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Abstract: The use of anthracycline derivatives was approved for the treatment of a broad spectrum
of human tumors (i.e., breast cancer). The need to test these drugs on cancer models has pushed the
basic research to apply many types of in vitro assays, and, among them, the study of anthracycline-
induced apoptosis was mainly based on the application of flow cytometry protocols. However,
the chemical structure of anthracycline derivatives gives them a strong autofluorescence effect that
must be considered when flow cytometry is used. Unfortunately, the guidelines on the analysis of
anthracycline effects through flow cytometry are lacking. Therefore, in this study, we optimized
the flow cytometry detection of doxorubicin and epirubicin-treated breast cancer cells. Their aut-
ofluorescence was assessed both by using conventional and imaging flow cytometry; we found that
all the channels excited by the 488 nm laser were affected. Anthracycline-induced apoptosis was
then measured via flow cytometry using the optimized setting. Consequently, we established a set
of recommendations that enable the development of optimized flow cytometry settings when the
in vitro assays of anthracycline effects are analyzed, with the final aim to reveal a new perspective on
the use of those in vitro tests for the further implementation of precision medicine strategies in cancer.
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1. Introduction

The recently increasing interest in cell-specific drugs has pushed basic research to
explore many types of in vitro tests. Cytotoxicity evaluation, the assessment of cell cycle
analysis, the study of apoptosis induction, and cell–cell interaction both at molecular and
biochemical levels are among the most widely applied in vitro assays to test cell-specific
drug effects [1–5]. The aim of these in vitro studies is the discovery of novel drugs, including
effective cancer cell-specific agents, to further test in preclinical models [3,6–11]. In this
regard, anthracycline derivatives are among the most used cytotoxic drugs to treat human
malignancies and have been mainly investigated in preclinical studies [12,13]. Considering
their cornerstone role in many approved anticancer treatment regimens, novel in vitro
approaches based on testing anthracycline derivatives may result in innovative clinical
applications [14–16].

Doxorubicin (adriamycin) is one of the most powerful drugs among anthracyclines,
but its use has been limited by the known doxorubicin-induced fatal cardiotoxic events [17].
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To overcome such a limitation, different anthracycline analogues have been synthesized.
Among them, its semisynthetic C-4′ sugar epimer epirubicin gained clinical interest, due
to having similar antitumor efficacy to doxorubicin but with a lower risk of cardiotoxic-
ity [18]. Overall, anthracycline derivatives are typically characterized by a planar oxidized
anthracene nucleus fused to a cyclohexane ring that is connected to an amino sugar via a
glycosidic linkage. Anthracyclines act as cytostatic/cytotoxic agents by interacting with
topoisomerase II and inducing an irreversible DNA breakdown [19]. It has been also
reported that anthracycline derivatives inhibit DNA and RNA synthesis by intercalating
between nitrogenous base pairs [19]. The additional mechanisms of action contributing
to the antiproliferative effects of anthracyclines include the enhancement of synthesis of
reactive oxygen species and the formation of DNA adducts [19,20].

Anthracycline-induced apoptosis has been largely investigated in different cancer
models [21]. Many classical apoptotic hallmarks can be rapidly analyzed using flow
cytometry. The most widely used flow cytometry method for identifying apoptotic cells
is based on the detection of phosphatidylserine exposure on the outer leaflet of the cell
plasma membrane [9,22–24]. Notably, anthracycline derivatives are characterized by a
typical red fluorescence emission associated with their conjugate systems [25]. Doxorubicin
has a maximum excitation and emission wavelength at 470 and 560 nm, respectively [26],
while epirubicin has an excitation peak at 254 nm and an emission peak at 565 nm [27].
Therefore, anthracycline-induced cell autofluorescence must be considered when those
drugs are analyzed with in vitro assays, especially when fluorescence-based techniques are
used [28].

