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NCAPD2 is a novel marker for the poor prognosis 
of lung adenocarcinoma and is associated with 
immune infiltration and tumor mutational burden
Zihao Li, MMa, Yuxuan Zheng, MMa, Zuotao Wu, MMa, Ting Zhuo, MMb, Yongjie Zhu, MMa, Lei Dai, MDa, 
Yongyong Wang, MMa, Mingwu Chen, MMa,* 

Abstract 
Lung adenocarcinoma (LUAD) is at present the most prevalent subtype of lung cancer worldwide. Non-SMC condensin I complex 
subunit D2 (NCAPD2) is one of the 3 non-SMC subunits in condensin I. Previous studies have confirmed that NCAPD2 plays a 
critical role in chromosome cohesion and segregation. NCAPD2 may be involved in tumorigenesis and progression by participating 
in abnormal cell cycle division, but the prognostic value of NCAPD2 in LUAD remains unclear. We investigated differences in the 
expression levels of NCAPD2 and determined their association with clinical features, as well as their diagnostic and prognostic 
value using the cancer genome atlas database. The function of NCAPD2 was analyzed using gene ontology, Kyoto encyclopedia 
of genes and genomes, and gene set enrichment analysis. CIBERSORT, single-sample gene set enrichment analysis, and 
ESTIMATE were used to analyze the immune microenvironment of tumor patients. Tumor mutational burden (TMB) and immune 
checkpoints were analyzed, while hub genes were identified using weighted gene coexpression network analysis and were used 
to construct prognostic models. Subsequently, the competing endogenous RNAs network of NCAPD2 in LUAD was explored. 
Finally, we performed qPCR to verify differences in NCAPD2 expression between the tumor and normal tissues. The expression 
of NCAPD2 in LUAD was significantly upregulated compared with normal lung tissues. NCAPD2 has been linked to the T stage, 
N stage, and tumor stage. The elevated expression of NCAPD2 in LUAD can predict a poor prognosis. Functional enrichment 
analysis indicated that the main function of NCAPD2 was in cell cycle regulation. Moreover, NCAPD2 was also associated with 
immune cell infiltration and TMB. NCAPD2 is a novel prognostic marker in LUAD and is associated with immune infiltration and 
TMB.

Abbreviations: ceRNA = competing endogenous RNA, DEGs = differential expression genes, GO = gene ontology, GSEA = 
gene set enrichment analysis, KEGG = Kyoto encyclopedia of genes and genomes, LUAD = lung adenocarcinoma, NCAPD2 
= Non-SMC condensin I complex subunit D2, PPI = protein–protein interaction, ssGSEA = single-sample gene set enrichment 
analysis, TCGA = the cancer genome atlas, TMB = tumor mutational burden, WGCNA = weighted gene coexpression network 
analysis.

Keywords: cell cycle, immune checkpoint, immune infiltration, lung adenocarcinoma, NCAPD2, prognostic value, tumor mutation 
burden

1. Introduction

The leading type of cancer that leads to death worldwide is lung 
cancer.[1] Lung cancer can be divided into 2 main subtypes: small 
cell lung cancer and non-small cell lung cancer, which account 
for 15% and 85% of all cases, respectively.[2] Lung adenocarci-
noma (LUAD) is currently the most prevalent type of lung can-
cer worldwide.[3] At present, the 5-year overall survival (OS) rate 

of lung cancer is not optimistic and is only about 15%, mainly 
due to the lack of precision and diversification in diagnosis and 
treatment methods.[4] Therefore, it is necessary to strengthen 
the exploration of the molecular mechanism of lung cancer 
and develop more effective early screening and late treatment 
methods.

Improvements in molecular pathology testing have led 
to major advances in the treatment of non-small cell lung 
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cancer, along with significant improvements in overall sur-
vival as a result of immunotherapy and targeted therapy.[5] 
LUAD can be treated using EGFR, ALK, and TKI therapy to 
achieve long-term survival, but resistance to targeted ther-
apy is the main challenge that results in a poor treatment 
effect.[6] Therefore, more effective biomarkers of LUAD, as 
well as new molecular mechanisms and therapeutic targets 
need to be identified. Condensins is a multi-subunit protein 
complex that is involved in mitotic chromosome assembly 
and dissociation, and are classified as condensins I and II, 
respectively based on their function. Structural maintenance 

of chromosomes (SMC) proteins and 3 non-SMC subunits 
constitute the condensed I complex, while the D2 subunit 
(NCAPD2) is one of the non-SMC subunits.[7] NCAPD2 is 
involved in chromosome structural changes and segregation 
during mitosis in eukaryotic cells.[8] Chromosomal abnor-
malities are often associated with tumorigenesis and immune 
system abnormalities.[9] Recent studies have confirmed that 
NCAPD2 is overexpressed in breast cancer and colorectal 
cancer, and is closely associated with prognosis, as a risk 
factor.[10,11] Moreover, as a hub gene or candidate gene, 
NCAPD2 is involved in the invasion process of a variety 

