGF-β can induce fibroblast differentiation in vitro and generate pulmonary fibrosis [89].

SETDB1 is a specific methyltransferase for histone H3K9, which directly regulates
the expression of Snail1 and indirectly regulates the expression of E-cadherin through
the modification of H3K9me3. Overexpression of SETDB1 promotes a TGF-β-induced
increase in iron levels and further downregulates GPX4, promoting the occurrence of
ferroptosis [25].

Knockdown of lncRNA H19 attenuates pulmonary fibrosis in vitro and in vivo by
regulating the microRNA 140-TGF-β/Smad3 signaling pathway. Meanwhile, lncRNA
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ZEB1-AS1 promotes pulmonary fibrosis by enhancing ZEB1-mediated EMT, and lncR-
NALOC344887 is a novel anti-fibrosis Nrf2 target gene [90].

NDRG1 is a gene related to iron chelator regulation, and knockdown of NDRG1 leads
to the upregulation of GPX4 and xCT, which can induce the occurrence of ferroptosis [59].
Overexpression of NDRG1 decreases the expression of Smad2 and phosphorylated Smad3,
thus inhibiting the TGF-β/Smad pathway. The Smad complex binds to the snail and
slug promoters to promote the increased expression of E-cadherin and the formation of
the adhesion complexes, which inhibits cell–cell adhesion and cell migration, ultimately
inhibiting pulmonary fibrosis [91].

Li M et al. [92] compared the bronchoalveolar lavage fluid of IPF patients with that of
normal subjects and found that differentially expressed genes (DEGs) associated with risk
scores are mainly enriched in epithelial cell proliferation and ECM tissue. In addition, these
DEGs have been identified in the most critical pathways for the development of idiopathic
pulmonary fibrosis, such as cytokine-cytokine receptor interaction, TGF-β signaling, focal
adhesion and the ECM-receptor interaction signaling pathways. Among them, ACO1 is
associated with pulmonary fibrosis, and cytoplasmic aconitase 1/ iron regulatory protein 1
(ACO1/IRP1), a bifunctional protein expressed in the cytoplasm, played a role in regulating
iron homeostasis in cells [93,94]. Previous studies found that the CAV1 gene was highly
correlated with ferroptosis through protein–protein interaction analysis; CAV1 is widely
found in lung tissues, including alveolar epithelial cells, endothelial cells, fibroblasts
and smooth muscle cells [18]. CAV1 inhibits collagen formation in lung fibroblasts and
attenuates Smad3 nuclear translocation, which suggests that the TGF-β/Smad pathway is
closely related to CAV1 [95].

Cell death is a critical issue in radiation-induced pulmonary fibrosis (RILF). Radiation
not only damages cellular DNA but also induces ROS production, which causes inflam-
mation and fibrosis in lung tissue. GPX4 is mainly expressed in airway epithelial cells.
Furthermore, radiation induces ferroptosis in airway epithelial cells and upregulates the re-
lease of inflammatory cytokines including TGF-β1, resulting in collagen deposition in lung
parenchyma and promoting lung fibrosis [96]. Liproxstatin-1, as an inhibitor of ferroptosis,
improves RILF by reducing lung collagen deposition and urinary hydroxyproline content
and significantly downregulating ROS and TGF-β1 levels [97] (Figure 1).

4.2. Nrf2 Signaling Pathway

Nrf2 is an important transcription factor that resists oxidative stress and exerts anti-
inflammatory responses by coordinating the transcription of the target genes of the an-
tioxidant response element (ARE) [90,98]. Usually, as an inhibitor of Nrf2, Kelch-1ike
ECH-associated protein l (Keap1) binds to Nrf2 and degrades Nrf2 through ubiquitination.
Upon exposure to oxidative stress, ROS inhibits Keap1 activity by inducing conformational
changes in Keap1, which in turn hinders the ubiquitination of Nrf2 by cullin 3 [99,100].
Nrf2 dissociates from Keap1 and translocates into the nucleus to form a heterodimer with
small Maf or Jun proteins which binds to the ARE to transcriptionally activate its target
genes and restore cellular redox homeostasis [90,101–103].

