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Abstract: Background: The number of geriatric traumatic brain injury (TBI) patients is increasing
every year due to the population’s aging in most of the developed countries. Unfortunately, there is no
widely recognized tool for specifically evaluating the prognosis of geriatric TBI patients. We designed
this study to compare the prognostic value of different machine learning algorithm-based predictive
models for geriatric TBI. Methods: TBI patients aged ≥65 from the Medical Information Mart for
Intensive Care-III (MIMIC-III) database were eligible for this study. To develop and validate machine
learning algorithm-based prognostic models, included patients were divided into a training set and
a testing set, with a ratio of 7:3. The predictive value of different machine learning based models
was evaluated by calculating the area under the receiver operating characteristic curve, sensitivity,
specificity, accuracy and F score. Results: A total of 1123 geriatric TBI patients were included, with a
mortality of 24.8%. Non-survivors had higher age (82.2 vs. 80.7, p = 0.010) and lower Glasgow Coma
Scale (14 vs. 7, p < 0.001) than survivors. The rate of mechanical ventilation was significantly higher
(67.6% vs. 25.9%, p < 0.001) in non-survivors while the rate of neurosurgical operation did not differ
between survivors and non-survivors (24.3% vs. 23.0%, p = 0.735). Among different machine learning
algorithms, Adaboost (AUC: 0.799) and Random Forest (AUC: 0.795) performed slightly better than
the logistic regression (AUC: 0.792) on predicting mortality in geriatric TBI patients in the testing
set. Conclusion: Adaboost, Random Forest and logistic regression all performed well in predicting
mortality of geriatric TBI patients. Prognostication tools utilizing these algorithms are helpful for
physicians to evaluate the risk of poor outcomes in geriatric TBI patients and adopt personalized
therapeutic options for them.

Keywords: traumatic brain injury; geriatric; machine learning; prognosis; prediction

1. Introduction

Population aging is a challenge in most of the developed countries. Estimated by the
American Census Bureau, the elderly population (age ≥ 65 years) in the United States
will increase to 80 million by 2050 [1]. The elderly population in Japan and South Korea
has, respectively, reached to 27.7% and 13.8% in 2017 [2,3]. And the trend of population
aging will remain or even be enhanced in the next decades. With the increase of the elderly
population, the number of elderly traumatic brain injury (TBI) patients is also gradually
increasing. It has been reported that emergency department visits and hospitalizations for
TBI in elderly people of United States increased by 46% and 34%, respectively [4]. A report
analyzed from the Japan Neurotrauma Data Bank Project 2015 indicated that 53.6% of
registered TBI patients were elderly (age≥ 65 years) and that most severe TBI patients were
elderly [5]. Additionally, impaired performance of muscle strength, balance and agility
caused by aging render older adults more likely to fall than young people [6]. Actually,
more than half of TBI incidents among the elderly are attributable to ground-level falls [7].
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Previous studies have shown that age is an independent risk factor of TBI progno-
sis [8,9]. And elderly TBI patients commonly suffer more complications and unfavorable
outcomes than do non-elderly TBI patients [10,11]. Research from different countries has
reported that the mortality rate of geriatric TBI ranged from 6.4% to 67.2% [3,12–15]. Al-
though some elderly TBI patients do not suffer death in the short term, these TBI survivors
survive with prominent physical and cognitive deficits [16]. Additionally, TBI survivors
commonly develop psychiatric disorders and tend to be at higher risk of dementia and
Alzheimer’s [17–19]. These disabilities and sequelas would continuously affect quality of
life, and they bring a heavy economic burden for geriatric TBI patients [20,21]. Therefore,
evaluating the prognosis of geriatric TBI patients early on could guide doctors in making
individualized treatments and rehabilitation strategies for improving the prognosis, quality
of life and reducing the medical expenditure.

Many previous studies have developed prognostic models for geriatric TBI utilizing
conventional logistic regression [8,22–24]. Some risk factors for poor prognosis have been
found, such as age, Charlson Comorbidity Index, Glasgow Coma Scale (GCS), Injury Sever-
ity Score (ISS), systolic blood pressure, intraventricular hemorrhage, and neurosurgical
intervention [8,22–24]. However, there are no studies using machine learning algorithms to
evaluate the prognosis of geriatric TBI. Compared with the conventional logistic regression,
machine learning algorithms may perform better in analyzing nonlinear correlations and
handling massive high-dimensional datasets. We designed this study to explore the prog-
nostic value of different machine learning algorithm-based models for predicting mortality
in geriatric TBI patients.