Figure 1. Diagnostic value of NCAPD2 in LUAD. (A) Differential NCAPD2 expression in the tumor and normal groups of TCGA dataset. (B) Differential NCAPD2 
expression in the tumor and normal groups of the GSE10072 dataset. (C) Diagnostic ROC curve of NCAPD2 in TCGA dataset. (D) Diagnostic ROC curve of 
NCAPD2 in the GSE10072 dataset (true positive rate = sensitivity, false positive rate = (1 – specificity)). (E and F) Immunohistochemistry images of NCAPD2 
in LUAD obtained from the HPA database. LUAD = lung adenocarcinoma, NCAPD2 = non-SMC condensin I complex subunit D2, ROC = receiver operator 
characteristic, TCGA = the cancer genome atlas.
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of cancers and is a potential therapeutic target in hepato-
cellular carcinoma, gastric cancer, and ovarian cancer.[12–14] 
However, at present, the clinical application and functional 
mechanisms of NCAPD2 in LUAD remain unclear.

2. Materials and methods

2.1. Data acquisition

LUAD mRNA count and fpkm data were obtained from the 
cancer genome atlas (TCGA) database using UCSC Xena[15] 
(https://xenabrowser.net/), including 510 tumor tissue and 58 
normal tissue samples. Corresponding clinical and survival 
data were also downloaded. The GSE10072 and GSE50081 
datasets were acquired from gene expression omnibus (https://
www.ncbi.nlm.nih.gov/geo/) database.[16] The GSE50081 
dataset included data on 181 NSCLC cases, from among 
which we selected LUAD data to be used in the analysis. 
The gene expression omnibus datasets used the GPL96 and 
GPL570 platforms. We downloaded microRNA (miRNA) 
data on LUAD from TCGA. The Fasta format sequences of 
all mature miRNA sequences were obtained from the miR-
base (https://www.mirbase.org/). We downloaded the long 
non-coding RNA (lncRNA) data of LUAD from the UCSC 
Xena database and then log2-transformed the data. Simple 
nucleotide variation data of LUAD included in TCGA data-
base were obtained from Genomic Data Commons (https://
portal.gdc.cancer.gov/).

2.2. Diagnostic value of NCAPD2 in LUAD

TCGA data were extracted to analyze differences in mRNA 
expression levels of NCAPD2 between the tumor and normal 
tissues, and the GSE10072 dataset was applied to verify the dif-
ferences. The diagnostic value of NCAPD2 in LUAD was eval-
uated by establishing a receiver operator characteristic (ROC) 
curve. Immunohistochemical staining of the Human Protein 
Atlas (HPA) (www.proteinatlas.org) was performed to validate 
the differences in the protein level expression of NCAPD2.

2.3. Survival analysis of NCAPD2

To investigate whether NCAPD2 expression affects progno-
sis, the R packages, survival and survminer, were used to con-
duct the survival analysis. The tumor cases in TCGA database 
were divided into 2 groups based on the NCAPD2 expression 
level (cutoff value was 50%). The Kaplan–Meier (KM) method 
was applied to construct the survival curve combined with the 
overall survival time. The GSE50081 dataset was applied for 
verification.

2.4. Identification of the differential expression genes 
(DEGs) and function analysis of NCAPD2

To identify differential expression genes (DEGs) associated with 
NCAPD2 expression, the R package, limma, was used to ana-
lyze tumor samples obtained from TCGA. The DEG thresholds 

Figure 2. The expression of NCAPD2 in LUAD is valuable for survival and is associated with a variety of clinical characteristics. (A) Univariate COX regression 
analysis. (B) Multivariate COX regression analysis. (C) KM survival analysis between the 2 groups with different NCAPD2 expression levels in TCGA dataset. (D) 
KM plot of NCAPD2 in the GSE50081 dataset. (E) KM survival analysis of clinical T stage. (F) KM survival analysis of clinical N stage. (G) Comparison of NCAPD2 
expression in LUAD between the different pathological stages. (H) NCAPD2 expression was associated with clinical T stage in LUAD. (I) NCAPD2 expression 
was associated with clinical N stage in LUAD. N+: N1, N2, N3 stage. (J) Comparison of NCAPD2 expression at different clinical M stages. HR = hazard ratio, 
KM = Kaplan–Meier, LUAD = lung adenocarcinoma, NCAPD2 = non-SMC condensin I complex subunit D2, TCGA = the cancer genome atlas.

https://xenabrowser.net/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.mirbase.org/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
www.proteinatlas.org
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were set at the absolute value of log fold change(|logFC|) ≥ 1.0. 
The R packages, ggpubr and ggthemes, were used to construct a 
volcano map of the DEGs. To explore the functional mechanism 
of NCAPD2 in LUAD, gene ontology[15] (GO) functional enrich-
ment, Kyoto encyclopedia of genes and genomes[17] (KEGG), 
and gene set enrichment analysis[18] (GSEA) were performed on 
the 1365 DEGs identified using the R packages, clusterProfiler 
and Enrichment plot. The GO and KEGG analysis results were 
visualized using a bubble chart, and the GSEA shows the top 10 
pathways.

