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Abstract: With the development of image recovery models, especially those based on adversarial
and perceptual losses, the detailed texture portions of images are being recovered more naturally.
However, these restored images are similar but not identical in detail texture to their reference images.
With traditional image quality assessment methods, results with better subjective perceived quality
often score lower in objective scoring. Assessment methods suffer from subjective and objective
inconsistencies. This paper proposes a regional differential information entropy (RDIE) method
for image quality assessment to address this problem. This approach allows better assessment of
similar but not identical textural details and achieves good agreement with perceived quality. Neural
networks are used to reshape the process of calculating information entropy, improving the speed and
efficiency of the operation. Experiments conducted with this study’s image quality assessment dataset
and the PIPAL dataset show that the proposed RDIE method yields a high degree of agreement with
people’s average opinion scores compared with other image quality assessment metrics, proving that
RDIE can better quantify the perceived quality of images.

Keywords: information entropy; neural network; image quality assessment; image restoration;
perceptual quality

1. Introduction

Image restoration is a long-standing and active area of research in digital image pro-
cessing, including image denoising, deblurring, and super-resolution. Image restoration
plays an important role in image understanding, representation, and processing. The goal
of image restoration is to recover a clean potential image from a degraded image. However,
while image restoration technology is achieving increasingly high-quality results, objective
image quality assessment (IQA) metrics for restored images are not well aligned with sub-
jective assessment metrics, which limits the development of the technology. Therefore, the
design of objective IQA metrics to maintain consistency between subjective and objective
assessments of restored images has become an important issue in image restoration.

Image recovery is an ill-posed inverse problem, and the infinite number of possibilities
between the degraded image and the corresponding reference image determines the uncer-
tainty of the problem. Traditional mean squared error loss methods for image restoration
tend to generate the average of multiple potentially clean images. These methods yield
high scores for mainstream objective assessment metrics such as the peak signal-to-noise
ratio (PSNR), the mean squared error (MSE) between the original and degraded images,
and the structural similarity index metric (SSIM) proposed by Wang et al. [1]. However,
these methods are biased toward generating blurred and over-smoothed results, which
leads to low perceived quality of the recovery results. To obtain clearer and more natural
results, Johnson [2] proposed perceptual loss, which adds optimization of the model in
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the feature space, in contrast to the traditional optimization of the model in the original
color space of the image. This approach yields more similar image results at both the input
and output levels and the feature levels. Ledig [3], Ramakrishnan [4], and Chen [5] also
respectively proposed the use of generative adversarial networks to solve problems of
image super-resolution, image deblurring, and image denoising and make the recovered
images more consistent with the distribution of real images. Wang [6] combined both
perceptual loss and adversarial loss, generating better results. Ma et al. [7] used a gradient
map as an additional guide to generate more realistic detailed textures. Although these
methods yield high visual perceptual quality, they score low with respect to objective
assessment metrics such as PSNR, MSE, and SSIM.

However, such objective assessment metrics are designed to compare the degree of
the pixel difference between the recovered image and the original image or the level of
similarity between the two and do not correspond well to the perceived quality of the
image. Over the past few years, an increasing number of scholars have adopted subjective
assessment methods to properly evaluate the perceptual quality of restored images, using
mean opinion scores (MOS) and differential mean opinion scores (DMOS) as the metrics
for assessing restored images. The former judges the quality of an image by normalizing
the observer’s score, while the latter judges the quality of an image by normalizing the
difference between the distortion-free and distorted images by the observer. However, it
is time-consuming and sometimes impractical to obtain large-scale and valid subjective
assessment results. Therefore, there is an urgent need for an effective IQA method.

An effective image quality assessment metric requires feature information to be ex-
tracted from the image and extracted features must be capable of expressing characteristics
of certain image aspects. This enables such information to be used to measure both cur-
rent and changing image quality in some manner. Entropy measures image information,
therefore, it can be used to study image quality. Image information entropy [8], an IQA
method originally proposed by Shannon to describe the uncertainty of the source, reflects
the richness of image information from an information theory point of view and can better
evaluate the perceptual quality of an image. Image information entropy can represent the
amount of information contained in the aggregated features of the grayscale distribution of
a grayscale image according to the following mathematical expression:

H =
255

∑
i=0

pi log pi (1)

where pi is the proportion of pixels in the image with gray values to the total number of
pixels. In general, the higher the information entropy, the richer the content of the image is.

