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In searching the Staphylococcus aureus genome, we found several homologs to SarA. One of these genes, sarT,
codes for a basic protein with 118 residues and a predicted molecular size of 16,096 Da. Northern blot analysis
revealed that the expression of sarT was repressed by sarA and agr. An insertion sarT mutant generated in S.
aureus RN6390 and 8325-4 backgrounds revealed minimal effect on the expression of sarR and sarA. The
RNAIII level was notably increased in the sarT mutant, particularly in postexponential-phase cells, while the
augmentative effect on RNAII was less. SarT repressed the expression of a-hemolysin, as determined by
Northern blotting, Western blotting, and a rabbit erythrocyte hemolytic assay. This repression was relieved
upon complementation. Similar to agr and sarA mutants, which predictably displayed a reduction in hla
expression, the agr sarT mutant exhibited a lower level of hla transcription than the sarT mutant. In contrast,
hla transcription was enhanced in the sarA sarT mutant compared with the single sarA mutant. Collectively,
these results indicated that the sarA locus, contrary to the regulatory action of agr, induced a-hemolysin
production by repressing sarT, a repressor of hla transcription.

Staphylococcus aureus is an important human pathogen.
Within its arsenal are genes coding for virulence proteins with
activities ranging from quorum sensing, tissue colonization,
and immune evasion to tissue destruction (39). Superimposed
upon these virulence genes is a network of regulatory genes
(global regulatory network) that allow exquisite and precise
coordination of protein expression during different stages of
infection (4, 11, 13, 17, 38). Presumably, the regulatory net-
work permits the bacteria to respond to environmental cues
and hence allows the pathogen to thrive in diverse host micro-
environments, e.g., blood, heart, lung, kidney, and spleen (39).

During growth in vitro, S. aureus expresses a number of cell
wall-associated adhesions (fibronectin and fibrinogen binding
proteins) that are believed to support adherence and coloni-
zation of host tissues (9). In transition to the postexponential
phase, the expression of adhesion proteins is repressed, while
the synthesis of exoproteins with enzymatic activity (e.g., he-
molysins, toxins, proteases, and lipase) predominates. By virtue
of their proteolytic enzyme activities (e.g., V8 protease) as well
as direct toxin effects on host cells (e.g., a-toxin), these exo-
proteins likely facilitate dissemination of the organism in vivo
(39).

Postexponential protein expression in S. aureus is controlled
by global regulatory systems such as sarA and agr (4, 17, 27).
The sarA locus encodes a 372-bp open reading frame with
three upstream promoters (P2, P3, and P1) that initiate over-
lapping transcripts, each coding for the 14.5-kDa SarA protein
(6, 33). The sarA P1 and P2 promoters, most active during the
exponential phase, are SigA dependent, while the P3 promoter
is primarily active during the postexponential phase and is SigB
dependent (5, 33). Phenotypically, the sarA locus activates the
synthesis of fibronectin and fibrinogen binding proteins (for

adhesion), as well as that of a-, b-, and d-hemolysins (for tissue
spread) (40). Protein-DNA binding studies revealed that SarA
binds to a 29-bp recognition sequence within the P2-P3 inter-
promoter region of agr (16, 36), thus playing a role in activating
agr transcription. As confirmation, a sarA mutant also dis-
played reduced levels of RNAII and RNAIII transcription of
agr when compared to the parental strain in vitro (12).

The agr locus, a well-described pleiotropic regulator of exo-
proteins synthesis in S. aureus (25, 27, 40), comprises two
divergent transcripts: RNAII, which encodes agrDBCA, and
RNAIII, encoding hld. AgrC and AgrA are thought to be the
sensor and activator of a two-component regulatory system.
AgrB and AgrD participate in the synthesis of a cyclic octapep-
tide, which acts as a quorum-sensing molecule (25). The se-
creted octapeptide activates the transmembrane sensor AgrC
(30), leading to phosphorylation of AgrC and a second step
phosphorylation of AgrA, the activator. Phosphorylated AgrA
has been postulated to bind to the agr promoter region to
activate RNAII and RNAIII promoters, leading to the expres-
sion of RNAIII, the regulatory molecule that is responsible for
the agr phenotype (induction of exoproteins and repression of
fibrinogen, fibronectin binding proteins, and protein A).

While mutations in sarA and agr have been shown to reduce
virulence in several animal model studies, these mutations did
not render the bacteria avirulent (1, 8, 22, 24), suggesting that
other regulatory factors may be at work. With the partial re-
lease of the S. aureus genome, additional genes with homology
to sarA could be identified. For example, sarR encodes a 115-
residue protein that represses SarA expression during the post-
exponential phase, presumably by down-modulating sarA P1
transcription (32). In contrast, SarS (also called SarH1) acts
downstream of sarA and agr to activate the transcription of spa
(protein A) (13, 42). An additional regulatory gene, rot, has
been defined as a repressor of alpha-toxin synthesis (35).

