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Abstract: Oxidative stress is involved in maintaining homeostasis of the body, and an in-depth study
of its mechanism of action is beneficial for the prevention of chronic illnesses. This study aimed to
investigate the protective mechanism of yam polysaccharide (CYP) against H2O2-induced oxidative
damage by an RNA-seq technique. The expression of genes and the function of the genome in the
process of oxidative damage by H2O2 in IEC-6 cells were explored through transcriptomic analysis.
The results illustrated that H2O2 damaged cells by promoting cell differentiation and affecting tight
junction proteins, and CYP could achieve cell protection via restraining the activation of the MAPK
signaling pathway. RNA-seq analysis revealed that H2O2 may damage cells by promoting the IL-17
signaling pathway and the MAPK signaling pathway and so forth. The Western blot showed that the
pretreatment of CYP could restrain the activation of the MAPK signaling pathway. In summary, this
study demonstrates that the efficacy of CYP in modulating the MAPK signaling pathway against
excessive oxidative stress, with a corresponding preventive role against injury to the intestinal barrier.
It provides a new perspective for the understanding of the preventive role of CYP on intestinal
damage. These findings suggest that CYP could be used as oxidation protectant and may have
potential application prospects in the food and pharmaceutical industries.
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1. Introduction

Oxidative stress is a response of the body’s cells and tissues to stimuli that increase
reactive oxygen species and free radicals, resulting in the dysregulation of the intracellular
oxidative–oxidative system [1]. When oxidative stress occurs in cells, the expressions of
superoxide dismutase, catalase, and glutathione peroxidase in the body are significantly
altered. Meanwhile, the harmful superoxide anion generated is catalyzed to H2O2, which is
further decomposed into water and molecular oxygen [2,3]. Oxidative stress also disrupts
the intestinal environmental balance and changes intestinal permeability, giving rise to
intestinal damage and triggering a range of intestinal diseases [4]. Stress response can
induce intestinal cells to produce ROS metabolites in quantity, lipid peroxidation, protein
denaturation, cell apoptosis, and, ultimately, resulting in intestinal mucosal damage and
inflammatory intestinal diseases [5].

Irritation of the gastrointestinal tract by multiple factors can lead to gastrointestinal
dysfunction, which is one of the most vulnerable systems [6]. The intestinal barrier is
considered to be the first line of defense against host invasion by pathogens [7]. Imbalances
in the gut microbiome and impaired intestinal mucosal barrier have been linked to damage
from inflammation, oxidative stress, and various systemic diseases, such as inflammatory
bowel disease (IBD), irritable bowel syndrome (IBS), liver fibrosis, diabetic nephropathy,
lupus nephritis, and sepsis [8,9]. H2O2 is naturally present in various cells of the body and
also stimulates cells by oxidative stress that occurs with the body, and excess H2O2 will
disrupt the oxidative–antioxidant balance within the cells, giving rise to the production of
ROS [10], altering the permeability of intestinal cells, as well as decreasing the intestinal
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barrier function [9]. There are many studies investigating the activation of related proteins
on intracellular signaling pathways via Western blot technique, but there are few reports
on the expression of intracellular tight junction proteins in intestinal epithelial cells in
response to some stimuli, and the intracellular signaling pathway activation pathways are
still not clear.

Polysaccharides extracted from yams by water extraction and alcohol precipitation
methods have biological effects, such as antitumor, antioxidant, and modulating immune ac-
tivity [11,12]. In vitro antioxidant activity of floral mushroom polysaccharides showed that
they scavenged 79.46% and 74.18% of DPPH and hydroxyl radicals (OH), respectively [13].
The effect of yam polysaccharides on I-type diabetic mice has also been reported, and after
treatment with yam polysaccharides, the reactive oxygen species and malondialdehyde
(MDA) content in diabetic mice were reduced, indicating that yam polysaccharides have an-
tioxidant effects in diabetic mice, thus validly guarding against multifarious complications
of diabetes [14]. In addition, yam polysaccharides can reduce DPPH radicals, hydroxyl
radicals, and superoxide radicals’ production so as to promote endometrial epithelial cell
proliferation [15,16]. However, the recent studies on the antioxidant activity of yam polysac-
charides mainly focused on the scavenging ability of free radicals in vitro, while the role
of oxidative damage at the cellular level is still less and the mechanism of action has not
been reported. Therefore, to explore the protective effect of yam polysaccharides against
oxidative damage from the cellular level is need.