The guidelines on the analysis of anthracycline derivative effects using flow cytometry
are lacking, and the reported data are often difficult to interpret. Thus, we developed a flow
cytometry assay to optimize the study of anthracycline-induced apoptosis in breast cancer
cells. Considering the autofluorescence associated with the concentrations of doxorubicin
and epirubicin commonly employed for in vitro breast cancer cell studies, we underlined
all the recommendations for an optimized flow cytometry analysis.

2. Materials and Methods
2.1. Cell Cultures

MDA-MB-231 human breast cancer cells (ATCC, Manassas, VA, USA) were main-
tained in a humidified atmosphere (5% CO2 at 37 ◦C), in Dulbecco’s modified Eagle
medium (DMEM, ThermoFisher Scientific, Gibco; Waltham, MA, USA) containing high
glucose concentration (4.5 g/l, or 25 mM) and supplemented with 10% fetal bovine serum
(Merck KGaA, Darmstadt, Germania), 50 units/mL penicillin, and 50 mg/mL streptomycin
(Merck). All the experiments were carried out on exponentially growing cells.

MDA-MB-231 cells, seeded at a density of 2 × 105 in six-well plates (Falcon, Corning
Incorporated, One Riverfront Plaza, NY, USA, 353046) were treated for 24 h and 48 h with
2.5 µM doxorubicin, and 1 µM and 2.5 µM epirubicin. The anthracycline concentrations
were established on the basis of previously published data [29]. In detail, we used the
above-reported doxorubicin and epirubicin concentrations, which are slightly lower than
the respective IC50, with the aim to focus on the effect related to the autofluorescence of
the anthracycline chromophore groups.

2.2. Flow Cytometry Analysis of Apoptosis

For apoptosis measurements, the Annexin V test was used. Annexin V is a calcium-
dependent phospholipid-binding protein with a high affinity for phosphatidylserine (PS),
a plasma membrane phospholipid. PS is physiologically exposed to the inner leaflet of the
plasma membrane, but, during the earliest apoptosis phases, it translocates to the outer
leaflet, thereby exposing PS to the external environment. Annexin V binds to the PS exposed
on the cell surface and identifies apoptotic cells already during the earliest apoptotic phases.
Here, the apoptosis was assessed as previously described [3]. Briefly, MDA-MB-231 cells
were counted with a Burker chamber and seeded in 6-well plates (2 × 105 cells/well) in
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triplicate. The following day, the cells were treated with 2.5 µM doxorubicin for 24 or 48 h.
After treatment, apoptosis was measured by saving the supernatants before detaching
the cells through trypsinization and washed once in PBS (ThermoFisher Scientific, Gibco;
Waltham, MA, USA, 400 g, 10 min). The supernatant was discarded, and the cell pellet was
resuspended at a concentration of 5 × 105 cells/mL in Binding Buffer 1X (Becton Dickinson
(BD) Biosciences, La Jolla, CA, USA). The samples were centrifuged (400 g, 10 min) and
then stained using 5 µL of Annexin V-BV450 (BD Biosciences, Cod. 560506, 15 min, RT,
in the dark). Before the acquisition, 300 µL of Binding Buffer 1X was added. For each
sample, 20,000 events were acquired using a FACSVerse flow cytometer (BD Biosciences).
Apoptotic cells were identified for their positivity to Annexin V, as shown in the gating
strategy represented in Figure S1.

2.3. Flow Cytometry Measurements of Anthracycline Autofluorescence

Doxorubicin- and epirubicin-treated MDA-MB-231 cells were analyzed for their in-
trinsic fluorescence, acquiring 20,000 events/test using different flow cytometry platforms
(FACSCanto II, FACSVerse—both from BD Biosciences; CytoFLEX—Beckman Coulter,
Fullerton, CA, USA) as well as an AMINS ImageStream (Luminex Corporation, Austin,
TX), equipped with a 488 nm solid-state laser (40 mW) and Inspire software (v 4.1.434.0) [6].