In searching the S. aureus genome (at www.TIGR.org), we
found an additional gene with homology to sarA. We report
here this sarA homolog, designated sarT, the expression of
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which is negatively controlled by sarA and agr. SarT represses
the expression of hla. Surprisingly, RNAIII of the agr locus was
induced in a sarT mutant. Additional transcriptional analysis
with sarA sarT and agr sarT double mutants disclosed that sarA,
but not agr, activates the synthesis of a-hemolysin by repressing
sarT expression.

MATERIALS AND METHODS

Bacterial strains, plasmids, and growth media. The bacterial strains and
plasmids used to generate the data in this study are listed in Table 1. Phage 80a
(37) was used as a transducing phage. Escherichia coli strains were grown in
Luria-Bertani medium (31). S. aureus strains were maintained with tryptic soy
medium (Difco) and grown in CYGP or 03GL medium (37). Erythromycin (5
mg/ml), chloramphenicol (34 mg/ml for E. coli and 10 mg/ml for S. aureus),
tetracycline (5 mg/ml), ampicillin (50 mg/ml), and kanamycin (50 mg/ml) were
used for selection of transformants and transductants.

DNA isolation. Chromosomal DNA was isolated from overnight broth cultures
of S. aureus by lysostaphin lysis and phenol extraction as described elsewhere
(11). Plasmid DNA was isolated from E. coli strains by using a Qiagen plasmid
mini kit. Plasmid DNA was extracted from S. aureus strains by a modification of
the Qiagen plasmid mini kit in which cells collected from overnight culture were
resuspended in the Qiagen P1 buffer with lysostaphin (100 mg/ml) and incubated
at 37°C for 1 h.

Southern blot hybridization. Restriction endonuclease-digested staphylococ-
cal chromosomal DNA was resolved by overnight electrophoresis at 20 V in 0.8%
agarose as described elsewhere (31). The DNA was transferred to Hybond-N1

nylon membrane by alkaline blotting (Amersham, Pharmacia Biotech UK). Tar-
get genes were detected by hybridization with gel-purified DNA probes radio-
labeled with [a32P]dCTP (Amersham, Pharmacia Biotech) using a Ready-To-Go
labeling kit (Amersham, Pharmacia Biotech) or Random Primer kit (Roche).

Cloning sarT and generating a sarT mutant. To clone the sarT gene, primers
based on flanking sequences (TIGR S. aureus contig 8076 [COL], nucleotides
[nt] 1417 to 4061) were synthesized. A 3.2-kb fragment was amplified by PCR
from S. aureus RN6390 chromosomal DNA with primers 1003 and 1004 (Table
2), digested with BamHI, ligated into the BamHI site of pUC18 (to make
pALC1894), and transformed into E. coli XL1 Blue. Plasmids extracted from
ampicillin-resistant colonies were screened for sarT fragment insertion by re-
striction endonuclease mapping and confirmed by DNA sequencing. To generate
a sarT mutant, ermC (20) was ligated into a blunted Ndel site within the putative
sarT coding region (nt 3093 to 3098). The resultant 4.4-kb sarT::ermC BamHI
fragment was confirmed by DNA sequencing, gel purified, ligated into the tem-
perature-sensitive shuttle plasmid pCL52.2 (to yield pALC1898), and electropo-
rated into RN4220 as previously described (37) to generate transformants. Pu-
tative transformants were confirmed by restriction mapping. Electrocompetent
RN6390 was subsequently transformed with pALC1898 isolated from RN4220
(11, 43). Colonies isolated at 30°C and resistant to erythromycin and tetracycline
were screened for the presence of plasmid by restriction mapping.

RN6390 harboring pALC1898 was grown in 03GL broth with erythromycin (5
mg/ml) at 30°C, diluted 1:1,000 in fresh medium, and propagated through several
cycles of alternating 30 and 42°C as described elsewhere (3). Erythromycin-
resistant, tetracycline-sensitive colonies, representing possible double-crossover
events, were selected (11) and screened for ermC insertion into sarT by Southern
blotting, PCR, and sequencing of the PCR fragment containing the junctional
fragment. One putative sarT mutant (ALC1905) was selected for further study.

To generate ALC2031, a sarT mutant of 8325-4, an 80a phage lysate of
ALC1905 was used to infect S. aureus strain 8325-4 as previously described (11,
43). The sarA sarT double mutants derived from strains RN6390 and 8325-4
(ALC2122 and ALC2050) were generated by transducing ALC2057 and
ALC2031, respectively, with an 80a phage lysate of the sarT mutant (ALC1905).
An 80a phage lysate of RN6911, an agr mutant of RN6390 (ALC134), was used
to infect the sarT mutant (ALC1905) to yield the agr sarT double mutant
(ALC2056). To confirm the genotypes, DNA extracts of putative transductants
were digested with restriction enzymes and screened by Southern blot hybrid-
ization for the presence of ermC genes and a shift in the size of the restriction
digest fragment hybridizing with a sarT-specific probe. Interruption of the de-
sired gene was also confirmed by PCR followed by sequencing of the PCR
fragment.