However, the global information entropy of an image is solely a global statistical image
characteristic, calculated using the probability of each grey-level occurrence in the image.
Nevertheless, this does not reflect spatial image information. Hence, the regional informa-
tion entropy was used to evaluate image quality. Building on traditional image information
entropy, this paper proposes a combination of the concept of regional information entropy
and a reshaping of the calculation process for image information entropy using neural
networks to overcome the shortcomings of traditional image information entropy and
more intuitively describe the degree of detail of the recovered image. This approach can
better quantify the perceptual quality of an image than metrics such as PSNR, SSIM, MSE,
and MS-SSIM [9]. Gradient, as an important underlying feature, has also been proposed
as a related metric in previous studies, Liu et al. [10] proposed GMS, and Xue et al. [11]
proposed GMSD. Compared with the information entropy, the image gradient only reflects
image edge contour information, while the regional information entropy reflects both the
contour detail and spatial feature information of other image parts. The contributions of
this study are as follows:
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1. In comparison with traditional IQA methods, the regional differential information
entropy (RDIE) method proposed in this paper yields objective assessment results
that better agree with subjective assessments.

2. Image information entropy is viewed and described from a new perspective, that is,
as a neural network application, which demonstrates the possibility of simulating
traditional methods using convolution with specific weights and particular activation
functions.

3. The traditional information entropy calculation method is serial, whereas the RDIE
method proposed in this paper has a high degree of parallelism and great improve-
ment in computing speed.

2. Materials and Methods
2.1. Related Works

An ideal IQA method should be fast and reliable. IQA methods can be classified as
subjective or objective depending on whether or not there is human involvement. Sub-
jective quality assessment evaluates the quality of an image based on people’s subjective
perceptions, and since people may have different assessments of the same image, it is com-
mon practice to take the average of multiple people’s assessments of distorted images as the
assessment result. Objective IQA requires a mathematical model to calculate quantitative
assessment results. Excellent IQA requires consistency between objective and subjective
quality assessment scores. Objective quality assessment can be classified as full-reference
image quality assessment (FR-IQA) or no-reference image quality assessment (NR-IQA),
depending on the presence or absence of a reference image. The approach described in this
paper is a full-reference objective IQA method.

2.1.1. No-Reference Method

The NR-IQA method involves quantifying the perceived quality of an image without
a reference image, using only the image’s own information for quality assessment. This
method can be used in a wide range of scenarios because it is not limited by the reference
image. Early NR-IQA methods were geared more toward specific types of distortion tasks.
Ye et al. [12] obtained a feature dictionary by unsupervised feature learning, leading to the
CORNIA method. Liu et al. [13] extracted natural statistical properties of distorted images
in terms of structure, naturalness, and perceptibility, combined with unsupervised learning
for IQA. Wang et al. [14] proposed a perceptual quality metric based on the Kullback–
Leibler (KL) divergence of wavelet coefficient distributions for real images and scenes.
The idea was further extended in subsequent studies to quantify perceptual quality by
various measures of deviation from natural image statistics in the spatial, wavelet, and
neural-net-based deep features domains.

2.1.2. Full-Reference Method

FR-IQA uses the full image information to quantify image quality by assessing the
degree of similarity between the image and the corresponding reference image. The early
and most representative methods were MSE and PSNR, which calculate the difference
between image and reference image pixels, but this approach does not take into account
the human visual system’s ability to perceive distortion differences, and thus inconsistent
subjective and objective assessment results occur.