2.5. Further analysis of the relationship between NCAPD2 
and immune infiltration in LUAD

The composition of the tumor microenvironment (TME) of all 
LUAD samples were assessed using ESTIMATE.[19] The stro-
mal score, immune score, ESTIMATE score, and tumor purity 
of all the tumor samples were calculated using the R package, 
estimate, and the differences between the 2 groups of differ-
ent expression levels of NCAPD2 were analyzed (cutoff value 
was 50%). CIBERSORT is a deconvolution algorithm that was 
applied to calculate the proportion of 22 immune cells in all 
tumor samples. The single-sample gene set enrichment analy-
sis (ssGSEA) quantified the infiltration degree of the 28 sub-
types of immune cells in the tumor tissues using the R package, 
GSVA.

2.6. Differences in tumor mutation burden (TMB) and 
immune checkpoints between the different NCAPD2 
expression groups

Since there was a lack of mutational information in some of the 
LUAD samples, we collected simple nucleotide variation data 
from 498 patients. The R package, maftools, was used to plot 
oncoplots for the different NCAPD2 expression groups (cutoff 
value was 50%). Subsequently, the TMB and immune check-
point expression of the LUAD samples were compared between 
the 2 groups.

2.7. Identification of hub genes using WGCNA

We performed weighted gene coexpression network analysis 
(WGCNA)[20] using the R package, WGCNA, to construct a 
weighted co-expression network and screen modules associ-
ated with clinical phenotypes. The 1365 DEGs were divided 
into different modules by WGCNA, and the correlation 
between the modules and clinical phenotypes was demon-
strated using a heatmap. The modules most associated with 
the clinical phenotype were identified as key modules. Then, 
19 genes were identified from among the key modules as hub 
genes based on gene significance (GS) and module member-
ship (MM).

Figure 3. Potential mechanisms of NCAPD2 in LUAD. (A) A volcano map showing the significant DEGs identified through the analysis of differences in NCAPD2 
expression in the LUAD cohort. (B) The results of the GO analysis with significant DEGs are shown in the dot plot. (C) The results of the KEGG analysis of signif-
icant DEGs are shown in the dot plot. In the dot plot, the size of the dot shows the degree of gene enrichment, and the color of the dot indicates significance. 
(D) Presentation of the results of the GSEA enrichment analysis of the DEGs. DEG = differential expression genes, GO = gene ontology, GSEA = gene set enrich-
ment analysis, KEGG = Kyoto encyclopedia of genes and genomes, LUAD = lung adenocarcinoma, NCAPD2 = non-SMC condensin I complex subunit D2.
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2.8. Protein-protein interaction (PPI) network and survival 
analysis of the hub genes

The interactions between the hub genes that encoded proteins 
were analyzed using the STRING database[21] (https://string-db.
org/). The R package, survival, was used to conduct the COX 
regression analysis of the hub genes, and were visualized using 
the R package, forestplot. The survival analysis and drawing 
of the survival curve of the hub genes were performed, and 
the same were analyzed and visualized using the R packages, 

survival and survminer, for comparisons between high expres-
sion and low expression (cutoff value was 50%).

2.9. Construction of a prognostic model

The hub genes were used to perform the LASSO analysis using 
the R package, glmnet, and the genes most closely associated 
with prognosis were identified. Based on the expression and 
regression coefficient of the related genes, the risk score was 

Figure 4. Immune correlation analysis of NCAPD2. (A) Bar plot showing the percentage of the 21 immune infiltrating cells in the LUAD samples. (B) Differences 
in the proportion of immune cells between the 2 groups with different NCAPD2 expression levels. (C) Comparison of immune cell expression between the 2 
groups with different NCAPD2 expression levels. (D) Difference analysis of the ESTIMATE score, immune score, stromal score, and tumor purity between the 
high and low NCAPD2 expression groups in the LUAD samples. LUAD = lung adenocarcinoma, NCAPD2 = non-SMC condensin I complex subunit D2.

https://string-db.org/
https://string-db.org/
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calculated using the formula. The tumor samples were classi-
fied into either the high-risk and low-risk groups, based on the 
median risk score, and subsequent analyses were performed. The 
time-dependent ROC curve was drawn based on the risk score.