Complementation. The sarT transcript as derived from the sarT mRNA on a
Northern blot was estimated to be ;800 nt long. In examining the sarT sequence
(Fig. 1B), a putative transcriptional termination signal could be identified. Based
on these data, we amplified by PCR an 1,196-bp fragment with genomic DNA

from RN6390, using primers 1035 and 1036 (nt 2469 to 3665). The PCR fragment
was ligated into pCR2.1 and transformed into E. coli InvaF9 (Invitrogen) to
generate pALC2046. The correct insert was confirmed by DNA sequencing. The
inserted fragment in pALC2046 was then cleaved with EcoRI, ligated into
pSK236, and transformed into E. coli XL1 Blue. RN4220 was electroporated
with the recombinant plasmid containing sarT (37, 41), and transformants se-
lected on tryptic soy agar with chloramphenicol. Recombinant plasmid was
purified from RN4220 transformants and electroporated into the RN6390 mu-
tants ALC1905 (sarT mutant), ALC 2122 (sarA sarT mutant), and ALC2056 (agr
sarT mutant) and the 8325-4 mutant strains ALC2060 (sarT mutant of 8325-4)
and ALC2050 (sarA sarT mutant of 8325-4). Putative transformants containing
the plasmid were verified by restriction mapping. The presence of a sarT tran-
script in the transformants was confirmed by Northern blots.

RNA analysis. To minimize variations from environmental factors, all of the
strains in an experimental set were grown up within the same week, in the same
incubator, using the same batch lot of CYGP broth. Results were obtained from
at least two complete experimental sets, using RNA from cells grown and ex-
tracted at different times. In brief, overnight cultures were diluted to an optical
density at 650 nm (OD650) of 0.1 (using an 18-mm borosilicate glass tube) in
CYGP broth with appropriate antibiotics and grown at 37°C with shaking. At
exponential (OD650 5 0.7), late exponential (OD650 5 1.1), and postexponential
(OD650 5 1.7) phases, RNA was extracted with a reciprocating shaking device
(BIO 101, Vista, Calif.) and precipitated with 2-propanol as previously described
(14, 28) and then resuspended in 0.5% sodium dodecyl sulfate (SDS); the RNA
concentration was determined by absorbance at 260 nm.

Twenty micrograms of total RNA was electrophoresed through a 1.5% aga-
rose–0.66 M formaldehyde gel in morpholine propane sulfonic acid and blotted
onto Hybond-N1 membranes as previously described (12). Prior to blotting, the
gel was viewed under UV light to ensure that equivalent amounts of ethidium
bromide-stained rRNA bands were present for each sample. After blotting, the
gel was viewed again under UV light to confirm complete RNA transfer.

Gel-purified DNA probes were radiolabeled with [a32P]dCTP as described
above for the detection of specific transcripts (sarR, sarT, sarA, hla, agrRNAII,
and agr RNAIII). Blots were hybridized under high-stringency conditions,
washed, and autoradiographed with Kodak X-Omat film.

RNAII and RNAIII promoter activation. Plasmids pALC1742 and pALC1743,
derivatives of shuttle plasmid pSK236 (26) containing the green fluorescent
protein (GFPuvr) gene under the control of the agr P2 and P3 promoters,
respectively, were electroporated into S. aureus strains ALC1905 (sarT mutant),
ALC 2057 (sarA mutant), ALC2122 (sarA sarT mutant), and ALC2056 (agr sarT
mutant). The resulting strains harboring the plasmids were grown with shaking in
tryptic soy broth at 37°C. Aliquots were removed to microtiter plates, and the cell
density (OD650) and degree of fluorescence were read hourly for 10 h in an
FL600 fluorescence microplate reader (BioTek Instruments, Winooski, V.). Pro-
moter activation was plotted as the ratio of fluorescence/optical density versus
optical density, using the average values from triplicate readings.

Phenotypic characterization. Extracellular proteins were precipitated from
supernatants of overnight cultures with trichloroacetic acid as described previ-
ously (10, 40). Proteins were separated by electrophoresis on SDS–12% poly-
acrylamide gels (44) and electroblotted onto nitrocellulose (Osmonics, Westbor-
ough, Mass.). The blots were blocked overnight in blocking buffer (0.1 M Tris–
0.5 M NaCl [pH 8.2] with 2% bovine serum albumin and 1% Tween 20) and
probed with sheep antibody specific for a-hemolysin (1:2,000 dilution) (Toxin
Technology, Sarasota, Fla.). Antibody binding was detected with alkaline phos-
phatase-labeled secondary antibody (Jackson ImmunoResearch Laboratories)
and nitroblue tetrazolium–5-bromo-4-chloro-3-indolylphosphate substrate (Sig-
ma) as described previously (6). Band intensities for the Northern blots were
determined by densitometric scanning using SigmaGel software (Jandel Scien-
tific, San Rafael, Calif.), with the data presented as integrated area units.

Hemolysin assays. The spent supernatant from overnight cultures was assayed
for a-hemolysin production using 4% defibrinated rabbit blood in triplicate in a
microtiter assay as previously described (18). The positive control for lysis was
1% SDS. Titers were expressed as the reciprocal of the highest dilution showing
50% of the mean of the value for SDS hemolysis after 2 h of incubation at 37°C.