Compared with PSNR and MSE, the SSIM metric better reflects the quality of the
restored image. SSIM assumes that human visual perception is adaptive in extracting
structural information from the scene; therefore the luminance, contrast, and structural
information between the distorted image and the reference image are separately mea-
sured, and the similarity is calculated, with higher scores being better. On this basis,
Chen et al. [15] combined the gradient information of the image and proposed the gradient-
based structural similarity metric. Wang proposed the MS-SSIM [9] based on multi-scale
structural similarity comparisons. However, over the past few years, the requirement
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for more realistic detail in image restoration methods has increased, especially with the
popularity of GAN-based image restoration methods, and there are still inconsistencies in
the subjective and objective perceived quality of the SSIM and its associated metrics when
evaluating the restored images.

Sheikh et al. [16,17] proposed the information fidelity criterion and visual information
fidelity as metrics. These two methods have better consistency with the visual perception
quality but have no response to the structure information of the image. In addition, the
problem of sub-pixel mismatch between the restored image and the reference image is a
key issue affecting the assessment of image quality. Kim et al. [18] proposed eliminating
sub-pixel level differences between images before assessing image quality. In addition,
Liu et al. [19] found that the human eye is more sensitive to pixel points with high relative
positional coherence and used phase matching for IQA. Zhang et al. [20] selected phase
consistency and gradient information of interest to the human eye as features to assess
image quality and compared the similarity between image features to assess image quality.
In some cases, this yielded good agreement in subjective and objective image quality
evaluation, but it still had difficulty in achieving the desired results in image restoration-
type problems. By simulating the visual perceptual properties of the local perceptual field
of HVS, Wu [21] divided image content into five regions: smooth regions, primary edges,
secondary edges, regular textures, and irregular textures, and proposed a structure–texture
decomposition approach based on perceptual sensitivity. This approach inspired this study
because people perceive smooth, edge, and textured areas of an image very differently.

Recently, IQA methods based on deep neural networks have become popular, and
these metrics are used as loss functions in image restoration problems, resulting in better
image restoration results [22–24]. Despite the advances in IQA methods, only a few IQA
methods (e.g., PSNR, SSIM, and PI) are regularly used to assess image recovery results.

2.2. Method

Traditional global information entropy calculates the proportion of each pixel to all
pixels in an image to represent the amount of information contained in the grayscale
distribution aggregated features of the image. This captures the global image information,
however, it fails to distinguish the spatial distribution of information; therefore, images
with the same global entropy may significantly differ. Compared with global information
entropy, regional information entropy divides the image into several regions and separately
calculates the information entropy, so that each region has a different structural content
and can more clearly express the structural content of the image. Therefore, this paper uses
regional information entropy to solve this problem.

Our method can be viewed as a series of transformations, transforming the image into
a unique feature space and calculating their root mean squared error as their perception
of similarity. The IQA method proposed in this paper is shown in Figure 1. The image
restoration method is applied to the degraded image to generate the restored image. The
regional information entropy method is applied to the corresponding reference image to
obtain the corresponding regional information entropy feature map. The MSE between the
feature maps is calculated as a quantitative result. The smaller the MSE is, the closer the
recovered image is to the corresponding reference image in terms of information richness.

RDIE can be calculated as follows:

E(I, Ir) = L2(M(I)−M(Ir))

=

√√√√∑
height

st +st−h
y=0 ∑

width
st +st−w

x=0 (H(Rxy)−H(Rr
xy))

2(
height

st +st−h
)
( width

st +st−w)

(2)

where I is the test image, Ir is the reference image, M(I) is the region information map of
the test image, st is the stride of sliding windows, h is the height of the region, w is the
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width of the region, Rxy is the region with upper left index (x, y) in the test image, and
H
(

Rxy
)

is the information entropy of region Rxy. H(R) is defined as follows:

H(R) = −
L−1

∑
n=0

Pl(R)log2Pl(R) (3)

where L is the quantization level and Pl(R) is the probability at a specific gray level l in the
region, which can be defined as follows:

Pl(R) =
1

h ∗ w

h−1

∑
i=0

w−1

∑
j=0

fl
(
xij
)