2.10. Exploration of the competing endogenous RNAs 
(ceRNAs) network of NCAPD2

The competing endogenous RNA (ceRNA) network creates a 
link between mRNAs and non-coding RNAs to regulate the 
progression of cancers.[22] To explore the ceRNA network of 
NCAPD2, we used specific databases for analysis. We identified 
miRNAs associated with NCAPD2 from the ENCORI database 
(https://starbase.sysu.edu.cn/), in which we selected the “miR-
NA-mRNA” option and did not modify any option after entering 
the same. The correlation between the identified miRNAs and 
NCAPD2 were analyzed. Based on ceRNA theory, the expression 
of the predicted miRNAs is inversely correlated with NCAPD2 
expression. Therefore, we set the condition as Spearman coeffi-
cient r < -.3 and P < .05. miRNAs that met the above criteria 
were analyzed to identify differences, and the miRNAs with a 
significant difference were analyzed for survival. The miRNAs 
with differential expression between the tumor and normal 
tissues and that contributed to the prognosis were considered 
as core miRNAs of NCAPD2. In the ENCORI Database, we 
selected the “miRNA-lncRNA” option and selected the input as 
core miRNAs. The “target” parameter was changed to all, and 
other conditions remain as default. Based on ceRNA theory, the 
expression of the predicted lncRNAs was inversely correlated 
with the expression of the core miRNAs. Therefore, we set the 
condition as a Spearman coefficient of r < -.3 and P value of < 
.05. The lncRNAs with differential expression between tumor 
and normal tissues and those that contributed to the prognosis 

were considered as core lncRNAs. In the survival analysis, the 
optimal cutoff value was used to divide the tumor samples into 
2 groups, high expression and low expression.

2.11. Collection and expression validation of cancer and 
adjacent tissues obtained from LUAD patients

After informed consent was obtained from the patients and 
approval was obtained from the Ethics Committee of the 
First Affiliated Hospital of Guangxi Medical University, we 
collected tumor and lung tissues from 15 LUAD patients (see 
Figure S1, Supplemental Digital Content, http://links.lww.
com/MD/I337, in which approval of the ethical review pro-
vided by the agency is presented). Total RNA obtained from 
these tissues was extracted and reversed transcribed into com-
plementary DNA. qPCR was used to quantitatively analyze 
NCAPD2 expression using Fast Start Universal SYBR Green 
Master (Roche, Germany) system. The forward and reverse 
primer sequences of the NCAPD2 were as follows: NCAPD2-F, 
5ʹ-ATGGCTTTGACTGGGAAGAAGAG-3ʹ; NCAPD2-R, 
5ʹ-GGCGGTTCTTCTGGTGATTAATG-3ʹ.

2.12. Statistical analysis

The statistical analysis was performed using R software, version 
4.2.0 (https://cran.r-project.org/). Two-group differential expres-
sion analyses were performed using a t-test. The log-rank test 
was used to perform the KM survival analysis, while COX anal-
ysis was used to determine the independence factor of NCAPD2. 
LASSO analysis was used to construct the prognostic models. 
The Spearman method was used to determine the correlation 
analysis. A P value of < .05 was used as the significant difference 
threshold (P > .05, ns; P < .05, *; P < .01, **; P < .001, ***).

Figure 5. Comparison of gene mutations and exploration of immune checkpoints. (A) Mutation landscape of the high NCAPD2 expression group in LUAD. 
(B) Mutation landscape of the low NCAPD2 expression group in LUAD. (C) Differential analysis of TMB between the high and low NCAPD2 expression groups 
in LUAD. (D) Difference analysis of immune checkpoint expression between the high and low NCAPD2 expression groups. LUAD = lung adenocarcinoma, 
NCAPD2 = non-SMC condensin I complex subunit D2, TMB = tumor mutational burden.

https://starbase.sysu.edu.cn/
http://links.lww.com/MD/I337
http://links.lww.com/MD/I337
https://cran.r-project.org/


7

Li et al. • Medicine (2023) 102:3 www.md-journal.com

3. Results

3.1. Diagnostic value of NCAPD2 in LUAD

Analysis of TCGA dataset showed that NCAPD2 expression 
was higher in LUAD than in normal lung tissues (Fig. 1A). 
Analysis of the validation dataset (GSE10072) showed that 
NCAPD2 was overexpressed in LUAD (Fig.  1B). We used 
ROC curve analysis to distinguish LUAD from normal lung 
tissue, and found that the area under the ROC curve from 
TCGA dataset (Fig.  1C) and GSE10072 dataset (Fig.  1D) 
were.8683 and.7224, respectively, suggesting that NCAPD2 
is a potential diagnostic biomarker. Results of immunohis-
tochemistry assay demonstrated that NCAPD2 was upreg-
ulated in LUAD tissues, compared with normal lung tissues 
(Fig. 1E, F).