RNA-Sequencing (RNA-seq) is regarded as a new method to analyze gene functions
and interactions at the histological level, and the current RNA-seq method can determine
the expression levels of all most genes, which has been broadly used in frontier fields,
such as molecular biology [17,18]. Wang et al. [19] analyzed the resistance of periplaneta
Americana peptide to human ovarian granulosa cell apoptosis under hydrogen peroxide
poisoning, and RNA-seq analysis showed that activation of IL-6 trans-signaling pathway
in retinal endothelial cells caused gene expression changes. In addition, the combined
RNA-seq and cytobiology techniques illustrated that Cyclocarya paliurus polysaccharide
has protective effects against H2O2-induced oxidative damage in L02 cells and regulates mi-
tochondrial function, oxidative stress, and PI3K/Akt and MAPK signaling pathways [20].

This study aimed to probe the underlying molecular mechanism of CYP against H2O2-
induced oxidative lesions and the protective role on the gut barrier by transcriptomic
sequencing technology based on the IEC-6 cell model.

2. Materials and Methods
2.1. Reagents

Fresh yams (Dioscoreae Rhizoma) were purchased from Jiujiang, Jiangxi, China. Fetal
bovine serum (FBS) was obtained from Viva cell Biosciences Ltd. (Shanghai, China).
Dulbecco’s modified eagle medium (DMEM) was purchased from Solarbio (Beijing, China).
Antibodies were gained from Cell Signaling Technology (USA). The IEC-6 cell line was
purchased from the Cell Bank of the Chinese Academy of Sciences (Shanghai, China).

2.2. Preparation of CYP

We weighed 300 g of yam powder and added 6 L of ultrapure water in the ratio of
1:20. Then, we stirred while heating at 80 ◦C, centrifuged, and concentrated the mixture to
1/10 of the original volume. Then, we added 95% ethanol and precipitated the mixture
4 ◦C overnight. The next day, the precipitate was redissolved and treated with glycosylase,
α-amylase, and papain after adjusting the pH of the solution to 4.5 and 6.5, respectively.
Finally, the Sevage method was used to deproteinization, followed by dialysis in a dialysis
bag (retention capacity of 8000–14,000 Da). The dialyzed solution was lyophilized after
secondary alcohol precipitation with anhydrous ethanol to obtain the crude polysaccha-
ride [21,22]. The contents of carbohydrate, uronic acid, and protein were 33.62%, 34.95%,
and 5.26%, respectively, and the molecular weight was 20.89 kDa [23].



Foods 2023, 12, 262 3 of 14

2.3. Cell Culture

IEC-6 cells in good growth condition were taken and inoculated in 6-well plates at a
cell density of 2 × 105 cells/mL for subsequent experiments. Cells were pretreated with
different concentrations of CYP for 24 h after cell apposition, and the polysaccharide sam-
ples were incubated with the configured H2O2 solution for 4 h. Groups were divided
as follows: Blank control group—cells were cultured daily with medium containing 10%
FBS; Model group—cells were cultured with medium containing 10% FBS and treated with
300 µmol/L H2O2 solution on the last day; Low-concentration polysaccharide group—treated
with 200 µg/mL of yam polysaccharide solution for 24 h, followed by 300 µmol/L of H2O2
solution; Medium-concentration polysaccharide group—treated with 400 µg/mL of yam
polysaccharide solution for 24 h, followed by 300 µmol/L of H2O2 solution; and High-
concentration polysaccharide group—treated with 800 µg/mL of yam polysaccharide solution
for 24 h, followed by 300 µmol/L of H2O2 solution.

2.4. RNA-Seq Analysis

Total RNA was collected and purified from cell samples using the Trizol reagent
kit (Invitrogen, Carlsbad, CA, USA) on the grounds of the manufacturer’s certificate,
and subsequent library preparation and sequencing was performed at Shanghai Personal
Biotechnology (Shanghai, China). RNA-seq libraries were identified using an Agilent 2100
Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA) to evaluate the quality of the RNA.
Appropriate libraries were sequenced on the Illumina NextSeq500 platform (Illumina, San
Diego, CA, USA).