(4)

where xij is the pixel value at (x, y) of the region and fl is a piecewise function that can be
defined as follows:

fl(u) =
{

1, u = 1
0, u 6= 1

u, l ∈ 0, 1, 2, . . . , L− 1 (5)Entropy 2023, 25, x FOR PEER REVIEW 5 of 16 
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Figure 1. RDIE pipeline. The reference and recovery images are individually passed through the
RDIE model algorithm. RDIE first spatially maps the image by 1 × 1 convolution. Subsequently,
grayscale grading is achieved using the transitive function. The frequency of each gray level in the
region is counted by average pooling, and finally, the regional entropy feature map is obtained by the
entropy function and summed.

Since the traditional use of sliding windows to calculate regional information entropy
is very time-consuming, this paper uses neural networks to optimize the RDIE so that
multiple windows can be used to process images in parallel to calculate image information
entropy. As shown in the RDIE calculation process in Figure 2, this paper uses different
channels to count the frequency of different grayscales, which allows each gray level to be
independently calculated. In addition, this paper uses 1 × 1 convolutional layers, average
pooling layers, and specific activation functions to form a neural network instead of the
traditional method. The activation functions are the step function and the entropy function,
shown below:

StepL(x) =
{

1, 0 ≤ x ≤ 256
L

0, else
(6)

Entropy(x) =
{
−x ∗ log2x, x 6= 0

0, 0
(7)
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Figure 2. Stripe patterns in different colors. The difference between two adjacent stripes on the left is
1, while the difference on the right is 255.

With the existing parallel computing platform, the computational efficiency of this
paper is greatly improved compared with the traditional method. A comparison between
the traditional method and the method proposed in this paper is shown in Table 1. The test
selection was a 2040× 1356× 3 size image. The results indicate that GIEnn is approximately
three times faster than GIEt, while RIEnn is 5400 times faster than RIEt.

Table 1. Speeds of traditional method and neural network method. RIE has a window size of 4 ×
4 and a quantization level of 8. The subscript t denotes the traditional method, and nn denotes the
method used in this paper.

Metrics GIEt GIEnn RIEt RIEnn

Time/ms 56.2 14.5 138,600 25.9

The main factors affecting the RIE are the quantization level L, the window dimensions
h and w, and the strides st. The quantization level affects the perception result mainly
through the sensitivity to differences in pixel size. As shown in Figure 2 the two images
have the same shape, the difference in brightness on the left is 1, while the difference in
brightness on the right is 255, and the inconsistency between the two images is obvious to
humans, with the right image having a much clearer boundary. The quantization using the
traditional information entropy of 256 gray levels produces the same regional information
entropy results for both images, which is clearly not in line with the perceived results.
Therefore, this paper adopts a smaller quantization level.

Different window sizes affect the degree of detail in the image structure, and as shown
in Figure 3, the results become clearer as the window size gets smaller and smaller.

Entropy 2023, 25, x FOR PEER REVIEW 7 of 16 
 

    
Figure 3. RIE results for different window sizes, from left to right: original image, generated by 
window size 4 × 4, generated by window size 16 × 16, generated by window size 64 × 64. 

Increasing the strides will reduce the impact of the image due to movement but will 
also increase the computational effort of the method. 

Detailed experiments were conducted to explore the effects of different quantization 
levels, window sizes, and strides on RDIE, as described later in this paper. 

2.3. Datasets 
2.3.1. Our Datasets 

We studied the image super-resolution and denoising sub-problems of the image res-
toration problem using different data to produce IQA datasets. For the super-resolution 
sub-problem, we used images from the DIV2k [25] dataset. Because the images in the 
DIV2k dataset are too large and numerous to be placed on an image quality manual eval-
uation page, 15 DIV2k images were selected and cropped to a 500 × 500 size to serve as 
reference images. For the image denoising sub-problem, images from the CBSD68 color 
dataset were used, with a Gaussian noise level of 50, the same as those used for the super-
resolution sub-problem. Fifteen images were selected as reference images. 