3.2. Survival and clinical value of NCAPD2

The COX univariate analysis (Fig. 2A) and multivariate analysis 
(Fig. 2B) indicated that NCAPD2 could be used as an indepen-
dent prognostic factor to predict poor prognosis. KM survival 
analysis results of TCGA (Fig.  2C) and GSE50081 (Fig.  2D) 
datasets indicated that high NCAPD2 expression can predict 
a poor prognosis of LUAD. Tumor cases with high clinical T 
stage (Fig.  2E) or N stage (Fig.  2F) showed a poor progno-
sis. NCAPD2 expression was upregulated in patients with an 
advanced pathological stage (Fig.  2G). NCAPD2 expression 
tended to be higher in groups with a high clinical T stage in 
LUAD (Fig. 2H). NCAPD2 was overexpressed in LUAD patients 
with lymph node metastasis (N+) (Fig. 2I). NCAPD2 expression 
showed no significant difference in M stage patients (Fig. 2J).

Figure 6. Identification of hub genes in LUAD. (A) the scale-free fitting index was calculated through diverse soft thresholds (power). (B) Based on diverse soft 
thresholds (power), the mean connectivity was analyzed. (C) Gene dendrogram showing the clustering of the LUAD samples. (D) The composite graph showed 
the clustering of the LUAD samples and the correlation of clinical parameters. (E) Heatmap between the gene modules and clinical parameters. (F) Scatter plot 
of the turquoise module eigengenes. LUAD = lung adenocarcinoma.
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3.3. Functional enrichment analysis of NCAPD2

A total of 1365 DEGs were obtained by analyzing the mRNA 
expression profiles of the 2 groups with different NCAPD2 expres-
sion in the LUAD cohort (Fig. 3A) and were subjected to functional 
enrichment analysis. All biological processes (BP) in the GO analy-
sis were associated with the cell cycle, including “organelle fission,” 
“nuclear division,” “chromosome segregation,” “nuclear chromo-
some segregation,” and “mitotic nuclear division” (Fig. 3B). In the 
KEGG enrichment analysis, the DEGs were enriched in these terms: 
“Neuroactive ligand − receptor interaction,” “Cell cycle,” “Bile secre-
tion,” “Metabolism of xenobiotics by cytochrome P450,” “Retinol 
metabolism,” “Drug metabolism − cytochrome P450,” “Chemical 
carcinogenesis − DNA adducts,” “Steroid hormone biosynthesis,” 
“Pentose and glucuronate interconversions,” and “Ascorbate and 
aldarate metabolism,” which are mainly associated with metabo-
lism, cell cycle, and carcinogenesis (Fig. 3C). In the GSEA enrich-
ment analysis (Fig. 3D), the DEGs were found to be enriched in 
these terms: “GO_CARBOXYLIC_ESTER_HYDROLASE_
ACTIVITY,” “GO_CHROMOSOMAL_REGION,” 
“GO_CLATHRIN_COATED_ENDOCYTIC_VESICLE,” “GO_
DNA_BINDING_TRANSCRIPTION_FACTOR_ACTIVITY,” 
“GO_LATE_ENDOSOME,” “GO_LIPASE_ACTIVITY,” 
“GO_MOTILE_CILIUM,” “GO_REGULATION_OF_
IMMUNE_RESPONSE,” “GO_REGULATION_OF_IMMUNE_
SYSTEM_PROCESS,” and “GO_VACUOLE.”

3.4. Further analysis of the relationship between NCAPD2 
and immune infiltration in LUAD

The percentage of immune infiltrating cells in the LUAD 
patients was calculated and presented using CIBERSORT 

(Fig.  4A). Furthermore, the CIBERSORT results indicated a 
positive correlation between NCAPD2 expression and the 5 
subtypes of Tumor-infiltrating immune cells (TIICs), including 
T cells CD4 memory activated, NK cells resting, Macrophages 
M0, Macrophages M1, and Mast cells activated. NCAPD2 
expression showed an inverse correlation with 5 subtypes of 
TIICs, including B cells memory, T cells CD4 memory rest-
ing, Monocytes, Dendritic cells resting, and Mast cells resting 
(Fig.  4B). The results of the single-sample gene set enrich-
ment analysis ssGSEA showed a positive correlation between 
NCAPD2 expression and the expression of the 5 subtypes of 
TIICs, including Activated CD4 T cells, Effector memory CD4 
T cells, Gamma delta T cells, Memory B cells, and Type 2 T 
helper cells. NCAPD2 expression showed an inverse correla-
tion with the expression of eleven subtypes of TIICs, includ-
ing Activated B cells, Activated dendritic cells, Central memory 
CD4 T cells, Eosinophils, Immature B cells, Immature dendritic 
cells, Mast cells, Monocytes, Plasmacytoid dendritic cells, T fol-
licular helper cells, and Type 17 T helper cells (Fig. 4C). The 
high NCAPD2 expression group had a lower ESTIMATE score, 
immune score, and Stromal score, but higher tumor purity 
(Fig. 4D).