2. Materials and Methods
2.1. Patients

Patients included in this study were found in the Medical Information Mart for Intensive
Care-III (MIMIC-III) database designed and produced by the computational physiology labo-
ratory of Massachusetts Institute of Technology (MIT) (Cambridge, MA). This freely available
database collects the information of patients admitted to Beth Israel Deaconess Medical Center
(BIDMC) (Boston, MA) between 2001 and 2012 and obtains pre-approval from the institutional
review boards of MIT and BIDMC. All patients included in the MIMIC-III were deidentified and
anonymized in consideration of privacy protection. We included patients with head injury from
the MIMIC-III based on ICD-9 codes (80000–80199; 80300–80499; 8500–85419). Then, patients
were excluded according to the following criteria: (1) TBI patients with age < 65; (2) patients
who lacked records of GCS on admission; (3) Abbreviated Injury Score (AIS) head < 3; or
(4) patients who lacked records of vital signs and laboratory test (Figure 1). After screening,
1123 patients were finally included in the study.
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2.2. Data Collection

Age, gender, and comorbidities, including diabetes mellitus and hypertension were
collected. Records of vital signs on admission, including systolic blood pressure, diastolic
blood pressure, heart rate, respiratory rate, body temperature, and pulse oxygen saturation
(SpO2) were extracted. Clinical scores including GCS, AIS of face, head, chest, abdomen,
surface, and limb, and ISS were included [25,26]. Anatomical intracranial injury locations
including epidural hematoma, subdural hematoma, subarachnoid hemorrhage, and intrac-
erebral hemorrhage were classified based on ICD-9 codes. The results of laboratory tests
analyzed from the first blood sample after admission were extracted, including white blood
cell, platelet, red blood cell, red cell distribution width, hemoglobin, glucose, blood urea
nitrogen, serum creatinine, sodium, potassium, phosphorus, calcium, magnesium, chloride,
anion gap, prothrombin time, and international normalized ratio. Medical interventions
including mechanical ventilation and neurosurgical operation were included. The primary
outcome of this study was 30-day mortality. All above mentioned variables were extracted
from the MIMIC-III through Navicat Premium 12 using Structure Query Language.

2.3. Statistical Analysis

The normality of included variables was confirmed by the Kolmogorov–Smirnov test.
Normal distributed and non-normal distributed variables were presented as mean± standard
deviation and median (interquartile range), respectively. Categorical variables were shown
as counts (percentage). Differences between the two groups of normal distributed and non-
normal distributed variables were verified by Student’s t-test and the Mann–Whitney U test,
respectively. A chi-square test or Fisher exact test was conducted to analyze the difference
between two groups of categorical variables. To develop and validate machine learning
algorithms-based models, all TBI patients were randomly divided between a training set
(70%) and a testing set (30%). Logistic regression and six machine learning algorithms,
including decision tree, Random Forest, support vector machine (SVM), Naïve Bayes,
Adaboost and XGboost, were utilized to train predictive models for a 30-day mortality
in training dataset. Variables with p < 0.05 in univariate logistic regression analysis were
included into multivariate logistic regression analysis in the training set. The receiver
operating characteristic (ROC) curve was drawn and the area under the ROC curve (AUC)
was calculated to compare predictive performance of different machine learning algorithms-
based models. Additionally, sensitivity, specificity, accuracy and F1 score (F1 score is
calculated as the harmonic average of the precision rate and recall rate) were also calculated
to evaluate the performance of these models.

All analyses were performed using R software (version 3.6.1; R Foundation, R Core
Team, Vienna, Austria). R packages used for machine learning included ‘rpart’, ‘rpart.plot’,
‘party’, ‘randomForest’, ‘e1071′, ‘adabag’, and ‘xgboost’.