RESULTS

In searching for SarA homologs in the S. aureus genome, we
found three homologous proteins, SarR, SarS (also called
SarH1), and SarT (Fig. 1A). SarR is a 113-residue protein that
binds to the sarA promoter to down-modulate SarA expression
(32). SarS, a 250-residue protein that is identical to SarH1
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recently reported by Tegmark et al. (42), is normally repressed
by sarA and agr (13). Contrary to SarA, SarS is an activator of
protein A synthesis (13). An additional putative regulator,
SarT, was also identified by its homology with SarA in the S.
aureus genome database (TIGR contig 8076). A six-frame
translation of the sequence revealed a putative protein of 118
amino acids (Fig. 1A). Lying 7 bp upstream of the predicted
translation start is a ribosomal binding site, followed by typical
initiation (ATG) and termination (TAA) codons (Fig. 1B).

The SarT protein has a predicted molecular mass of 16,096 Da,
a high percentage of charged residues (43%), and homology
with SarA (35%) and SarR (20%).

The gene was expressed by cloning the putative sarT coding
region (primers 1005 and 1006) into pET14b, a His-tag (In-
vitrogen) expression vector. After induction with isopropyl-b-
D-thiogalactopyranoside and purification on a nickel affinity
column, we isolated a protein of ;16 kDa after thrombin
digestion. This protein, upon N-terminal microsequencing,

TABLE 1. Bacterial strains and plasmids used for this study

Strain or plasmid Comment Reference or source

S. aureus
RN4220 Mutant strain of 8325-4 that accepts foreign DNA 37
RN6390 agr1 laboratory strain related to 8325-4, maintains hemolytic pattern when propagated on

sheep erythrocytes
37

38
8325-4 Prophage-cured strain of NCTC8325 harboring an 11-bp deletion in rsbU which regulates sigB

activity by activating RsbV, a factor that competitively binds to the anti-sigma factor RsbW
37

21
COL Methicillin-resistant laboratory strain 37
DB Clinical blood isolate previously used in adhesion and endocarditis studies 9
Newman Laboratory strain 34

S. epidermidis From the Ultrecht University Hospital

S. haemolyticus From the Ultrecht University Hospital

S. saprophyticus From the Ultrecht University Hospital
ALC133 RN 6112; RN6390 with agrA::ermC 40
RN6911 agr mutant of RN6390 (Dagr::tetM) 38
ALC135 agr sarA double mutant of RN6390 2
ALC1342 sarA deletion mutant in which sarA (nt 586–1107) has been replaced by ermC 13
ALC1905 sarT mutant of RN6390 (sarT::ermC) This study
ALC2031 RN8325-4 with a sarA::kan mutation 4
ALC2050 sarA sarT mutant of 8325-4 This study
ALC2056 agr sarT mutant of RN6390 This study
ALC2057 RN6390 with a sarA::kan mutation 13
ALC2060 sarT mutant of 8325-4 (sarT::ermC) This study
ALC2063 RN4220 with pALC2047 This study
ALC2071 ALC1905 with pALC2047 This study
ALC2072 ALC2050 with pALC2047 This study
ALC2075 ALC2060 with pALC2047 This study
ALC2076 ALC2056 with pALC2047 This study
ALC2122 sarA sarT mutant of RN6390 This study
ALC2150 ALC2122 with pALC2047 This study

E. coli
XL1 Blue General-purpose host strain for cloning 31
InvaF9 Host strain for the TA cloning vector (pCRII) Invitrogen
BL21(DE3)pLysS Host strain for expression vector pET14b Novagen
ALC1904 BL21(DE3)pLysS containing pET14b::sarT This study

Plasmids
pUC18 E. coli cloning vector 31
pCL52.2 Temperature-sensitive E. coli-S. aureus shuttle vector 29
pSK236 Shuttle vector containing pUC19 cloned into the HindIII site of pC194 19
pCR2.1 E. coli PCR cloning vector Invitrogen
pET14b Expression vector Novagen
pALC1894 pUC18 with a 3.2-kb fragment containing the sarT coding region This study
pALC1896 pUC18 with a 4.4-kb fragment containing the sarT::ermC mutation This study
pALC1898 pCL52.2 with a 4.4-kb fragment containing the sarT::ermC mutation ligated at the BamHI site This study
pALC1904 pET14b with the sarT coding region at the XhoI-BamHI site This study
pALC2046 pCR2::sarT This study
pALC2047 pSK236::sarT This study
pALC1742 pSK236 (gfpuvr with agr P2 promoter) This study
pALC1743 PSK236 (gfpuvr with agr P3 promoter) 26
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showed agreement with the nine N-terminal amino acids of the
predicted sequence (data not shown).

Characterizing the sarT gene in staphylococcal strains and
in sarA and arg mutants. Previous studies (32) have shown that
sarR, a gene homologous with sarA, was present in S. aureus
and S. saprophyticus but not in S. epidermidis or S. haemolyticus
when hybridized under high-stringency conditions. To deter-
mine the distribution of sarT in staphylococci, a 0.4-kb frag-
ment encompassing the putative sarT gene was used to probe
genomic DNA from several staphylcoccal species. The sarT
probe hybridized with S. aureus strains COL, RN6390, New-
man, and DB and S. saprophyticus, but not with S. epidermidis
or S. haemolyticus, on a Southern blot of HindIII-digested
genomic DNA (Fig. 2A). As with sarR (32), the failure of the
sarT probe to hybridize with S. epidermidis or S. haemolyticus
genomic DNA may be a result of either the absence of sarT or
genetic divergence.