3.5. Differences in the TMB and immune checkpoints 
between the different NCAPD2 expression groups

Immune checkpoint expression and gene mutations can 
affect the efficacy of immunotherapy for tumors. The gene 
mutation map of the 2 groups with different NCAPD2 
expression levels is shown with the top 20 mutated 
genes indicated in Fig.  5A, B. In LUAD, NCAPD2 high 

Figure 7. The interaction network of the hub genes and further studies. (A) Construction of the PPI network of the hub genes. (B) The bar chart shows the 
node degrees of the PPI network. (C) The forest plot of the COX analysis of hub gene expression. (D) Kaplan–Meier survival analysis of the hub genes. PPI = 
protein–protein interaction.
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expression group showed a higher TMB than the NCAPD2 
low expression group (Fig. 5C). In the analysis of the high 
and low NCAPD2 expression groups, the expression lev-
els of 5 immune checkpoints, including PDCD1, CD274, 
PDCD1LG2, LAG3, and TIGIT, were higher in the NCAPD2 
high expression group (Fig. 5D).

3.6. Identification of hub genes using WGCNA

To identify hub genes, the 1365 DEGs were subjected to 
WGCNA analysis. After adjusting for a series of parameters, 
the average link hierarchical clustering method was adopted 
to cluster the DEGs into 5 modules (Fig. 6A–D). The heat-
map indicated that the turquoise module had the maximal 
Pearson’s correlation coefficient with NCAPD2 expression, 
and this module contained 947 genes (Fig. 6E). The 19 genes 
in the turquoise module were identified as hub genes as 
module membership and gene significance were both > 0.75 
(Fig. 6F).

3.7. PPI network and survival analysis of the hub genes

The PPI network of the hub genes was constructed using the 
STRING database, and the node degrees were between 11 and 
18 (Figs. 7A, B). The COX analysis indicated that all hub genes 
were risk factors (HR > 1) (Fig. 7C) that contributed to a poor 
prognosis, according to the KM survival analysis (Fig.  7D). 
One of the hub genes, COX analysis, and survival analysis of 
NCAPD2 are presented in Figure 2.

3.8. Construction of prognostic model

Complete information was available on a total of 497 LUAD 
samples and were analyzed. The LASSO analysis was per-
formed using the expression matrix of the 19 hub genes identi-
fied in the LUAD patients, and the 10 most relevant genes were 
identified based on the optimum λ value (Fig. 8A, B). The risk 
score was transformed using the expression and coefficients 
of the 10 genes: risk score = (.176931458851421 * FOXM1) 
+ (.0491298316698072 * TPX2) + (-.0820432513523308 

Figure 8. Construction of the prognostic model. (A-B) LASSO analysis of the hub genes. (C) Scatterplot of the risk scores ranked from lowest to highest. (D) 
Scatterplot of the samples based on survival time, survival status, and risk scores. (E) Difference analysis of the risk scores among samples with different sur-
vival statuses. 0: alive, 1: dead. (F) KM survival analysis between the high and low risk groups. (G) ROC curves for 2, 3, and 4 years in the prognostic model.
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* ESPL1) + (.342132744093238 * ARHGAP11A) + 
(-.132199951912977 * INCENP) + (.0130539838947839 

* PRC1) + (.0804159890158544 * KIF14) + 
(-.373151954809323 * KIF18B) + (.536526888492945 * 
PLK1) + (-.377874611444398 * RAD51AP1). The tumor 
patients were labeled as high or low risk based on a median 
risk score and assigned to 2 different groups (Fig. 8C). The sur-
vival status of each patient (on the left side of the dotted line: 
low-risk population; on the right side of the dotted line: high-
risk population) (Fig. 8D). Then, we compared risk scores of 
the risk model, and the results showed that the risk scores of 
the death group were significantly higher (Fig. 8E), and that the  
prognosis of the high-risk group was poor (Fig. 8F). The area 
under ROC curves of this model at 2, 3 and 4 years were 
0.6579, 0.6901, and 0.7042 (Fig. 8G).

3.9. Exploration of the ceRNA network

The 5 predicted miRNAs showed an inverse correlation with 
NCAPD2 expression (Fig.  9A–E). Among the 5 predicted 
miRNAs, hsa-miR-195-5p was overexpressed in lung tis-
sues (Fig. 9F), while its overexpression in tumor samples pre-
dicted a good prognosis (Fig. 9G). Therefore, hsa-miR-195-5p 
was selected from among the 5 miRNAs as the core miRNA. 
ARHGAP11B was the lncRNA predicted by hsa-miR-195-5p, 
and showed a negative correlation (Fig. 9H). The expression of 
ARHGAP11B and NCAPD2 were positively correlated (Fig. 9I). 
ARHGAP11B expression was higher in tumor tissues (Fig. 9J), 
and its overexpression in the tumor samples predicted a poor 
prognosis (Fig. 9K). Therefore, ARHGAP11B was identified as 
the core lncRNA.