Nrf2 plays a key role in maintaining the balance of GSH in the mitochondria. The
Keap1/Nrf2 signaling pathway can mediate intracellular oxidative stress and regulate
genes associated with the oxygen-scavenging free radical [104]. Nrf2 can enhance the
expression of GSH biosynthase and reductase, which in turn inhibits mitochondria-derived
ROS [103]. Knockdown of Nrf2 significantly reduces the protein expression levels of
SLC7A11 and heme oxygenase 1 (HO-1), promotes the accumulation of lipid peroxidation
and causes ferroptosis. In the presence of reduced iron, ferrostatin-1 eliminates lipid hydro-
gen peroxide and produces the same anti-ferroptosis effect as GPX4 to protect cells [105].
Ferrostatin-1 ameliorates lung injury by improving pulmonary edema, inhibiting lipid
peroxidation and increasing the viability of epithelial cells [106]. The expression of Nrf2,
HO-1, NAD(P)H quinone dehydrogenase 1 and epoxide hydrolase is significantly reduced,
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and the downregulation of Nrf2 is associated with the upregulation of α-SMA and collagen
in idiopathic pulmonary fibrosis patients [99].
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Figure 1. Ferroptosis regulates EMT in pulmonary fibrosis via the TGF-β/Smad signaling pathway.
TGF-β non-covalently binds to the latency-associated peptide (LAP) to form a small latent complex
(SLC) that blocks TGF-β from binding to its receptor. The SLC connects with LTBP in the endoplasmic
reticulum to form the large latent complex (LLC). After TGF-β release by LAP, TGF-β binds to TGFβR-
II to phosphorylate TGFβR-II, activates TGFβR-I and phosphorylates intracellular Smad2 and Smad3.
Phosphorylated Smad2 and Smad3 interact with Smad4 and translocate to the nucleus, and regulate
target gene transcription by binding to DNA-binding transcription factors. The ferroptosis activator
RSL3 can inhibit GPX4, thereby increasing ROS, promoting ferroptosis and idiopathic pulmonary
fibrosis. Ferroptosis inhibitors liproxstatin-1 inhibit ROS and have the opposite effect. Meanwhile,
TGF-β enhances ZEB1-mediated EMT to promote pulmonary fibrosis. ACO1/IRP1 plays a role in
regulating intracellular iron homeostasis. Cav-1 attenuates Smad3 nuclear translocation, and the
NDRG1 gene inhibits pulmonary fibrosis by inhibiting the Smad2/3 phosphorylation gene. The
Smads gene promotes the expression of N-cadherin and Vimentin and inhibits E-cadherin, thus
promoting EMT.

xCT knockdown results in the downregulation of Nrf2 and Keap1, whereas xCT
overexpression has no effect on Nrf2 and Keap1 mRNA levels, so xCT is an effective down-
stream target of Nrf2 [107]. Atorvastatin inhibits Nrf2, thereby inhibiting the expression
of system xc- and GPX4, resulting in severe damage to the antioxidant system and fer-
roptosis [108]. Inhibition of system xc-, depletion of GSH and enhancement of oxidative
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stress promote ferroptosis and EMT [89]. Therefore, EMT can be inhibited by regulating
the system xc-, and pulmonary fibrosis can be suppressed.