The sarT message (Fig. 2B) was found to be ;800 bp long
when calculated from a plot of relative migration distance
versus RNA size markers in a sarA mutant (Fig. 2B, fourth
panel from the left). As a putative transcriptional termination
signal was found downstream of the stop codon (Fig. 1B), we
surmise that the sarT transcript is likely monocistronic.

Northern blots of wild-type, agr, sarA, and agr sarA mutant
strains of RN6390 were probed with a 32P-labeled sarT frag-
ment to ascertain sarT expression in these genetic backgrounds
(Fig. 2B). In sarA, agr, and sarA agr mutants of RN6390, ex-
pression of sarT was significantly higher than in the parental
strain at all time points during growth. Notably, sarT expres-
sion in these mutants was maximal during the postexponential
phase (OD650 5 1.7), at a time when the secretion of exopro-
teins is generally the highest in the parental strain. In addition,
the expression of sarT was higher in the sarA and agr sarA
double mutants than the agr mutant. These data suggest that
sarT transcription is repressed by sarA and agr, particularly in
the postexponential phase.

Construction of sarT and sarA sarT and agr sarT double
mutants. Since sarT has homology with sarA and other genes in
the SarA family, we surmise that SarT may participate as an
additional regulator downstream of sarA and agr in the regu-
latory cascade. To address this possibility, we generated the
sarT mutant ALC1905 by transforming RN6390, a prototypic
S. aureus strain, with a temperature-sensitive plasmid
(pALC1898) that contained an ermC cassette within the sarT
coding region, and selecting recombinants by antibiotic sensi-
tivity. Successful generation of the sarT mutant in S. aureus was
confirmed by probing Southern blots of ClaI or XmnI chromo-

somal digests with 32P-labeled fragments of ermC and sarT
(Fig. 3A).

Northern blotting revealed that there was no detectable sarT
message in the mutant strain (ALC1905) (Fig. 2B). For addi-
tional confirmation, we generated a PCR fragment by using a
primer specific for ermC (primer 1013) and another primer
from the chromosomal region outside the original sarT con-
struct (primer 1017). The size of the PCR fragment as well as
direct sequencing of the PCR fragment confirmed that a dou-
ble-crossover event had taken place between the plasmid and
the chromosome.

We recognized the possibility that the observed phenotypes
might be strain dependent. To evaluate this, we generated
another sarT mutant in strain 8325-4 by using an 80a lysate of
ALC1905. Putative transductants were confirmed by Southern
blot analysis (Fig. 3B) with ermC and sarT probes as described.
The results from the RN6390 mutant strains were compared
with results in corresponding 8325-4 mutant strains.

We also generated additional mutant strains harboring sarA
sarT and agr sarT mutations to explore the effect of sarT on the
sarA and agr mutant phenotypes. Accordingly, an 80a lysate of
RN6911 (Dagr::tetM) was used to transduce the agr mutation
into ALC1905 to generate an agr sarT double mutant. Simi-
larly, a sarA sarT mutant was constructed by transducing
ALC2057 (RN6390 with a sarA::kan mutation), and ALC2031
(8325-4 with a sarA::kan mutation) with an 80a lysate of
ALC1905. To ensure that the observed effect of the above
strains was attributable to the sarT mutation, the double mu-
tant was also complemented with a recombinant shuttle plas-
mid (pSK236) carrying a 1.2-kb sarT fragment (pALC2047).

To ascertain the effect of the sarT mutation on the transcrip-
tion of sarR and sarA, Northern blots of the wild-type strains
(RN6390 and 8325-4), sarT mutants and complemented strains
were probed with gel-purified 32P-labeled DNA fragments of
sarR and sarA (Fig. 4). In blots probed with sarR, the sarT
mutant strains showed a very slight increase in sarR transcrip-
tion that appeared to be reversed by complementation in both
RN6390 and 8325-4 backgrounds (Fig. 4). Interestingly, the
sarA transcript level (i.e., P1, P3, and P2 transcripts) was not
significantly altered among any of the sarT mutants or com-
plemented strains compared with parental strains. Notably in
strains RN6390 and 8325-4, the insertion of the kanamycin
cassette (kan) within the sarA gene led to sarA transcripts of
higher molecular size (Fig. 4). However, these altered tran-
scripts did not result in synthesis of SarA, the sarA regulatory
molecule, as determined by probing an immunoblot of cell
extracts of sarA::kan strains with anti-SarA antibody (data not