Figure 9. Construction of the ceRNA network for NCAPD2. (A-E) Correlation analysis between the 5 predicted miRNAs and NCAPD2. (F) Difference analysis 
of hsa-miR-195-5p expression in the LUAD and lung tissues. (G) Survival analysis of hsa-miR-195-5p in the LUAD samples. (H) Correlation analysis between 
hsa-miR-195-5p and the lncRNA predicted by hsa-miR-195-5p. (I) Correlation analysis between NCAPD2 and the lncRNA predicted by hsa-miR-195-5p. (J) 
Differential analysis of ARHGAP11B expression in LUAD and lung tissues. (K) Survival analysis of ARHGAP11B in the LUAD samples. ceRNA = competing 
endogenous RNA, LUAD = lung adenocarcinoma, NCAPD2 = non-SMC condensin I complex subunit D2.

Figure 10. Validation of NCAPD2 expression using RT-qPCR in fresh tumor 
and lung tissues obtained from LUAD patients. LUAD = lung adenocarci-
noma, NCAPD2 = non-SMC condensin I complex subunit D2.
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3.10. Validation of NCAPD2 expression in LUAD and 
adjacent lung tissues

We determined NCAPD2 expression levels in fresh tumors and 
adjacent tissues of 15 LUAD patients using RT-qPCR to confirm 
the overexpression of NCAPD2 in LUAD tissues (Fig. 10).

4. Discussion and Conclusions
Conclusively, we found that NCAPD2 was overexpressed in 
LUAD samples, and that NCAPD2 expression could be used 
to distinguish LUAD from normal lung tissue. The GEO and 
HPA databases were used to confirm the difference in NCAPD2 
expression between tumor and normal tissues. The analysis 
of results obtained from the above 3 databases proved that 
NCAPD2 may be a potential diagnostic marker for LUAD.

KM survival analysis showed that NCAPD2 overexpression 
predicted a poor prognosis of LUAD patients. COX multivari-
ate regression analysis indicated that NCAPD2 may be an inde-
pendent prognostic factor for LUAD. In addition, NCAPD2 
expression was closely associated with T, N, and pathological 
stage. The overexpression of NCAPD2 in the LUAD samples 
suggested tumor progression and invasion, which further indi-
cated that NCAPD2 expression was inversely correlated with 
prognosis.

We investigated the molecular function of NCAPD2 in 
LUAD through GO, KEGG, and GSEA analyses. It has been 
documented that the occurrence and progression of tumors are 
associated with an abnormal cell cycle.[23] The GO and KEGG 
analyses suggested that NCAPD2 expression was associated 
with the cell cycle, which may suggest that NCAPD2 promotes 
tumor progression in LUAD by mediating the cell cycle. In the 
KEGG enrichment analysis, NCAPD2 was found to be associ-
ated with P450 and Chemical carcinogenesis, while P450 con-
tributes to the activation of carcinogens and carcinogenesis.[24] 
The GSEA enrichment analysis suggested that NCAPD2 was 
associated with immune regulation. The results of the above 
mentioned functional analysis suggested that NCAPD2 exerts 
an indispensable role for the occurrence and development of 
LUAD.

The TME is associated with tumor occurrence and progres-
sion. Based on the previous functional analysis, we further 
analyzed interactions between NCAPD2 and tumor immune 
infiltration in LUAD. Approximately 40% of B cells in adults 
are memory B cells, and the production of memory B cells is one 
of the key features of adaptive immunity.[25] One study showed 
that B cells, a type of antigen-presenting cell, can induce anti-tu-
mor immunity and produce antibodies.[26] CD4 T cells are closely 
associated with the antitumor response, which can exert indirect 
antitumor effects by enhancing the antitumor activity of other 
antitumor effector cells and direct antitumor effects by produc-
ing effector cytokines, such as tumor necrosis factor-α (TNFα) 
and interferon-γ (IFNγ).[27] Monocytes play various roles during 
each stage of cancer, including antitumor and tumor-promoting 
effects.[28] Dendritic cells (DC) can infiltrate tumors and have 
antigen presentation functions, and participate in anti-tumor 
T-cell immunity.[29] Mast cells have anti-tumor or tumor-pro-
moting effects, which mainly depend on the environment, and 
play an anti-tumor role in lung cancer.[30] T follicular helper cells 
increase the antitumor effect by promoting cytokine production 
and cytotoxic function in exhausted T cells and exert antitu-
mor immunity in a CD8(+) -dependent manner.[31] Th17 cells 
are indirectly involved in antitumor effects by promoting T cell 
recruitment to tumors and CD8 + T cell priming.[32] In this study, 
CIBERSORT and ssGSEA analyses showed that NCAPD2 over-
expression in LUAD cases was associated with low infiltration 
levels of the immune cells mentioned above. In the ESTIMATE 
analysis, LUAD samples with high NCAPD2 expression showed 
higher tumor purity and a lower infiltration level of immune 
cells and stromal cells, compared with those with low NCAPD2 

expression. Based on the above study on the immune environ-
ment of the LUAD samples, the high NCAPD2 expression group 
had lower immune cell infiltration and poorer immune ability.