3. Results
3.1. Baseline Characteristics of Included TBI Patients

1123 TBI patients from the MIMIC-III were ultimately included, with a 30-day mortality
of 24.8% (Table 1). Compared with survivors, non-survivors had higher age (p = 0.010)
but lower incidence of hypertension (p = 0.007). Non-survivors had lower systolic blood
pressure (p = 0.014), lower body temperature (p < 0.001) and higher SpO2 (p < 0.001)
than survivors. Pupillary nonreactivity was more frequently observed in non-survivors
(p < 0.001). Non-survivors had lower GCS (p < 0.001), higher AIS head (p < 0.001), AIS
chest (p = 0.029), ISS (p < 0.001) and higher incidence of epidural hematoma (p = 0.001),
and subarachnoid hemorrhage (p = 0.048). Results of laboratory tests showed that white
blood cell (p < 0.001), red cell distribution width (p < 0.001), glucose (p < 0.001), blood urea
nitrogen (p < 0.001), serum creatinine (p < 0.001), anion gap (p = 0.002), prothrombin time
(p < 0.001), and international normalized ratio (p < 0.001) were higher in non-survivors,
while platelet (p = 0.030), hemoglobin (p = 0.010), and calcium (p = 0.002) were lower in
non-survivors. Finally, the usage incidence of mechanical ventilation was significantly
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higher in non-survivors (p < 0.001). Non-survivors had shorter length of hospital stay than
survivors (p < 0.001).

Table 1. Baseline characteristics of geriatric TBI patients in MIMIC-III.

Variables Overall Patients
(n = 1123)

Survivors
(n = 845, 75.2%)

Non-Survivors
(n = 278, 24.8%) p

Age (year) 81.0 (74.6–86.6) 80.7 (74.0–85.9) 82.2 (76.5–87.9) 0.010

Male gender (%) 571 (50.8%) 426 (50.4%) 145 (52.2%) 0.663

Diabetes (%) 258 (23.0%) 185 (21.9%) 73 (26.3%) 0.156

Hypertension (%) 630 (56.1%) 494 (58.5%) 136 (48.9%) 0.007

Systolic blood pressure (mmHg) 137 (121–152) 138 (123–153) 135 (114–150) 0.014

Diastolic blood pressure (mmHg) 65 (53–76) 65 (54–76) 63 (52–75) 0.099

Heart rate (s−1) 80 (70–91) 80 (70–91) 81 (70–93) 0.171

Respiratory rate (s−1) 18 (15–20) 18 (15–20) 18 (15–21) 0.400

Body temperature (F) 97.9 (96.9–99.0) 98.0 (97.1–99.0) 97.6 (96.4–98.7) <0.001

SpO2 (%) 98 (96–100) 98 (96–100) 99 (97–100) <0.001

Pupillary nonreactivity (size, %) <0.001

None 969 (86.3%) 773 (91.5%) 196 (70.5%)

One size 64 (5.7%) 42 (5.0%) 22 (7.9%)

Two size 90 (8.0%) 30 (3.6%) 60 (21.6%)

GCS 14 (7–15) 14 (10–15) 7 (5–13) <0.001

AIS face 0 0 0 0.315

AIS head 4 (3–4) 4 (3–4) 4 (4–5) <0.001

AIS chest 0 0 0 0.029

AIS abdomen 0 0 0 0.870

AIS surface 0 0 0 0.158

AIS limb 0 0 0 0.728

ISS 16 (16–20) 16 (16–17) 16 (16–25) <0.001

Epidural hematoma (%) 165 (14.7%) 106 (12.5%) 59 (21.2%) 0.001

Subdural hematoma (%) 696 (62.0%) 533 (63.1%) 163 (58.6%) 0.210

Subarachnoid hemorrhage (%) 403 (35.9%) 289 (34.2%) 114 (41.0%) 0.048

Intracerebral hemorrhage (%) 185 (16.5%) 135 (16.0%) 50 (18.0%) 0.490

White blood cell (109/L) 10.80 (8.10–14.10) 10.30 (7.70–13.40) 12.65 (9.53–16.43) <0.001

Platelet (109/L) 216 (173–267) 220 (176–269) 206 (165–260) 0.030

Red blood cell (109/L) 3.96 (3.58–4.36) 3.97 (3.59–4.37) 3.90 (3.42–4.34) 0.100

Red cell distribution width (%) 13.9 (13.2–14.9) 13.8 (13.2–14.7) 14.1 (13.4–15.3) <0.001