TABLE 2. Primers used for this study

Primer Primer sequence Comment

1003 59-ACGGGGATCCTTATGACGTTGGAGAAAA Upstream of sarT, BamHI site added (underlined)
1004 59-AGCGGGGATCCCAAGTTTTACCAGCATA Downstream reverse primer, sarT
1005 59-GTAAGGGATGAACTCGAGATGAATGATT Start of sarT (bold), added XhoI site (underlined)
1006 59-ACGGGGATCCAAAAATACATTTAACTGC Reverse primer, downstream of sarT, BamHI site added (underlined)
1013 59-ATGGTCTATTTCAATGGCAGTTAC-39 Internal reverse primer, ermC
1017 59-GATGCGATTGAACGTATGAATAATGAT-39 Upstream of primer 1003
1035 59-GCGAATTCTACCGGTCCTTTCTTATCTCT Downstream of sarT coding for complete transcript, EcoRI site added (underlined)
1036 59-GCGAATTCCAGATTGTTTGTAAAGTATGT Upstream sarT complete transcript, EcoRI site added
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FIG. 1. Amino acid sequences for the SarA family of proteins. (A) Comparison of SarT with SarA, SarR (32), and SarS (13, 42). Con, consensus
(shaded with black or gray). SarS, a 250-residue protein, has two 125-residue SarA-like modules; the C-terminal half (SarS2, 126 to 250 amino
acids) shows homology with the N-terminal half (SarS1) and with other SarA homologs. (B) Promoter and termination regions of sarT. The
putative 235 and 210 promoter recognition sites are underlined. The ribosomal binding site 7 bp upstream of the predicted translation start is
underlined, and typical start (ATG) and termination (TAA) codons are bold. The putative terminator region consists of a T-rich region containing
two potential base-paired stem-loop sequences (underlined).
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shown). Additionally, mutation in agr in a sarT mutant also did
not markedly modify sarA transcription. Collectively, the data
indicate that the effect of the sarT mutant on the expression of
sarA is minimal and that sarT likely lies downstream of sarA.

Northern blots (Fig. 5) showed that the RNAII levels were
slightly higher in the sarT mutant than with the parental strains
(RN6390 and 8325-4) but returned to near parental levels with
sarT complementation. In contrast, the agr RNAIII message
increased markedly in sarT mutants and was reduced to near

parental levels in complemented sarT mutant strains in both
RN6390 and 8325-4 backgrounds (Fig. 5). Thus, despite the
repressive effect of sarA and agr on sarT expression, these data
suggested that sarT might have a significant down-modulating
effect on RNAIII transcription, while the effect on RNAII is
much less.

To further confirm the differential effects of the sarT muta-
tion on agr expression, RN6390 and the isogenic sarT mutant
strains were transformed with shuttle plasmid pSK236, harbor-
ing the GFPuvr gene driven by the RNAII or RNAIII promoter
(pALC1742 or pALC1743, respectively). Levels of GFP ex-
pression in the mutants paralleled the RNA blot data (Fig. 6).
With this assay, RNAII expression levels were slightly in-
creased and RNAIII levels were significantly elevated when
sarT was inactivated by mutation, particularly in postexponen-
tial-phase cells (Fig. 6). The sarA sarT, agr, and agr sarT mu-
tants expressed GFP reporter activities for RNAII and
RNAIII promoters at levels comparable to those for the sarA
mutant (Fig. 6).

Characterization of the sarT mutant phenotype. The sarA
agr global regulatory network has been shown to activate the
expression of a number of exoproteins with toxin and enzy-
matic activities (e.g., hemolysins, toxins, proteases, and lipase)
during the postexponential phase. As a putative regulatory
component downstream of sarA and possibly agr in the regu-
latory cascade, we hypothesize that sarT could function as an
intermediary to repress exoprotein synthesis, particularly in
light of the observation that sarT transcription was elevated in
sarA and agr mutants and that sarT was maximally expressed
during the postexponential phase.

To ascertain the effect of sarT on the expression of a-hemo-
lysin, an important extracellular virulence determinant of S.
aureus, we probed the parental, mutant, and complemented
strains for hla expression on Northern blots (Fig. 7). Remark-
ably, the level of message for hla was higher in sarT mutants
than in parental strains for both RN6390 and 8325-4 (Fig. 7, P
versus sarT- lanes). However, upon complementation, the level

FIG. 2. sarT genes and expression. (A) Southern blot. Genomic
DNAs extracted from a collection of S. aureus and other staphlyococ-
cal species were digested with HindIII (expected fragment size, 9,470
bp) and probed with a 0.4-kb fragment encompassing the putative sarT.
The sarT probe did not hybridize with chromosomal DNA from S.
epidermidis or S. haemolyticus. (B) Northern blots to determine if the
sarT message is influenced by the sarA/agr regulatory system. RNA
extracted from wild-type (RN6390) and mutant strains of S. aureus was
probed with 32P-labeled sarT at exponential phase (OD650 5 0.7) (lane
1), late exponential phase (OD650 5 1.1) (lane 2), and postexponential
phase (OD650 5 1.7) (lane 3).