To obtain comparable results, flow cytometry analyses were standardized by daily
running quality controls, including check-ups with Cytometer Setup and Tracking Beads
(CS&T, BD). Debris and doublets were excluded from the analysis, and single events were
analyzed for different purposes. Optimal photomultiplier (PMT) voltages were established
for each channel [30,31]. FACSDiva v 6.1.3 and FACSSuite v 1.0.6.5230 were used for data
acquisition, and FlowJo v 10.8.1 Software (BD Biosciences) was used for data analysis.

2.4. Statistics

Statistical analysis was carried out using GraphPad Prism 9 (GraphPad Software,
San Diego, CA, USA). Statistical significance was assessed (p < 0.05), and the standard
error of the mean (SEM) was calculated for both the unstimulated and doxorubicin-
stimulated samples.

3. Results
3.1. Impact of Doxorubicin Autofluorescence in Flow Cytometry Analyses

MDA-MB-231 cells were treated with doxorubicin for 24 and 48 h (DOXO) and
analyzed using different flow cytometry conventional platforms (Figures 1, S1 and S2).
Specifically, as shown in Figure 1, the doxorubicin-treated cells were analyzed on each
fluorescence channel (blue histograms) of a FACSVerse flow cytometer and compared
with the untreated samples (overlayed red histograms) both at 24 and at 48 h. As shown
(Figure 1), the doxorubicin-treated MDA-MB-231 cells showed detectable fluorescence
levels in all the channels excited by the 488 nm laser and a slight signal in the farthest
405 nm excited channel.

Consistent results were obtained when the treated samples were acquired using other
conventional flow cytometry platforms, such as a BD FACSCanto II (Figure S1) and a BC
CytoFLEX (Figure S2).

3.2. Impact of Epirubicin Autofluorescence in Flow Cytometry Analyses

Notably, MDA-MB231 cells were also treated with epirubicin, another anthracycline
derivative, at 1 µM and 2.5 µM for 24 and 48 h. As shown in Figure 2, the epirubicin-treated
MDA-MB-231 cells showed detectable fluorescence levels in all the channels excited by
the blue laser (488 nm), at both concentrations. In addition, a slight signal in the farthest
405 nm excited channel was also detected. These results are consistent with those obtained
by treating the cells with its analogue, doxorubicin.
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Figure 1. Analysis of doxorubicin fluorescence emission via conventional flow cytometry (BD
FACSVerse). Cells treated with 2.5 µM doxorubicin (Doxo) for 24 and 48 h were acquired using
flow cytometry and shown as blue histograms on every channel of a conventional instrument
(FACSVerse, BD Biosciences), equipped with three lasers (488 nm, 633 nm, and 405 nm). Overlayed
red histograms show the profiles of matched untreated samples. Histograms are representative of
three independent experiments.

When the same samples were acquired using other flow cytometry conventional
platforms, a BD FACSCanto II and a Beckman Coulter CytoFLEX (Figures S4 and S5), the
channels excited by the 488 nm laser appeared largely affected by the autofluorescence of
this drug.

3.3. Flow Cytometry Anthracycline Autofluorescence Is Dose-Dependent

We observed that the epirubicin autofluorescence contribution in each affected channel
increased in a dose-dependent manner (Figures 2, S4 and S5).

The signal-to-noise ratio (SNR) values were calculated for both drugs and reported for
all the channels (Table 1). The data showed that the emission peak was registered at the
PerCP-Cy5.5/PC5.5 channel for both drugs.