Hemoglobin (g/dL) 12.2 (10.9–13.4) 12.3 (11.1–13.5) 12.0 (10.5–13.2) 0.010

Glucose (mg/dL) 137 (113–173) 132 (110–163) 160 (128–192) <0.001

Blood urea nitrogen (mg/dL) 21 (16–28) 21 (16–27) 23 (17–32) <0.001

Serum creatinine (mg/dL) 1.00 (0.80–1.30) 1.00 (0.80–1.20) 1.10 (0.90–1.40) <0.001

Sodium (mmol/L) 139 (137–141) 139 (137–141) 139 (137–142) 0.384

Potassium (mmol/L) 4.00 (3.70–4.50) 4.00 (3.70–4.40) 4.00 (3.60–4.50) 0.548
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Table 1. Cont.

Variables Overall Patients
(n = 1123)

Survivors
(n = 845, 75.2%)

Non-Survivors
(n = 278, 24.8%) p

Phosphorus (mmol/L) 3.20 (2.70–3.70) 3.20 (2.80–3.70) 3.20 (2.70–3.80) 0.853

Calcium (mmol/L) 8.50 (7.35–9.00) 8.50 (7.70–9.10) 8.30 (1.18–9.00) 0.002

Magnesium (mmol/L) 1.90 (1.70–2.10) 1.90 (1.70–2.10) 1.90 (1.60–2.10) 0.519

Chloride (mmol/L) 103 (100–106) 103 (100–106) 103 (100–107) 0.093

Anion gap (mmol/L) 15 (13–17) 15 (13–17) 15 (14–17) 0.002

Prothrombin time (s) 13.10 (12.40–15.00) 13.00 (12.30–14.70) 13.40 (12.62–15.85) <0.001

International normalized ratio 1.10 (1.00–1.40) 1.10 (1.00–1.30) 1.20 (1.10–1.50) <0.001

Mechanical ventilation (%) 407 (36.2%) 219 (25.9%) 188 (67.6%) <0.001

Neurosurgical operation (%) 269 (24.0%) 205 (24.3%) 64 (23.0%) 0.735

30-day mortality (%) 278 (24.8%) 0 (0.0%) 278 (100.0%) <0.001

Length of hospital stay (day) 7 (4–12) 7 (4–12) 6 (3–10) <0.001

SpO2, pulse oxygen saturation; GCS, Glasgow Coma Scale; AIS, Abbreviated Injury Score; ISS, Injury Severity
Score. The bold value indicated p < 0.05.

3.2. Performance of Machine Learning Algorithms for Predicting Mortality in Geriatric TBI Patients

The AUC, sensitivity, specificity, accuracy and F score of machine learning algorithms
for predicting mortality in the training set and the testing set are presented in Table 2.
In the training set, Random Forest, Adaboost and XGboost reached the highest AUC of
1.000. In testing set, however, Adaboost, Random Forest and logistic regression ranked
first, second and third, with AUC of 0.799, 0.795 and 0.792, respectively. ROC curves of
machine learning algorithms for predicting mortality in the training set and the testing set
are shown as Figure 2a,b. The importance of the top-20 features for predicting mortality
in training set is shown in Figure 3a,b. The three most important features in Adaboost
were body temperature, systolic blood pressure and white blood cell, sequentially. The
three most important features in the Random Forest were GCS, AIS head and white blood
cell, sequentially. The details of each variable in the logistic regression-based model was
presented as Table 3.
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Table 2. Performance of machine learning algorithms for predicting 30-day mortality in the training
set and the testing set.