FIG. 3. Southern blot of restriction digests of genomic DNA to
demonstrate a change in the band size of the putative insertion muta-
tion relative to the parental type, indicative of insertion of ermC into
sarT. P, parental; M, sarT mutant. ClaI cleaves sarT but not ermC; the
3.2-kb sarT DNA probe hybridizes with a 5.6- and a 2.2-kb fragment,
while the 1-kb sarT DNA probe hybridizes only with the 5.6-kb frag-
ment. Insertion of ermC increases the larger fragment to 6.9 kb. There
is a single XmnI site within ermC. XmnI yields a 4.0-kb fragment
encompassing sarT. With the ermC insert, expected fragment sizes are
2.2 and 3.1 kb. The 2.6- and 5-kb fragments seen in panel A are
consistent with incomplete enzyme digestion.

FIG. 4. Northern blots of RNA extracted from S. aureus strains at
the postexponential phase of growth (OD650 5 1.7) and probed with
sarR or sarA. cp, complemented with sarT in trans. The sarA mutant
strains express an RNA message that is larger than the wild-type
message, but it is apparently not translated, since SarA protein cannot
be detected by a monoclonal antibody on a Western blot of whole-cell
extracts.
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of hla expression was reduced to very low levels (sarT- cp lane
in each panel), presumably due to enhanced repression from
increased sarT gene dosage. As predicted from the agr pheno-
type, hla transcription was markedly diminished in the agr
mutant (Fig. 7A, lane m). Contrary to the sarT mutant, which
displayed augmented hla transcription relative to the parental
strain, the agr sarT double mutant did not display a higher level
of hla transcription than the agr single mutant (Fig. 7A, lane
m/sarT-), thus implying that sarT is not the primary interme-
diary target of agr that mediates enhanced hla expression.

Contrary to the agr sarT mutant, hla transcription was en-
hanced in the sarA sarT mutant compared with the sarA single
mutant (Fig. 7B, lane m/sarT- versus lane m). Complementa-
tion of the sarA sarT mutant with a recombinant shuttle plas-
mid carrying sarT repressed hla expression to a certain extent,
but not always to parental levels, particularly during the post-
exponential phase (Fig. 7B, lane m/sarT-cp). This finding
would be consistent with the presence of a SarA-independent
activator of hla that can overcome the suppressive effect of
sarT on hla transcription.

Western blot analysis. Western blots of extracellular protein
from wild-type, mutant, and complemented mutant strains
were probed with sheep antibody specific for a-hemolysin (Fig.
8A and B). a-Hemolysin, normally expressed maximally during
the postexponential phase, was produced in higher quantities
in the sarT mutant and returned to a very low level in the sarT
complemented strains (Fig. 8A and B). Although the sarA
mutant expressed very little a-hemolysin, the sarA sarT double
mutant exhibited detectable levels of a-hemolysin production
(Fig. 8A). In contrast, the agr sarT mutant did not produce a
detectable level of a-hemolysin (Fig. 8B). The titers from the
rabbit erythrocyte hemolysis assay (Fig. 8C) are comparable

with the Western blot results with respect to relative activity
levels for various strains. The 24-h broths showed an increase
in a-hemolysin relative to the 12-h broths, possibly due to
accumulation of a-hemolysin with time.

FIG. 5. Effects of sarT mutation on expression of RNAII and
RNAIII. Northern blots of RNA extracted from S. aureus strains
RN6390 (left) and 8325-4 (right) at late exponential (OD650 5 1.1) and
postexponential (OD650 5 1.7) phases of growth were hybridized with
agr RNAII or agr RNAIII probes. cp, complemented with sarT in trans.

FIG. 6. GFP expression driven by the agr RNAII (A) and agr
RNAIII (B) promoters.
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DISCUSSION

The sarA agr regulatory system is a major controlling ele-
ment for the expression of a number of virulence determinants
during the growth cycle (4, 10, 17). In addition to modulating
the expression of a number of cell wall proteins (e.g., fibronec-
tin binding proteins) during the exponential phase, the sarA/agr
regulatory system also plays a major role in regulating toxin
synthesis (e.g., a-hemolysin) during the postexponential phase.

Because of the complexity and the growth phase dependency
of the sarA/agr regulatory system, it has been speculated that
other regulatory elements may be involved in the precise
downstream control of virulence determinants during the tran-
sition from one growth phase to another.

Synthesis of a-hemolysin occurs primarily in transition from
late exponential phase to postexponential phase. This suggests
a requirement for the activation of additional genes or the
suppression of preexisting repressor gene products. sarT, dis-
covered by virtue of its homology to sarA, appears to be an
intermediary gene that functions downstream of sarA. Evi-
dence from our data (Fig. 2) indicates that sarT is induced
during the exponential-postexponential transition and that
sarA acts as a major sarT repressor, since sarT levels are sig-
nificantly elevated in sarA mutants. As sarR and sarA expres-
sion was not significantly altered in sarT mutants relative to the
parental strain, sarT is likely downstream of sarA in the regu-
latory cascade (Fig. 9).

Although sarT is repressed by agr (Fig. 2), our data also
indicated that sarT significantly down-modulates the expres-
sion of RNAIII of the agr locus. This effect on RNAIII was
reversible upon complementation. It is possible that sarT also
has a slight effect on agr RNAII, since levels were slightly
elevated in sarT mutants. This effect is sarA independent, since
there are no major differences in RNAII and RNAIII expres-
sion levels in the sarA and sarA sarT mutants.