Read Count values were statistically compared to each gene using HTSeq as the bench-
mark for gene expression. DESeq was used to analyze the difference of gene expression,
and |log2 fold change| > 1 and p < 0.05 were selected as the condition of screening dif-
ferentially expressed genes (DEGs). In Gene Ontology (GO) analysis, topGO was used to
map the DEGs to their specific directed acyclic graphs (DAGs) structure, and the intensity
of the color depended on the enrichment fraction. Then, the P-value was estimated by
a super geometric allocation method to calculate the p-value (significant enrichment is
defined as p < 0.05) to recognize GO terms that were apparently enriched in differential
genes in comparison with the entire genomic background, and thus determined the pri-
mary biological effect exercised by the differential genes. KEGG enrichment analysis was
executed with the cluster-profiler where the gene list and gene number of each pathway
were estimated through the differential genes annotated in the KEGG pathway, and then
the P-value was calculated by the hypergeometric allocation method (the criterion for
significant enrichment was p < 0.05) to pick out the target genes. The KEGG pathways that
are significantly enriched in differential genes contrast with the gross genomic background
are then used to identify the major biological functions executed via the differential genes.

2.5. Inhibition of MAPKs Using Specific Inhibitors

PD98059 is a potent and selective ERK inhibitor that specifically inhibits MAPK kinase
activation in both in vivo and in vitro experiments [24,25]. In order to judge if the activating
effect of CYP on IEC-6 cells is via the MAPK signaling pathway, the PD98059 inhibitor
was added to DMEM medium and configured as a 10 µM solution. The configured ERK
inhibitor solution was added an hour prior to the addition of H2O2 damage to the cells.
The proteins in the cells were extracted at the end of H2O2 damage and Western blot was
applied to estimate the expression of the relevant proteins.

2.6. Western Blot Analysis

Western and IP Cell Lysis Solution were used for lysing cells at −20 ◦C and then the
lysate was transferred to an EP tube and centrifuged (4 ◦C, 10,000 r/min, 8 min.) After
centrifugation, the supernatant was collected and the protein concentration was estimated
with the BCA kit in line with the procedure, followed by the addition of SDS-PAGE loading
buffer (6×) and denaturation at 95 ◦C for 5 min. After the electrophoresis, the gel was cut
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out at the destination position according to the molecular weight, indicated by the marker.
The electrode was covered and sent to the membrane transfer apparatus to transfer the
membrane at 25 V for 7 min. After the transfer, the protein strips were cut according to the
experimental purpose, submerged in the blocking solution (5% BSA), and shaken at room
temperature for 1 h. The target primary antibody was selected for overnight incubation,
and the secondary antibody was added after three washes with TBST for 15 min each time
on the next day. Eventually, target protein bands were captured and photographed by
chemiluminescence imaging system.

2.7. Statistical Analysis

All experimental values are from at least three tinning sessions and data were ex-
pressed as mean ± standard deviation (SD). Differences among data mean values were
tested for statistical significance at the p < 0.05 level using One-way ANOVA analysis of
variance by SPSS 17.0 (SPSS Inc., Chicago, IL, USA).

3. Results and Discussion
3.1. Purity and Quality of Isolated RNA

The quality of the resulting RNA was evaluated by agarose gel electrophoresis. The
total RNA electrophoresis bands of the samples were clear, with a total of three bands, from
large to small, 28S, 18S, and 5S, with decreasing brightness. The 28S band was brighter
than the 18S band (Figure 1), which was twice as bright, while 5S was very light, in normal
condition, without obvious trailing and smears, with good RNA integrity and no significant
degradation of mRNA. The results mentioned met the requirements of the subsequent
experiments and could be carried out in the next step.
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3.2. Expression Difference Result Statistics