Training Set AUC 95% CI Sensitivity Specificity Accuracy F Score

Decision tree 0.825 0.789–0.861 0.686 0.840 0.803 0.628

Random Forest 1.000 1.000 1.000 1.000 1.000 1.000

SVM 0.985 0.979–0.991 0.974 0.928 0.938 0.884

Naïve Bayes 0.684 0.647–0.721 0.455 0.913 0.802 0.527

Logistic 0.859 0.828–0.890 0.77 0.802 0.793 0.643

Adaboost 1.000 1.000 1.000 1.000 1.000 1.000

XGboost 1.000 1.000 1.000 0.998 1.000 1.000

Testing set AUC 95% CI Sensitivity Specificity Accuracy F score

Decision Tree 0.712 0.647–0.777 0.425 0.908 0.783 0.503

Random Forest 0.795 0.739–0.851 0.609 0.868 0.801 0.613

SVM 0.785 0.730–0.840 0.713 0.712 0.712 0.561

Naïve Bayes 0.658 0.602–0.715 0.437 0.880 0.766 0.490

Logistic 0.792 0.736–0.848 0.644 0.784 0.745 0.561

Adaboost 0.799 0.746–0.853 0.701 0.792 0.769 0.610

XGboost 0.766 0.709–0.823 0.724 0.680 0.691 0.548

AUC, area under the receiver operating characteristic curve; SVM, support vector machine; Adaboost, adaptive
boost; XGboost, extreme gradient boost.
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Table 3. Univariate and multivariate logistic regression analysis of risk factors for 30-day mortality in
training set.

Variables
Univariate Logistic Regression Analysis Multivariate Logistic Regression Analysis

OR 95% Cl p OR 95% Cl p

Age 1.031 1.009–1.054 0.006 1.054 1.023–1.087 0.001

Male gender 1.044 0.753–1.447 0.796

Diabetes 1.370 0.940–1.996 0.101

Hypertension 0.774 0.558–1.074 0.125

Systolic blood pressure 0.992 0.985–0.998 0.013 1.002 0.994–1.010 0.667

Diastolic blood pressure 0.991 0.982–1.001 0.077

Heart rate 1.007 0.997–1.016 0.171

Respiratory rate 0.991 0.960–1.024 0.595

Body temperature 0.783 0.709–0.866 <0.001 0.825 0.728–0.934 0.002

SpO2 1.052 0.993–1.115 0.084

Pupillary nonreactivity <0.001 0.001

None 1.000 [Reference] 1.000 [Reference]

One size 1.930 0.995–3.743 0.052 1.509 0.668–3.410 0.322

Two size 9.797 5.546–17.305 <0.001 3.745 1.818–7.716 <0.001

GCS 0.786 0.754–0.820 <0.001 0.888 0.831–0.948 <0.001

AIS face 0.899 0.700–1.154 0.403

AIS head 2.767 1.993–3.841 <0.001 2.383 1.309–4.339 0.004

AIS chest 1.202 1.044–1.384 0.010 1.071 0.776–1.477 0.678

AIS abdomen 1.041 0.767–1.414 0.796

AIS surface 0.669 0.291–1.542 0.346

AIS limb 1.057 0.869–1.287 0.579

ISS 1.069 1.045–1.094 <0.001 0.980 0.919–1.044 0.530

Epidural hematoma 1.776 1.154–2.734 0.009 1.419 0.788–2.556 0.244

Subdural hematoma 0.791 0.567–1.103 0.166

Subarachnoid hemorrhage 1.204 0.859–1.687 0.282

Intracerebral hemorrhage 1.317 0.871–1.992 0.192

White blood cell 1.097 1.063–1.133 <0.001 1.077 1.039–1.117 <0.001

Platelet 1.000 0.998–1.002 0.897

Red blood cell 0.843 0.658–1.080 0.176

Red cell distribution width 1.121 1.022–1.230 0.015 1.118 0.981–1.273 0.093

Hemoglobin 0.903 0.832–0.981 0.015 0.916 0.816–1.029 0.139

Glucose 1.006 1.003–1.008 <0.001 1.002 0.999–1.005 0.239

Blood urea nitrogen 1.013 1.002–1.024 0.026 1.002 0.986–1.018 0.831

Serum creatinine 1.183 0.979–1.429 0.081

Sodium 1.020 0.983–1.059 0.302

Potassium 0.955 0.751–1.215 0.710

Phosphorus 1.011 0.833–1.228 0.909

Calcium 0.946 0.902–0.993 0.025 1.113 1.038–1.193 0.003
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Table 3. Cont.

Variables
Univariate Logistic Regression Analysis Multivariate Logistic Regression Analysis

OR 95% Cl p OR 95% Cl p

Magnesium 0.916 0.541–1.553 0.745

Chloride 1.048 1.016–1.082 0.003 1.025 0.983–1.067 0.245

Anion gap 1.054 1.002–1.109 0.041 1.048 0.975–1.125 0.201

Prothrombin time 1.018 0.997–1.038 0.089

International normalized ratio 1.185 1.000–1.404 0.050

Mechanical ventilation 5.768 4.053–8.208 <0.001 3.542 2.012–6.238 <0.001

Neurosurgical operation 0.992 0.676–1.457 0.969

OR, odds ratio; CI, confidence interval; SpO2, pulse oxygen saturation; GCS, Glasgow Coma Scale; AIS, Abbrevi-
ated Injury Score; ISS, Injury Severity Score. The bold value indicated p < 0.05.