The use of immune checkpoint inhibitors (ICIs) has become 
the main method of immunotherapy for cancer, and can improve 
the survival rate of lung cancer patients and provides an effective 
method of treatment for advanced lung cancer.[33] In the gene 
mutation analysis, LUAD patients with high NCAPD2 expres-
sion had a higher TMB than LUAD patients with low NCAPD2 
expression. TMB may modulate the response of cancer patients 
to ICIs by affecting the production of immunogenic peptides, 
and a significant association between high TMB and ICI treat-
ment has been found in a variety of tumors.[34] In the LUAD 
samples, 5 immune checkpoints, including PDCD1, CD274, 
PDCD1LG2, LAG3, and TIGIT, showed high expression in the 
high NCAPD2 expression group. The combination of PDCD1 
(PD-1) and CD274 (PD-L1) may lead to the destruction of the 
immune environment, resulting in a reduction of T cell excitabil-
ity and even T cell depletion, as well as a reduction of TNF, IFN-
γ, and other cytokines, so as to achieve tumor immune escape.[35] 
PDCD1LG2 (PD-L2) is the second ligand of PD-1, and binding 
to PD-1 can also inhibit T cell activation and cause tumor cells 
to evade immune response.[36] LAG3 can reduce the prolifer-
ation of T cells and the secretion of certain cytokines, which 
leads to the depletion of CD8 + T cells and anti-tumor immune 
failure.[37] TIGIT can impair the body’s anti-tumor immune 
response by causing the dysfunction of T cells and natural killer 
cells.[38] Compared with monotherapy, anti-PD-1/anti-LAG3 
or anti-PD-1/anti-TIGIT combined immunotherapy may exert 
a better inhibition effect of tumor growth.[38,39] Therefore, the 
LUAD group with high NCAPD2 expression may be more suit-
able for immunotherapy to reestablish immune function and 
benefit from immunotherapy.

The 19 hub genes identified using WGCNA are PRR11, 
INCENP, ARHGAP11A, RAD51AP1, CDCA3, ESPL1, 
FOXM1, KIF18B, NCAPD2, PRC1, CENPF, KIF11, KIF14, 
KIF23, KIF4A, MKI67, NCAPH, PLK1, and TPX2. The asso-
ciated PPI network was constructed, and the results indicated 
that the 19 hub genes closely interacted with each other. The 
COX regression analysis and survival analysis showed that 19 
hub genes were factors that indicated a poor prognosis and pro-
moted tumor progression in LUAD. Based on previous studies, 
in addition to NCAPD2, 18 hub genes have also been reported 
to be overexpressed in lung cancer and contribute to a poor 
prognosis.[40–58] Subsequently, we constructed a prognostic 
model, which exerted a good predictive effect. The above stud-
ies further demonstrated that hub genes, including NCAPD2, 
jointly promote the occurrence and progression of LUAD.

In the ceRNA network, miRNAs can inhibit the production 
of proteins during the translation process by binding to mRNAs, 
and lncRNAs acts as a sponge for miRNAs to reduce the inhib-
itory effect of miRNAs on mRNAs, so as to regulate the pro-
gression of tumors.[59,60] The upstream miRNAs of NCAPD2 
were predicted, and 5 miRNAs were obtained. hsa-miR-195-5p 
was identified as the core miRNA of NCAPD2 in LUAD due 
to its statistical significance in both the differential analysis 
and survival analysis. Relevant studies have reported that hsa-
miR-195-5p can be used as a diagnostic marker for lung can-
cer.[61] hsa-miR-195 can inhibit lung cancer and contributes to 
a favorable prognosis.[62] The upstream lncRNA predicted by 
hsa-miR-195-5p was ARHGAP11B, which was identified as the 
core lncRNA.

In conclusion, NCAPD2 may be an emerging marker for 
LUAD that can be used for diagnosis and to predict prognosis 
and is associated with clinical stage. We found that NCAPD2 
may promote the progression of LUAD by affecting the cell 
cycle and immune-related pathways. Although we conducted 
a comprehensive analysis of NCAPD2 and cross-validation 
of multiple datasets, cellular experiments were not conducted 
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to verify the results of this study. Therefore, the therapeutic 
value and function of NCAPD2 in LUAD should be further 
investigated.
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