RNA-seq is broadly applied to study molecular mechanisms associated with the
pharmacological activity of natural drugs’ polysaccharides [26,27]. Figure 2A shows the
differential gene values in the form of bar graphs. In the blank control group compared with
the CYP group, it identified 2637 gene sequences and the up-regulated genes consisted of
1563 and the down-regulated ones were 1074; in the model group compared with the CYP
group, it identified 1407 differentially expressed genes, of which the up-regulated genes
consisted of 358 and the down-regulated ones were 1049; in comparison to blank and model
groups, there were 3712 differential gene sequences, of which 2630 were upwardly adjusted
and 1082 were downgraded. The heat map shown in Figure 2B is expressed at the gene level,
with one sample in each column, with red for highly expressed genes and blue for low-
expressed genes. Due to the similarity of gene expression mode, gene sequence samples can
be clustered for analysis. It can be seen that the correlation coefficients are greater than 0.9
for samples within the same group and less than 0.8 for samples between different groups
(Figure 2C), indicating good sample parallelism between groups. On the basis of results
of the one-way analysis of variance (ANOVA), the Wayne plot was able to calculate the
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number of unique differential genes shared between the comparable groups. The number
of genes differing among the comparison groups and the overlapping relationship among
the comparison groups were indicated. In the Venn diagram (Figure 2D), it can be seen that
there are the same 417 differentially expressed genes in the three two-by-two comparisons.
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3.3. Functional Prediction Analysis by GO Enrichment

GO enrichment analysis starts by mapping all DEGs into each term of the GO database,
using the whole genome as the background, subsequently calculating the P-value by
hypergeometric distribution algorithm to determine the GO term, which is prominently
captured in differential genes within the whole genome background, thereby ascertaining
the biological effect represented by the differential genes [28]. The regulatory role of CYP on
IEC-6 cells is still unclear at the transcriptome level. Figure 3B–D showed the classification
of biological processes (BP), molecular functions (MF), and cellular components (CC) on the
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grounds of sequencing analysis, respectively. GO function analysis revealed 26 BP terms,
20 MF terms, and 18 CC terms in the DEGs.

The functional groups that changed significantly in terms of model group and control
group were the development of anatomical structures, course of development, development
of multicellular organisms, cell differentiation, processes of cell development, system de-
velopment, positive regulation of biological processes, and protein binding. The functional
groups that changed significantly in the CYP group were the development of multicellular
organisms, system development, development of anatomical structures, course of develop-
ment, regulatory signals, regulation of cell communication, the developmental processes,
cell differentiation, development of animal organs, regulation of responses to stimuli, regu-
lation of signal transduction, negative regulation of biochemical reactions, movement in
motor cells or subcellular components, protein binding, positive regulation of biochemical
reactions, signal transduction regulation, and cell differentiation. The functional groups
that changed remarkably in the CYP group compared to the model group were the de-
velopment of anatomical structures, cell developmental processes, system development,
development of multicellular organisms, cell differentiation, regulation of multicellular
biological processes, bio-adhesion, cell adhesion, cell surface receptor signaling pathways,
regulation of cell differentiation, regulation of multicellular biological development, and
metal ion transport activity across membranes (Figure 3A). The above sequencing data
indicates that CYP can regulate the mechanism of oxidative damage in IEC-6 cells.

3.4. Signaling Pathway Analysis by KEGG Enrichment

The KEGG database integrates genomic, biochemical information, and signal path-
ways condition in one, using the pathway mapping process to link the genome to life as a
reference [19]. To identify H2O2-induced signaling pathways activated by IEC-6 cells, the
quantity of DEGs in the KEGG analysis were calculated. KEGG analysis was confirmed
with bubble plots showing the top 20 canonical pathways.

The pathways that changed significantly in the model group compared to the control
group were IL-17 signaling pathway, tumor necrosis factor, MAPK, and cAMP signaling
pathways, cytokine receptor interactions, endocrine resistance and atherosclerosis, TGF-
beta pathway, and FoxO. The pathways that changed more significantly in CYP were tumor
necrosis factor, neuro glioma, MAPK, p53, PI3K-Akt, IL-17, cytokine–cytokine receptor
interaction, HIF-1, FoxO, calcium signaling pathways, cellular senescence, and cell cycle.
The functional groups that changed remarkably in the CYP group in comparison to the
model group were tumor necrosis factor signaling pathway, IL-17 signaling pathway,
protein digestion and absorption, cytokine–cytokine receptor interaction, cGMP-PKG
signaling pathway, and mineral uptake. The MAPK pathway was significantly changed
in the control group compared with both the model group and CYP group (Figure 4).
Therefore, the above results indicated that CYP may make sense in protecting cells from
oxidative damage by affecting MAPK signaling pathway subsequent validation from the
MAPK pathway as proposed.