In Figure 3, the ImageStream analysis of the doxorubicin-treated cells showed that
anthracycline autofluorescence affected the channels excited by the 488 nm laser, which
have more often been used to analyze apoptosis (Ch1 and Ch4 usually used to detect
FITC-conjugated Annexin V and propidium iodide, respectively).
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Figure 2. Analysis of epirubicin fluorescence emission via conventional flow cytometry (BD FACS-
Verse). MDA-MB-231 cells treated for 24 and 48 h with 1 µM (A) or 2.5 µM (B) epirubicin were
acquired using flow cytometry and shown as blue histograms on every channel of a conventional
instrument (FACSVerse, BD Biosciences), equipped with three lasers (488 nm, 633 nm, and 405 nm).
Overlayed red histograms show the related untreated samples. Histograms are representative of
three independent experiments.
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Table 1. Signal-to-noise ratio (SNR) values.

Channel Filters SNR Doxorubicin SNR Epirubicin

FACS CantoII

FITC 502 LP
530/30 8.45 12.92

PE 556 LP
585/42 94.80 164.06

PerCP-Cy5-5 655 LP
670 LP 171.29 412.03

PE-Cy7 735 LP
780/60 148.60 391.92

APC 660/20 2.31 2.12

APC-Cy7 735 LP
780/60 2.52 2.58

Pacific Blue 450/50 1.08 1.01

AmCyan 502 LP
510/50 1.14 1.14

FACS Verse

FITC 507 LP
527/32 10.15 12.89

PE 560 LP
586/42 116.96 171.54

PerCP-Cy5-5 665 LP
700/54 219.69 459.87

PE-Cy7 752 LP
783/56 190.82 411.52

APC 610/610
660/10 2.17 2.22

APC-Cy7 752 LP
783/56 2.36 2.43

V450 448/45
448/45 1.25 1.16

V500 500 LP
528/45 2.71 3.08

CytoFLEX

FITC 525/40 11.27 14.82

PE 585/42 105.67 156.59

ECD 610/20 179.03 323.83

PC5.5 690/50 219.21 469.39

PC7 780/60 188.31 446.30

APC 660/10 2.46 2.41

APC-A700 712/25 2.47 2.54

APC-A750 780/60 2.51 2.75

PB450 450/45 1.29 1.24

KO525 525/40 2.20 2.45

Violet 610 610/20 48.19 90.47

Violet 780 780/60 47.78 122.05
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Figure 3. Analysis of doxorubicin fluorescence emission with ImageStream. MDA-MB-231 cells
treated for 24 h with 1 µM doxorubicin were acquired using ImageStream: (A) representative images
of treated cell brightfield and fluorescence detected in channel 1 (FITC and analogue fluorochromes)
and channel 4 (propidium iodide and analogue fluorochromes) for representative cells treated with
doxorubicin (Doxo) or untreated are shown; (B) histograms represent doxorubicin autofluorescence
detected in channel 1 (FITC and analogue fluorochromes) and channel 4 (propidium iodide and
analogue fluorochromes). Data are representative of three independent experiments.

3.4. Analysis of Doxorubicin-Induced Apoptosis in Human Breast Cancer Models

Considering previous results showing that anthracycline autofluorescence affects
many channels of conventional flow cytometry platforms, the analysis of apoptosis or other
markers through flow cytometry must consider such a phenomenon. Therefore, when
apoptosis is measured by the detection of phosphatidylserine exposure, it would be more
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appropriate to consider detecting Annexin V (which binds phosphatidylserine) in some of
the anthracycline non-affected channels. In this context, as shown above, the best channels
to use are the ones excited by the 633 nm or 405 nm laser. An example of doxorubicin-
treated MDA-MB-231 cells (24 and 48 h) stained with the BV450-conjugated Annexin V is
reported in Figure S1. In addition, a statistically significant increase in Annexin V+ cells
was observed after 48 h of treatment with doxorubicin (Figure 4).
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Figure 4. Apoptosis analysis using flow cytometry after staining with Annexin V-BV450. Histograms
show the percentage of apoptotic MDA-MB-231 cells after the treatment with doxorubicin at 2.5 µM
for 24 h or 48 h. Data are presented as the means ± SD of triplicate experiments. ** p < 0.01 vs. control
(ns, not significant).