Based on the finding that sarT may be a repressor of hla
expression, it is logical to assume that repression of sarT by
both sarA and agr may activate hla expression. However, our
data clearly demonstrated that only sarA activates hla tran-
scription by repressing sarT, since a sarA sarT double mutant
was able to augment hla expression to a level higher than that

FIG. 7. Comparison of hla expression in agr (A) and sarA (B)
mutants. Shown are Northern blots of RNA extracted from S. aureus
strains at mid-exponential (OD650 5 0.7), late exponential (1.1), and
postexponential (1.7) phases of growth. P, parental strain, either 6390
or 8325-4; m, mutation, either agr or sarA; cp, complemented with sarT
in trans. The various sarA and sarT mutants show that hla transcription
is repressed by sarT. However, hla expression is also influence by the
strain background.

FIG. 8. Western blot and a-hemolysin assay of sarT mutants. (A and B) Extracellular protein probed with sheep polyclonal antibody to
a-hemolysin; (C) a-hemolysin-induced rabbit erythrocyte hemolysis assay. S, protein molecular weight standards; a, a-hemolysin control; cp,
complemented with sarT in trans: (A) RN6390 parental, 452 integrated area units determined by densitometric scanning (IAU); sarT, 600 IAU;
sarA/sarT, 83 IAU; sarA mutant, undetectable level. (B) RN6390 parental, 207 IAU; sarT, 765 IAU. Titers are expressed as the reciprocal of the
highest dilution showing 50% hemolysis.
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in the sarA mutant. In contrast, the agr locus did not utilize this
pathway because hla expression in the agr sarT double mutant
remained depressed to a level similar to that of the agr mutant.
Collectively, these data indicate that sarA likely activates hla
expression by repressing sarT.

The effect of sarT on hla expression is complex. While a sarT
mutation resulted in an increase in hla transcription, the mu-
tant also exhibited an increase in RNAIII transcription, as
verified by Northern blot and transcriptional fusion data (Fig.
5 and 6). This finding for sarT thus hinted at the complexity of
hla regulation by the sarA locus. In the presence of an intact
sarA, the expression of sarT is repressed, leading to elevated
hla transcription. However, the relative contribution of the
effect of SarT on the expression of hla, as mediated via
RNAIII, versus that which occurs as a result of direct interac-
tion of sarT with the hla promoter is not clear. In addition, we
have previously reported that SarA, the major sarA regulatory
molecule, can up-regulate hla expression via both RNAIII-
independent and RNAIII-dependent pathways. With the
RNAIII-independent pathway, SarA binds directly to a recog-
nition sequence in the hla promoter to activate transcription
(17). With the RNAIII-dependent pathway, SarA binds to the
conserved sequence upstream of the agr promoter to stimulate
RNAII and RNAIII transcription (37) and possibly transcrip-
tion and translation of hla (36). Collectively, these data hint at
the complexity of the pathways by which hla expression is
activated.

Our data also seems to suggest complex interactions be-
tween sarT and agr (Fig 9). On one hand, we recognize that the
transcription of sarT is increased in agr mutants. On the other
hand, RNAIII expression is also increased in a sarT mutant.
Thus, there appears to be an inverse relationship (or possibly
a negative feedback loop) between the presence of sarT and
the expression of RNAIII. This putative feedback loop may
conceivably lie downstream of sarA. This mode of regulatory
hierarchy may explain (i) increased hla transcription in the

sarA sarT double mutant by virtue of increasing RNAIII ex-
pression (Fig. 7B, lane 5; Fig. 5, lane 5) and (ii) a failure to
increase hla transcription in an agr sarT double mutant com-
pared with the agr single mutant (Fig. 7A, lane 5 versus lane 4).

Although sarA likely mediates hla expression by repressing
sarT, RNA complementation data disclosed that the regulation
of hla by the sarA locus, particularly during the postexponential
phase, likely involves additional regulatory factors. This notion
is supported by the observation that complementation of the
sarA sarT mutant with sarT in trans could suppress hla expres-
sion in the mutant strain only during the exponential phase
(OD650 of 0.7 and 1.1) but not during the postexponential
phase (OD650 5 1.7) (Fig. 7B and C). Additionally, RNAIII
repression in a complemented sarA sarT mutant was highly
successful during exponential growth but not postexponentially
(Fig. 5). These data are consistent with the observation of
Vandenesch et al. (45) that a separate postexponential phase
signal other than agr is also needed for activating hla transcrip-
tion.

The large number of regulatory proteins recently described
in S. aureus as a result of genomic advances (4, 11, 23), coupled
with the elucidation of their regulatory controls on target
genes, suggests that virulence gene regulation in S. aureus
entails a complex network of regulatory genes. Some of these
gene products (e.g., SigB and SarR) control the expression of
SarA, while others such as SarH1 (also called SarS), Rot, and
SarT may act as intermediaries between the regulatory ele-
ments (sarA/agr) and target genes (e.g., hla and spa). Clearly,
additional regulatory factors will be discovered as the S. aureus
genome is completed.
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