4. Discussion

The 30-day mortality of included geriatric TBI patients in this study was 24.8%, which
was similar to previously reported incidence ranging from 6.4% to 67.2% [3,12–15]. The
significant mortality difference in different studies may be attributable to differences of
injury severity, therapeutic options, and age distribution. A total of eight factors were found
to be independently associated with mortality by the logistic regression, including age,
body temperature, pupillary nonreactivity, GCS, AIS head, white blood cell, calcium, and
mechanical ventilation, all of which have been confirmed as risk factors for poor prognosis
in TBI.

Many previous studies have verified that increasing age was actually the strongest
predictor of poor outcome in TBI [27–29]. The increase in age may indicate worse nutritional
status, extracranial organ function, cerebrovascular autoregulation and higher likelihood of
infectious complication, or secondary brain injury. The pupillary nonreactivity implying
impaired function of medulla oblongata and midbrain, has been confirmed as an important
and convenient index to evaluate the prognosis of TBI [30–32]. Although the GCS has been
utilized to evaluate the condition of brain injury patients for decades, it shows unstable
performance under several situations, including drinking, seizure, and being sedated.
Especially, geriatric patients commonly suffer complications with cerebrovascular disease,
dementia, and impaired hearing, which could limit the reliability of GCS evaluation [33].
The median GCS of our included geriatric TBI patients was 14, with a lower and upper
quartile of 7 and 15, which indicates that most of included geriatric patients suffered mild
to moderate TBI. This fact may reflect the characteristic of fall injury among geriatric
patients, which is significantly different from the traffic-accident-induced injury prevalent
in young adults presenting with lower GCS. Another risk factor for mortality discovered
by logistic regression was mechanical ventilation. The incidence of receiving mechanical
ventilation in non-survivors was 67.6%, which was significantly higher than the 25.9% of
survivors. Mechanical ventilation is commonly used to assist breathing for TBI patients
with respiratory failure, pulmonary infection, or chest trauma. These patients have worse
organ function, higher injury severity and higher risk of a poor outcome.

Finally, abnormal body temperature is prevalent in TBI patients [34]. One previous
study found that both elevated temperature and low temperature immediately after pre-
hospital transport were independently associated with higher mortality and with increased
length of hospital stay [35]. Elevated temperature after TBI may be caused by a series
of factors, such as infection and overactivated sympathetic activity, which may be both
associated with poor prognosis.

In addition to factors discovered by the logistic regression, Random Forest and Ad-
aboost algorithms also confirmed several other important factors, including systolic blood
pressure, diastolic blood pressure, red cell distribution width, and platelet, based on their
contribution degrees to the prediction. The hypotension and even shock status reflected by
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low blood pressure undoubtedly promote the deterioration of organ function and unfavor-
able outcomes. Additionally, unstable control of blood pressure and high blood pressure
variability would cause the deviation from optimal cerebral perfusion pressure [36]. As a
key component of the coagulation system, the platelet has been testified regulating neuroin-
flammation and restoring blood brain barrier integrity after TBI [37]. Furthermore, platelet
dysfunction has been confirmed as one of coagulopathy etiologies after TBI and associated
with poor outcomes [38,39]. Finally, previous studies showed red cell distribution width to
platelet ratio is a reliable prognostic marker of TBI [40,41].

In our study, the neurosurgical operation did not show an independent association
with the mortality of TBI patients analyzed by the logistic regression. Additionally, it did
not rank within the top 20 regarding the feature importance of Adaboost and Random
Forest. Actually, it is still debated whether conservative or aggressive treatment should be
provided for geriatric TBI patients. Although many centers have adopted the conservative
treatment for geriatric TBI in the past years, increasing evidence supports the benefit of
surgical operation for geriatric TBI. One Japanese study found surgical operation was
associated with better functional outcomes and lower mortality of geriatric TBI patients
with subdural hematoma and GCS ≥ 6 [8]. The effect of surgical management upon
geriatric TBI may depend on many factors, such as injury severity, emergence of symptoms,
size and location of hematoma mass, surgical options, physical state and comorbidities of
patients. It would be worthwhile to design and perform randomized controlled trials to
explore the benefit of surgical management for specific geriatric TBI patients in the future.