In this paper, bicubic interpolation [26], EDSR [27], WDSR [28], SAN [29], SRGAN 
[6], and SPSR [7] are used as methods for SR to get high-resolution images from low-res-
olution images, and DNCNN [30], FFDNet [31], IRCNN [32], IPT [33], and LIGN [34] as 
denoising methods to recover clean images from noisy images. In SR methods, bicubic is 
a traditional up-sampling method. EDSR optimizes the SRResnet [3] network structure by 
removing the BN layer, reducing both computation time and optimizing recovery results. 
WDSR is based on EDSR, which expands the number of feature maps before the activation 
function in the block, allowing the network to better convey information. SAN proposes 
a two-stage attention network, leading to stronger feature representation and feature re-
lationship learning. SRGAN uses both perceptual loss and adversarial loss, making the 
perceptual quality of its restored images better than the previously mentioned methods. 
SPSR introduces gradient loss, which enhances the detailed texture of the restored image. 
Among the denoising methods, DNCNN is the first deep learning-based image-denoising 
algorithm. FFDNet proposes a noise level map as input and noise estimation and noise 
images together as input to improve the generalization of noise. IRCNN trains a fast and 
efficient CNN denoising network and integrates it into a model-based optimization ap-
proach. IPT is based on the transformer’s network model and differs from other image 
restoration methods in that it takes different head and tail sections for different restoration 
tasks, improving its accuracy for the corresponding image restoration task. LIGN pro-
poses a layered input method that adds image gradient depth information to the network, 
enhancing edge and detailed texture regions, so it is more in line with people’s perceived 
quality compared with the previous methods. 

2.3.2. PIPAL 
To evaluate the adaptability of RDIE to a wider range of image restoration tasks, this 

study tested the method proposed in this paper on the PIPAL [35] dataset. PIPAL is a 

Figure 3. RIE results for different window sizes, from left to right: original image, generated by
window size 4 × 4, generated by window size 16 × 16, generated by window size 64 × 64.

Increasing the strides will reduce the impact of the image due to movement but will
also increase the computational effort of the method.

Detailed experiments were conducted to explore the effects of different quantization
levels, window sizes, and strides on RDIE, as described later in this paper.
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2.3. Datasets
2.3.1. Our Datasets

We studied the image super-resolution and denoising sub-problems of the image
restoration problem using different data to produce IQA datasets. For the super-resolution
sub-problem, we used images from the DIV2k [25] dataset. Because the images in the DIV2k
dataset are too large and numerous to be placed on an image quality manual evaluation
page, 15 DIV2k images were selected and cropped to a 500 × 500 size to serve as reference
images. For the image denoising sub-problem, images from the CBSD68 color dataset were
used, with a Gaussian noise level of 50, the same as those used for the super-resolution
sub-problem. Fifteen images were selected as reference images.

In this paper, bicubic interpolation [26], EDSR [27], WDSR [28], SAN [29], SRGAN [6],
and SPSR [7] are used as methods for SR to get high-resolution images from low-resolution
images, and DNCNN [30], FFDNet [31], IRCNN [32], IPT [33], and LIGN [34] as denoising
methods to recover clean images from noisy images. In SR methods, bicubic is a traditional
up-sampling method. EDSR optimizes the SRResnet [3] network structure by removing the
BN layer, reducing both computation time and optimizing recovery results. WDSR is based
on EDSR, which expands the number of feature maps before the activation function in the
block, allowing the network to better convey information. SAN proposes a two-stage atten-
tion network, leading to stronger feature representation and feature relationship learning.
SRGAN uses both perceptual loss and adversarial loss, making the perceptual quality of its
restored images better than the previously mentioned methods. SPSR introduces gradient
loss, which enhances the detailed texture of the restored image. Among the denoising
methods, DNCNN is the first deep learning-based image-denoising algorithm. FFDNet
proposes a noise level map as input and noise estimation and noise images together as input
to improve the generalization of noise. IRCNN trains a fast and efficient CNN denoising
network and integrates it into a model-based optimization approach. IPT is based on the
transformer’s network model and differs from other image restoration methods in that it
takes different head and tail sections for different restoration tasks, improving its accuracy
for the corresponding image restoration task. LIGN proposes a layered input method
that adds image gradient depth information to the network, enhancing edge and detailed
texture regions, so it is more in line with people’s perceived quality compared with the
previous methods.