The transcription factor BTB and CNC homology 1 (Bach1) bind to heme and par-
ticipate in the regulation of oxidative stress response and metabolic pathways related to
heme and iron [109]. Bach1 can regulate EMT by affecting intercellular adhesion genes
such as claudin 3 (CLDN3) and CLDN4. Other transcription factors such as forkhead
box A1 (FOXA1) and Snail2 can also directly affect the EMT process by forming a gene
regulatory network (GRN) composed of transcription factors and their target genes [110].
Knockdown of Bach1 can reduce the gene expression of E-cadherin and promote the occur-
rence of EMT, and FOXA1 mediates the connection between Bach1 and E-cadherin [111].
Meanwhile, Bach1 directly activates Snail2, which encodes a prototypic transcription factor
to initiate EMT by inhibiting cell–cell adhesion and promoting stem cell function [112].
Bach1 inhibits Nrf2 signaling by binding to competitive dimers and EpRE sites in the target
gene promoters with Nrf2. Knockout of Bach1 enhances the expression of Nrf2 regulatory
genes, especially HO-1 [113]. When Bach1 promotes the increase in intracellular unstable
iron, Nrf2 can inhibit the increase in intracellular iron and the increase in the intracellular
Bach/Nrf2 ratio can cause iron apoptosis [114]. Therefore, EMT can be linked to ferroptosis
through Bach1 (Figure 2).
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Figure 2. Ferroptosis regulates EMT in pulmonary fibrosis via the Nrf2 signaling pathway. Under
normal conditions, Keap1 binds to Nrf2, which is degraded by ubiquitination. However, when iron
accumulates in epithelial cells, the imbalance between oxidation and antioxidant reaction results in
oxidative stress. Nrf2 dissociates from Keap1 during oxidative stress, and Nrf2 enters the nucleus to
form heterodimerization with small Maf or Jun proteins. This dimer binds to ARE, transcriptionally
activating its target genes and restoring cell homeostasis. Bach1 regulates EMT through CLDN3 and
CLDN4, and Bach1 regulates FOXA1 and snail2, forming GRN to regulate EMT. Bach1 decreased
the expression of the E-cadherin gene and promoted the occurrence of EMT. Meanwhile, Bach1
directly activates snail2, which promotes EMT by inhibiting cell–cell adhesion. Knockdown of Nrf2
significantly reduces heme oxygenase 1 (HO-1), promotes the accumulation of lipid peroxidation and
causes ferroptosis.



Biomedicines 2023, 11, 163 9 of 16

4.3. Wnt-Related Signaling Pathway

The Wnt signaling pathway, which is closely related to EMT, is activated when the
Wnt ligands Wnt3a and Wnt1 are secreted and bound to the frizzled receptors (FZD) and
a low-density lipoprotein (LRP) co-receptor. LRP receptors phosphorylated by CK1 and
GSK3β can recruit the disheveled (Dvl) protein to the plasma membrane, polymerize with
Dvl and be activated. Dvl polymer destroys and inactivates the complex by sequestration
in multibubbles. Dvl-1 can bind directly to axin, inhibit axin-mediated GSK3β-dependent
phosphorylation of β-catenin and lead to the stabilization and accumulation of β-catenin
which is then translocated into the nucleus [115–117]. In addition, E-cadherin also inhibits
β-catenin nuclear translocation by forming the E-cadherin/β-catenin complex. β-catenin
and T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors act as tran-
scription coactivators that can induce pro-fibrosis gene expression [118]. E-cadherin is
downregulated as a marker of the epithelial phenotype, and α-SMA and type I collagen are
upregulated as a marker of myofibroblasts in pulmonary fibrosis [119].

The Wnt signaling pathway plays an important role in EMT induction and the devel-
opment of pulmonary fibrosis [120]. A typical Wnt pathway can be activated by irradiation,
but in the presence of DKK-1, the nuclear localization of active β-Catenin decreases. DKK-1
inhibits EMT in vitro and in vivo through Wnt/β-Catenin signaling, inhibits the upregula-
tion of vimentin expression induced by ionizing radiation in alveolar epithelial cells and
then resists pulmonary fibrosis [121]. Synergism to induce EMT between TGF-β1 and the
Wnt signaling pathway was observed. The expression of an ECM metalloproteinase inducer
induced by TGF-β1 can stimulate the production of matrix metalloproteinases (MMPs) in
interstitial fibroblasts via the Wnt/β-Cantenin signaling pathway in AEC2 cells [8]. MMPs
can degrade all components of ECM, including zinc-dependent endopeptidase; they are
expressed at low levels in normal adult tissues but are significantly increased in patients
with pulmonary fibrosis [122]. This suggests that MMPs play an important role in the
development of pulmonary fibrosis. MMP3 can mediate fibrosis and inhibit distal epithelial
repair by activating the β-Catenin and TGF-β pathways [123].

The Wnt signaling pathway also plays a role in ferroptosis. Iron overload produces
ROS and LPO, which leads to ferroptosis, thus weakening classical Wnt signaling and
inhibiting osteoblast differentiation. Desferramine can reduce iron deposition in cells,
reduce ROS and alleviate osteoblast differentiation [124]. Activation of Wnt signaling
can reduce the production of lipid peroxidation and ROS in gastric cancer cells, thereby
inhibiting ferroptosis in gastric cancer cells. The β-catenin /TCF4 transcription complex
directly binds to the promoter region of GPX4 and induces its expression, thereby inhibiting
ferroptosis [125].