3.5. Effect of ERK Inhibitor on MAPK Pathway of H2O2-Induced Oxidative Damage in IEC-6
Cells

Our preceding study has illustrated that the phosphorylated expression of
three proteins, JNK, ERK, and P38, in the MAPK pathway activated by H2O2 was sig-
nificantly reduced in the presence of CYP, which was able to inhibit the activation of the
MAPK pathway [23]. In consequence, to bear out that activating the MAPK signaling
pathway in RNA-seq results, ERK inhibitor (PD98059) was added before treating the cells
with H2O2. Compared with the H2O2 group, pretreatment with ERK inhibitor was ef-
fective in reducing the ratios of p-ERK to ERK, p-P38 to P38, and p-JNK to JNK, and the
phosphorylation content of both JNK and ERK proteins’ gray value was declined by the
co-treatment of ERK inhibitor with CYP, but not as strongly as CYP alone (Figure 5). Our
results indicated that the combination of ERK inhibitor with CYP did not have an enhanced
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inhibitory effect, which may be due to the negative effect of the addition of PD98059 on
the protective effect of CYP. According to the above results, CYP has a similar effect to
ERK inhibitors in declining the expression of protein phosphorylation and inhibiting the
activation of MAPK pathway.
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Figure 3. GO enrichment analyses of DEGs identified in H2O2-stimulated IEC-6 cells. (A) GO
enrichment analyses of DEGs. The x-axis represents the number of DEGs and the y-axis represents
the enriched GO terms. The size of the point indicates the number of DEGs enriched in the pathway,
and the redder the color, the more significant the enrichment result is. (B–D) Thumbnails view of
directed acyclic graphs (DEGs) on BP, CC, and MF.
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Figure 5. Effect of ERK inhibitor on H2O2-induced IEC-6 cell injury through MAPK pathway.
(A) Western blot showing the protein expression of ERK, p-ERK, p38, p-p38, JNK and p-JNK.
(B–D) The quantification of JNK, p-JNK, ERK, p-ERK, p38, and p-p38 expression. Results shown are
expressed as means ± SD (n = 3). # p < 0.05, ## p < 0.01 compared with normal group, ** p < 0.01
compared with H2O2 group alone.
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3.6. Effect of CYP on Intestinal Tight Junction Proteins ZO-1, Occludin, and Claudin-1

Intestinal tight junction proteins have a positive impact on protecting intestinal cells
as a barrier for intestinal mucosal cells [29]. The, ZO-1, Claudin-1, and Occludin expres-
sions were decreased after H2O2 treatment compared with the control group (Figure 6),
indicating that H2O2 treatment impaired the intestinal barrier function. After pretreatment
with CYP at 200 µg/mL, the expression of all three tight junction proteins was up-regulated
to some extent, whereas when the concentration of CYP was increased to 400 µg/mL,
the expression of Occludin showed a decrease, and when soaring again to 800 µg/mL,
the expression content of ZO-1 and Claudin-1 was lower than that of the control group.
The results illustrated that the gut mucosal barrier of IEC-6 cells can be protected un-
der low concentration of CYP treatment, but too-high concentration of CYP can have a
negative effect.
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Figure 6. Effects of CYP on ZO-1, Occludin, and Claudin-1 levels of H2O2-induced IEC-6 cells.
(A) Western blot showing the protein expression of ZO-1, Occludin and Claudin-1 in IEC-6.
(B–D) The quantification of Occludin, ZO-1, and Claudin-1 expression. Results shown are expressed
as means ± SD (n = 3). # p < 0.05, ## p < 0.01 compared with normal group, ** p < 0.01 compared with
H2O2 group alone.

4. Discussion

The protective mechanism of yam polysaccharides in opposition to H2O2-induced
oxidative lesions in IEC-6 cells was investigated based on RNA-seq technology, while
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the protective efficacy of CYP against H2O2-induced injury in IEC-6 cells was explored
in the MAPK pathway, and the effect of combined use of ERK inhibitors on MAPK path-
way was further selected to validate the effect of CYP based on the results of KEGG
enrichment analysis.