4. Discussion

Recent efforts in the precision medicine field allowed the development of patient-
derived in vitro assays with the potential to predict treatment response [32]. The establish-
ment of precision medicine platforms represents a future challenge for identifying effective
drugs at a single-patient level [33,34]. The development of specific in vitro strategies for im-
proved personalized cancer treatment has the potential to ameliorate patient management
and reduce the cost of cancer care [34]. The first step for the optimization of novel in vitro
approaches is the assessment of solid protocols to study the drug effects on specific cellular
models. In this context, in vitro studies on anthracycline derivatives may have significant
relevance, given that anthracyclines are widely employed in clinical practice [14–16].

It is worth noting that anthracycline derivatives are characterized by a typical red
fluorescence emission [35]. These optical properties of anthracycline derivatives were suc-
cessfully exploited for the investigation of drug dynamics in carcinoma treatments [36], to
analyze the localization of anthracyclines in the lipid bilayers, and to assess the interaction
of those drugs with the DNA, as well as other macromolecules within the target cells [37].
Furthermore, the study of the anthracycline intrinsic fluorescence was used in the imag-
ing studies of living cells [38] and to track anthracyclines in human body fluids [39–41].
In such a context, when anthracycline autofluorescence is tracked by flow cytometry,
our data reported that the best channels for doxorubicin and epirubicin acquisition were
PerCP-Cy5.5/PC5. Besides the utility in monitoring anthracycline autofluorescence in the
above-mentioned experimental settings, anthracycline autofluorescence should be carefully
evaluated when cancer cells are treated with this class of drugs and then stained with
fluorescent reagents and/or analyzed with fluorescence-based techniques. Cell autofluores-
cence is, in fact, an undesired source of background interference with the signal coming
from dim fluorophores and/or low abundant markers [42,43]. Notably, the possibility to
subtract the background produced by the autofluorescence of the used reagents has been
largely underlined by the advent of spectral flow cytometry [44].

However, to the best of our knowledge, there are no published papers establishing
the best practice to study anthracycline-induced cytotoxic effects through conventional
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flow cytometry. In the present work, we investigated the best markers or combination of
markers to study the in vitro effects of anthracyclines using flow cytometry. In this regard,
we observed that all the channels excited by the 488 nm laser were largely affected by
the anthracycline autofluorescence after the treatment of breast cancer cells with the most
widely used anthracyclines (doxorubicin and epirubicin). This effect was time-dependent.
Furthermore, we reported that probes/fluorochromes excited by the red laser (633 nm),
the ones excited by the violet laser (405 nm), and those emitting at lower wavelengths
are recommended when anthracyclines are investigated in in vitro studies employing
flow cytometry.

Taken together, our findings may have two main implications. First, it is highly recom-
mended to carefully use propidium iodide (emitting where the doxorubicin/epirubicin
peaks of emissions are registered) when anthracycline-treated cells are analyzed using
common and traditional flow cytometry platforms. Secondly, anthracycline autofluo-
rescence should be considered when applying a technique or protocol involving the
use of fluorescent probes or fluorochromes to study the in vitro effects of anthracyclines
(i.e., immunofluorescence). In this respect, we observed that the percentage of apoptotic
cells in the samples treated with doxorubicin revealed robust and highly reproducible
values (low SD values) when the staining of the phosphatidylserine was performed with
an appropriate reagent (Annexin V-BV450 conjugated).

5. Conclusions

Altogether, our data established a set of recommendations that enable the development
of optimized flow cytometry settings when the in vitro studies of anthracycline effects are
carried out. These recommendations maximize the ability to reliably distinguish the
positive and negative populations of anthracycline-treated cells. By these findings, the
formulation of a consensus regarding the utility of flow cytometry for the analysis of
anthracycline-treated samples may be established, unveiling a new perspective on the use
of those in vitro tests for the further implementation of precision medicine strategies.
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