Some studies have shown that ferroptosis is related to the Wnt pathway and EMT is
regulated by the Wnt pathway to play an anti-pulmonary fibrosis role. However, there
is no experiment to show the relationship between ferroptosis and pulmonary fibrosis
in the Wnt signaling pathway. However, in ovarian cancer cells, the overexpression of
FZD7 (a transmembrane receptor) activates the carcinogen Tp63 which increases GPX4
and protects the cells induced by chemotherapy and oxidative stress [126]. Alveolar cells
could be particularly vulnerable to abnormal Wnt signaling, because diverse differentiation
and death-inducing signals, including p53, p21waf1 and transactivating isoforms of p63,
are simultaneously expressed in repairing alveoli after injury, thus inducing pulmonary
fibrosis [127]. In lung tissue, silicon stimulation can significantly activate Wnt5a and other
inflammatory signaling pathways. Furthermore, IL-6, TNF-α, and other inflammatory
factors are released; the expression of GPX4 protein is inhibited and ferroptosis is pro-
moted [77]. The release of inflammatory cytokines activates lung fibroblasts and induces the
secretion and deposition of ECM components, resulting in an interstitial fibrotic scar that
contributes to impaired gas exchange [128].Therefore, it is worth studying whether ferrop-
tosis regulates pulmonary fibrosis through EMT in the Wnt signaling pathway (Figure 3).
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Figure 3. Ferroptosis regulates EMT in pulmonary fibrosis via the Wnt signaling pathway. β-catenin
forms a destructive complex with Axin, APC, CKIα and GSK3β. β-catenin is phosphorylated by
GSK3β and CKIα, resulting in β-Catenin degradation by ubiquitination. Undegraded β-catenin
accumulates in the cytoplasm and is transferred to the nucleus. β-catenin binds to TCF/LEF, which
promotes transcription of downstream pro-fibrosis genes, leading to abnormal activation of fibroblasts
and ECM deposition. Silicon stimulation can significantly activate Wnt5a and other inflammatory
signaling pathways, release IL-6, TNF-α and other inflammatory factors, inhibit the expression of
GPX4 protein and promote ferroptosis. When Wnt ligands are secreted and bind to the FZD receptor
and LRP coreceptor, the LRP receptor is phosphorylated by CK1α and GSK3β. The phosphorylated
LRP receptor recruits Dvl protein into the plasma membrane, and Dvl aggregates and is activated. A
Dvl polymer destroys and inactivates the complex. Dvl-1 inhibits axin-mediated GSK3β-dependent
phosphorylation of β-catenin, leading to stabilization and accumulation of β-catenin, which is then
translocated into the nucleus. E-cadherin also inhibits β-catenin by forming the E-cadherin/β-
catenin complex to prevent nuclear translocation of β-catenin. The NDRG1 gene promotes the
formation of the E-cadherin/β-catenin adhesion complex on the cell membrane to prevent β-catenin
nuclear translocation.

5. Summary and Outlook

Iron is an essential substance for the human body, but excess iron enhances the Fenton
response and depletes the antioxidant capacity of cells, which leads to ROS accumulation
and then induces EMT in alveolar epithelial cells. The type-II alveolar epithelial cells are
transformed first into fibroblasts and then into myofibroblasts, producing ECM and finally
progressing to pulmonary fibrosis. Ferroptosis can be controlled by equilibrium iron steady
state and oxidation steady state, or GPX4 can be affected. At the same time, the purpose
of regulating EMT against pulmonary fibrosis has been achieved. Nrf2, TGF-β/Smad,
Wnt and other pathways are related to GPX4 and ROS. Importantly, ferroptosis regulation
of EMT plays an important role in the prevention and treatment of pulmonary fibrosis.
The progression of pulmonary fibrosis can be slowed down by regulating EMT through
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Bach1, ZEB1, NDRG1, erastin, liproxstatin-1, Cav-1 and other ferroptosis-related genes or
proteins. Infection with SARS-CoV-2 can also promote ferroptosis, leading to acute lung
inflammation and pulmonary fibrosis. Therefore, the regulation of ferroptosis may provide
a novel approach for the prevention and treatment of pulmonary fibrosis (Figure 4).
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