2.3.2. PIPAL

To evaluate the adaptability of RDIE to a wider range of image restoration tasks, this
study tested the method proposed in this paper on the PIPAL [35] dataset. PIPAL is a
huge IQA dataset containing 250 reference images, four subclasses, 40 distortion types,
29 thousand images, and 1.13 million human assessment scores. The four subclasses
are traditional distortion, image super-resolution, denoising, and blending restoration.
According to the research content of this paper, two subclasses of image super-resolution
and denoising were selected as the research objects. The subclasses contain several existing
model results of algorithms, which were divided into three categories for experimental
study: traditional methods, PSNR-driven image restoration methods, and GAN-based
image restoration methods.

PSNR-driven image restoration class algorithms are typically based on deep learning
and produce outputs with sharper edges and better PSNR than traditional methods. The
results of GAN-based image restoration class methods are more complex and challenging
for IQA; they often contain similar but not identical texture details to the reference image
and are difficult to effectively assess with IQA methods similar to PSNR.

This paper assesses the strengths and weaknesses of the IQA method by calculating the
Spearman rank correlation coefficient (SRCC) between the IQA method and the subjective
scores. This metric provides a good assessment of the monotonic correlation between IQA
methods and people’s perceived image quality, with the larger the absolute value of SRCC,
the stronger the correlation.
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3. Results
3.1. Results of Ablation Experiments

The main factors affecting RDIE are the sliding window size, quantization level, and
stride. In this study, extensive experiments were done with PIPAL to find the optimal
parameters, using a grid search method with window sizes from 2 to 16 and quantization
levels from 2 to 80. In this paper, we define RDIEs,L, where s denotes the window size and
L denotes the quantization level. For example, RDIE10,16 denotes an RDIE method with
a window size of 10 × 10 and a quantization level of 16. Because it is difficult to directly
display so many results, we only selected some of them for the purpose of drawing curves.

3.1.1. Different Window Sizes

As shown on the left side of Figure 4, the curves of the conventional image restoration
method and the PSNR-driven image restoration method are very similar; they both reach
their maximum value when the window size is 4. The GAN-based image restoration
method has a relatively smooth curve and works best when the window size is between
5 and 8. Considering the balance of the three data types, 5 was selected as the optimal size
for the sliding window.
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3.1.2. Different Quantization Levels

As shown on the right side of Figure 4, as the quantization level increases, the SRCC
starts with an upward trend, and the curve oscillates when it reaches about 20. Considering
that the larger the quantization level is, the greater the consumption of computational
resources is, therefore 32 was chosen as the best quantization level.

3.1.3. Different Strides

In theory, increasing the strides can reduce the effect of pixel misalignment on the
results. In this paper, quantitative experiments were conducted on step sizes, as shown in
Table 2, and different strides do have a small effect on SRCC, but the amount of computation
geometrically increases as the step size decreases. Ultimately, the paper chose a step size
equal to the window size in subsequent experiments.

Table 2. SRCC results for different strides.

Stride Traditional Method PSNR-Oriented Method GAN-Based Method

1 0.6484 0.7270 0.5284
2 0.6480 0.7205 0.5292
3 0.6474 0.7203 0.5282
4 0.6533 0.7255 0.5276
5 0.6476 0.7203 0.5227

3.2. Results in Our Dataset

The results of the different restoration models are presented to the user, who rates the
images from one to five stars based on perceived quality. Manual assessment results were
collected to quantitatively evaluate the perceptual quality of images generated by different
methods. The IQA dataset produced in this study contains a total of 30 images; 11 image
recovery methods, i.e., six SR methods and five denoising methods; and 1000 human
judgments. The results of the SR are shown in Figure 5.