RNA sequencing is a method that allows the evaluation of a complete set of organisms’
transcribed genes, non-coding RNAs, and their transcriptomes [27]. Therefore, we used
sequencing to screen all transcripts of CYP against H2O2-induced oxidative damage in
IEC-6 cells. In this study, the expression of differential genes was detected via using
RNA-seq technology and further classified based on the information from the differential
gene analysis to analyze which functions these genes are referred to. Experimental results
illustrated that there are many differentially expressed genes in both CYP and model
groups versus the control group, manifesting a large number of genes expressed after H2O2
stimulation of cells with pretreatment of CYP. GO database provides biological annotation
of sample genes in the light of effect, biological pathway, and cellular localization [19,30].
GO enrichment analysis showed that the functional groups were significantly changed
during this process with cell differentiation and development of multicellular organisms
and so on, indicating that CYP can influence the physiological function of IEC-6 cells. In
addition, in comparison to GO analysis, KEGG enrichment analysis possesses a mighty
graphical representation, which could utilize diagrammatic form instead of text material
to demonstrate a range of signal pathways, offering more intuitionistic and all-sided
information. For the sake of investigating the signaling pathway of CYP affecting IEC-6
cells, we found that MAPK and IL-17 signaling pathways were remarkably enriched.

Enzymes in the MAPK signaling pathway jointly regulate cell growth, differentia-
tion, environmental stress adaptation, inflammatory response, and other important cell
physiology [31]. The functional groups that are significantly changed from inside the
GO enrichment analysis are cell differentiation, which coincides with the function of the
MAPK pathway. The MAPK signaling pathway is mainly activated through the sequence
of MAPK kinase, phosphorylation-activated MAPK kinase, and MAPK (transmission of
downstream information) activation to complete [25]. To keep off mutual interference,
the MAPK cascade is split into fixed modules using scaffold proteins. Among mammals,
the MAPK signaling cascade is usually classified into four subgroups: the extracellular
signal-regulated protein kinase 1 and 2 (ERK1/2) cascade, the c-Jun N-terminal kinase
(JNK) cascade, the p38 MAPK cascade, and the ERK5 cascade [32,33]. These subgroups are
connected to signaling pathways with various biochemical actions. For example, ERK1/2
gains command of cell growth and differentiation [34], JNK is correlated with stress, p38
MAPK is relevant to immune regulation and inflammatory response [35], and ERK5 is
associated with multifarious diseases, especially cardiovascular disease and cancer [36].

Western blot protein bands indicated that pretreatment with CYP inhibited the phos-
phorylated expression of three proteins in the pathway and suppressed MAPK pathway
activation. Further validation with the combination of ERK inhibitors showed that CYP
exerted an inhibitory effect on the phosphorylated expression of the related proteins in the
MAPK pathway and that the effect was similar to that of ERK inhibitors. This indicates
that CYP can inhibit the MAPK pathway and, thus, reduce the oxidative damage in cells.
Consistent with our results, polysaccharides from Agrocybe cylindracea residue mitigate
the liver and colon injury in type II diabetes through p38 MAPK signaling pathway [37].
Maintaining the integrality of the intestinal mucosal barrier is essential to protecting the
host from gut microbes, food antigens, and toxins. Huang et al. [38] investigated the effects
of CYP and SCYP on intestinal microbiota in vitro study. Consequently, it is speculated
that CYP may affect the gut barrier. The present study found that low concentration of CYP
can promote the expression of intestinal compact junction protein, which plays a role in
protecting the intestinal tract.
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5. Conclusions

To sum up, our study demonstrated that cells differentiated and protein binding
genes changed significantly according to the sequencing results and CYP-regulated MAPK
signaling pathways with ERK inhibitor to prevent excessive oxidative stress responses and
protect the intestinal barrier by affecting intestinal proteins (Figure 7). Indeed, this is the
first comprehensive study of the potential protective mechanism of CYP, which provides
an original perspective for incisive understanding of the protective role of CYP on the gut,
and likewise offers a theoretical foundation for the CYP-relevant products’ development.
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