It is generally recognized that the prognosis of geriatric TBI is poorer than in young
adults with TBI. But there is insufficient literature and studies specially focusing on mul-
tiple fields of geriatric TBI patients, including risk evaluation, treatments, prognosis and
rehabilitation. Up to now, there has not been a widely acknowledged prognostic risk
assessment tool for the geriatric TBI. Previous studies have explored the prognostic value
of International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) score
and Corticosteroid Randomization after Significant Head Injury (CRASH) score in geriatric
TBI patients [33,42–44]. One of them found IMPACT showed moderate discrimination and
slight overestimation of the actual outcome for geriatric TBI [42]. And another confirmed
that CRASH was an effective prognostic tool for geriatric TBI and it showed no difference
of performance between geriatric patients and young patients [44]. However, the small
sample size and the highly specialized TBI population of these studies limit the reliability
of conclusions. Some studies have utilized logistic regression to develop prognostication
tools specific to geriatric TBI, based on multiple factors such as age, GCS, hypotension,
Charlson Comorbidity Index and ISS [8,22,28]. Previous studies found machine learning
algorithms-based models performed well on the prediction of prognosis in many kinds of
neurosurgical patients, such as aneurysmal subarachnoid hemorrhage, and intracerebral
hemorrhage [45–47]. Additionally, some studies exploring the prognostic value of machine
learning in pediatric TBI found machine learning performed better than conventional
statistical models and CT scores in predicting outcomes [48,49], while there is still no study
exploring the prognostic value of machine learning algorithms in geriatric TBI patients.
The results of our study show that machine learning algorithms did not perform worse
than the logistic regression, and even show slightly higher accuracy than the logistic regres-
sion. The greater statistical difference needs to be verified in a study with a larger sample
size. Adaboost and Random Forest showed the best accuracy among several machine
learning algorithms adopted in our study. Based on the bagging method, Random Forest
is a classifier containing multiple decision trees. Its output category is determined by the
mode of individual trees’ category output. There are several advantages of Random Forest,
including high accuracy, fast running speed on large datasets, and maintained accuracy
in the case of a large part of missing data [50,51]. The Adaboost algorithm is an effective
and practical boosting algorithm. Its algorithmic principle is to select weak classifiers
with the smallest weight coefficient from the trained weak classifiers by adjusting the
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sample weight and the weight of the weak classifier, and then combine the two into a final
strong classifier [52].

This study has several limitations. Firstly, TBI patients analyzed in this study were
identified in the MIMIC-III, which is a freely available intensive care database produced
by a hospital in Boston, United States with large sample size. Geriatric TBI patients from
this database are mainly classified into mild to moderate brain injury with GCS quartiles
of 7 and 15. Therefore, selection bias could not be avoided and future studies mainly
including moderate to severe geriatric TBI patients conducted in other medical centers
may offer external support to our findings. Secondly, the prognosis is different between
mild and moderate to severe TBI patients. Developing machine learning based prognostic
models for these two groups of TBI respectively may be more individualized and accurate.
Thirdly, though many clinical factors and laboratory indexes have been brought into this
study, there are still some risk factors of poor prognosis that have not been collected, such
as antiplatelet drugs, anticoagulants and comorbidities excepting for diabetes mellitus
and hypertension. Fourthly, several previously developed scores were not recorded and
compared with our predictive models such as International Mission for Prognosis and
Analysis of Clinical Trials in TBI (IMPACT), Corticosteroid Randomization after Significant
Head Injury (CRASH) and Marshall CT score. Finally, the only outcome of this study was
30-day mortality, we did not collect functional outcome and cognitive status which were
important measures for evaluating prognosis of geriatric patients due to the nature of the
database study.

5. Conclusions

Adaboost and Random Forest performed slightly better than the logistic regression on
predicting mortality of geriatric TBI patients. Future works could be focused on developing
practical application software utilizing these algorithms in portable electronic equipment
to quickly evaluate prognosis of geriatric TBI.
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