Bicubic as a traditional interpolation algorithm is undoubtedly the least effective,
EDSR and WDSR are very similar, and SAN is much better, especially for the shape edges
of the characters’. SPGAN and SPSR yielded a more realistic natural texture, and because
SPSR introduces additional edge loss, the edges have a higher definition and therefore
higher perceived quality.

The denoising results are shown in Figure 6. DNCNN, FFDNet, and IRCNN all remove
the noise better, but the image information retention is poor, especially in terms of edge
details. IPT is significantly better than FFDNet and IRCNN and has the highest PSNR.
LIGN enhances the denoised image detail texture, which is lower than IPT on PSNR but
has the best perceptual quality.

Tables 3 and 4 show the average scores for each restoration method in different IQAs.
The results under RDIE have a similar ranking to MOS for both denoising and SR, while
the other four differ, and in SR, the traditional metrics of the SPSR model are even worse
than the interpolation method, which is clearly unreasonable. In denoising, one can still
see similar ranking results for RDIE and MOS. Both SPSR and LIGN have a more natural
content and structure, and although they may not be identical in detail to the reference
image, they are clearly the best in terms of perceived quality, so they have the highest score
under RDIE’s evaluation.

Figure 7, this paper shows the subjective scores of 30 restored images and a scatter plot
of the results under some IQA methods. The scattered points of our method are relatively
clustered and concentrated, while the scattered points of others are very loose. SRCC
and PLCC can prove that our method has a good rank correlation and linear correlation
with MOS. The looseness of the scatter plot can be seen as the tightness of the relationship
between the variables of the monotonic trend and the MOS. The tighter the scatter plot
is, the stronger the relationship with the MOS is and the more consistent it is with the
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subjectively perceived quality of the image. Despite the widespread use of IQA methods
such as PSNR, SSIM, and MS-SSIM, it is still difficult to achieve a high level of subjective
and objective agreement when faced with image restoration methods that have special
handling of detailed textures, especially GAN-based ones.
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Table 3. Results of different IQA methods on our datasets (SR). The bold values are the best, and the
superscripts indicate the ranking.

Method Bicubic EDSR WDSR SAN SRGAN SPSR

PSNR↑ 24.86 26.84 26.89 27.65 24.51 24.64
SSIM↑ [1] 0.6962 0.7740 0.7745 0.7997 0.6773 0.6953

MS-SSIM↑ [9] 0.8669 0.9171 0.9175 0.9297 0.8650 0.8769
CONTRIOUE↓ [36] 0.2527 0.1952 0.1651 0.1827 0.1632 0.1892

RDIE5,32 ↓ 41.53 33.73 32.89 32.59 26.33 23.14
MOS↑ 2.019 3.163 3.141 3.415 3.763 4.15

Table 4. Results of different IQA methods got our datasets (denoised). The bold values are the best,
and the superscripts indicate the ranking.

Method DNCNN FFDNet IRCNN IPT LIGN

PSNR↑ 27.98 27.97 27.88 29.39 28.38
SSIM↑ [1] 0.7916 0.7887 0.7898 0.8090 0.8066

MS-SSIM↑ [9] 0.9334 0.9334 0.9312 0.9398 0.9406
CONTRIOUE↓ [36] 0.1636 0.1956 0.1545 0.2081 0.1836

RDIE5,32 ↓ 25.96 28.41 25.57 25.92 23.93
MOS↑ 3.361 3.142 3.381 3.397 3.667
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3.3. Results in PIPAL

This paper uses the RDIE to compare with 15 other IQA methods. The other methods’
SRCC from benchmarks [35] are shown in Table 5. While the IFC performed well in its
evaluation of traditional image restoration algorithms and PSNR-driven image restoration
algorithms, it did not perform well against GAN-based image restoration algorithms, with
poor correlation to subjective perceptual quality. With the above optimal parameters chosen,
this paper has good performance for all three types of datasets, especially the GAN-based
image restoration algorithm. Compared with other IQA methods, the RDIE can better
measure the similar but not identical texture details generated based on GAN and has
similar results to the perceived quality. In this study, three datasets were combined into
a complete dataset of image restoration algorithms to calculate the SRCC. This method
achieved the best performance for the dataset, with a significant improvement compared
with the second-highest-performing SR-SIM.

3.4. Additional Experiments

This experiment explores the sensitivity of the regional information entropy to artifacts.
Two common artifacts, motion and ringing artifacts, are synthesized in the test image
species, and the generated results are evaluated and compared using RDIE and PSNR
methods, respectively. The results are shown in Figure 8. As the intensity of artifacts
increases, a significant decrease occurs in the subjective perception of image quality. RDIE
is similar to the subjectively perceived image quality. As blurring and ringing levels
increase, the RDIE metric results also substantially increase, indicating a decrease in image
quality. However, the change in the PSNR index value is minimal, specifically, the subjective
perception of heavy ringing image quality is significantly worse than that of moderate
ringing. However, the PSNR index has instead increased, which is significantly inconsistent
with subjective perception.
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Table 5. Results of different IQA algorithms for the PIPAL dataset. The upward arrows indicate that
higher values are better for this metric and vice versa, with the best results marked in bold.

Method Traditional
Method

PSNR-Oriented
Method

GAN-Based
Method

All Images Recovery
Method

PSNR 0.4782 0.5462 0.2839 0.4099
NQM ↑ [37] 0.5374 0.6462 0.3410 0.4742
UQI ↑ [38] 0.6087 0.7060 0.3385 0.5257
SSIM ↑ [1] 0.5856 0.6897 0.3388 0.5209

MS− SSIM ↑ [9] 0.6527 0.7528 0.3823 0.5596
IFC ↑ [16] 0.7062 0.8244 0.3217 0.5651
VIF ↑ [17] 0.6927 0.7864 0.3857 0.5917

VSNR− FR ↑ [39] 0.6146 0.7076 0.3128 0.5086
RFSIM ↑ [40] 0.4593 0.5525 0.2951 0.4232
GSM ↑ [10] 0.6074 0.6904 0.3523 0.5361

SR− SIM ↑ [41] 0.6561 0.7476 0.4631 0.6094
FSIM ↑ [20] 0.6515 0.7381 0.4090 0.5896
FSIMc ↑ [20] 0.6509 0.7374 0.4058 0.5872

VSI ↑ [42] 0.6086 0.6938 0.3706 0.5475
MAD ↓ [43] 0.6720 0.7575 0.3494 0.5424

RDIE ↓ 0.6476 0.7203 0.5280 0.6368Entropy 2023, 25, x FOR PEER REVIEW 14 of 16 
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4. Discussion

This paper presents a full-reference evaluation index of image recovery quality based
on the regional differential information entropy. Currently, the reference-free IQA method
has wider prospects in practical application systems, thus entropy-based reference-free IQA
research is considered extremely valuable. It is clear based on the research conducted herein
that the local entropy of the image is extremely closely related to the human subjective
perception of the image, and the size of the entropy value is highly sensitive to different
types and degrees of image degradation. For example, the introduction of higher-frequency
noise will produce a larger local entropy value, while the addition of blurring will also
contribute to a decrease in the local entropy value owing to the loss of detail. Using this
property, we can implement entropy-based image quality evaluation without a reference
model using traditional machine or deep learning. The mapping model of visual features
to regional information entropy feature map quality was learned using traditional machine
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learning methods such as support vector regression, or the regional information entropy
map features are learned using deep learning to build an image quality evaluation model.

5. Conclusions

We propose a regional information entropy-based IQA method that is a reconstruction
of the regional information entropy calculation process using a neural network approach.
We validated the perceived ability of the RDIE method to restore images experimentally
and determined the optimal RDIE parameter values for the image restoration task by
ablating the window size, quantization level, and strides. We tested the proposed method
using a dataset developed in this study and the PIPAL dataset. The results show that the
proposed RDIE method is more responsive to subjective perceptions of images than other
IQA measures, such as PSNR, SSIM, and MS-SSIM, and achieves better subjective and
objective agreement.
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