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Abstract: Using a deep learning algorithm in the development of a computer-aided system for colon
polyp detection is effective in reducing the miss rate. This study aimed to develop a system for colon
polyp detection and classification. We used a data augmentation technique and conditional GAN to
generate polyp images for YOLO training to improve the polyp detection ability. After testing the
model five times, a model with 300 GANs (GAN 300) achieved the highest average precision (AP) of
54.60% for SSA and 75.41% for TA. These results were better than those of the data augmentation
method, which showed AP of 53.56% for SSA and 72.55% for TA. The AP, mAP, and IoU for the
300 GAN model for the HP were 80.97%, 70.07%, and 57.24%, and the data increased in comparison
with the data augmentation technique by 76.98%, 67.70%, and 55.26%, respectively. We also used
Gaussian blurring to simulate the blurred images during colonoscopy and then applied DeblurGAN-
v2 to deblur the images. Further, we trained the dataset using YOLO to classify polyps. After using
DeblurGAN-v2, the mAP increased from 25.64% to 30.74%. This method effectively improved the
accuracy of polyp detection and classification.

Keywords: colon polyp detection; generative adversarial network (GAN); object detection; data
computer augmentation; image deblurring

1. Introduction

In recent years, the incidence of colorectal cancer (CRC) has increased because of
refined and high-fat diets. The survival rate of CRC patients is positively correlated with
early detection and treatment. The American Association for Cancer Research states that
CRC is one of the most prevalent types of cancer [1]. Colon polyps are precursors of
CRC [2]. However, the rate of misdetection of colon polyps during colonoscopy is as
high as 26%, as reported in a recent meta-analysis [3]. The 5-year survival rate of early
stage CRC exceeds 90% with a well-established screening program [4]. The American
Society for Gastrointestinal Endoscopy has proposed “resect and discard” and “diagnose
and leave” strategies, suggesting that non-neoplastic polyps can be left unresected [5–7].
This strategy is based on real-time polyp classification, which is cost-effective and saves
time for endoscopists. Methods have been developed to enhance the early detection and
classification of colon polyps [8,9].

Considerable progress has been made in the field of deep learning and in the devel-
opment of computing hardware. Artificial intelligence (AI)-based systems used to assist
physicians in clinical diagnosis have flourished [10,11]. Abnormal images are common
issues in medical-related AI model training, and they are scarce. Among colon polyps,
sessile serrated adenoma (SSA) is the rarest and has a morphology similar to that of a
hyperplastic polyp (HP). An adequate amount of data or images is required for a workable
machine-learning model [12]. An imbalance in the quantity and variability of images or
datasets leads to a poor classification model [13–17]. This study proposes methods for
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solving the shortage of datasets used in model training to improve the accuracy of colon
polyp detection.

This study primarily aimed to use the collected polyp dataset to develop a high-
accuracy object detection model for two types of neoplastic colon polyps (tubular ade-
noma (TA) and SSA) and a non-neoplastic polyp (HP). These three types of polyps were
annotated by the trained model to aid the endoscopist in removing neoplastic polyps
during colonoscopy.

Two types of deep learning studies have been conducted on colon polyps: image
classification studies [18–22] used to determine the presence and type of a polyp in an image
and object detection studies [23–25] used to detect the polyp location. Image classification
studies aim to comply with the “resect and discard” and “diagnose and leave” strategies
in clinical practice. Object detection studies are mainstream because endoscopists need to
identify the location of a polyp before removing it.

In current published datasets and studies, polyps have seldom been classified. Colon
polyps are generally classified as neoplastic or nonneoplastic. Neoplastic polyps include TA
and SSA, whereas nonneoplastic polyps include HPs. Recognizing the type of polyp helps
the endoscopist decide whether to resect it. In particular, SSA progresses into CRC within
a short duration and needs to be removed at the earliest. The shortage of polyp datasets
has been discussed in previous studies [26–28]. Shin et al. [29] used a data augmentation
method to increase the number of datasets, including rotation, scaling, cropping, blurring,
and brightness changes. The augmented dataset had different angles for the same image
and had certain limitations. Blurring, brightening, and darkening of the images reduce
the accuracy of the model. A flat SSA is a rare neoplastic polyp of the colon. This study
proposes using a generative adversarial network (GAN) framework to generate an SSA
database [30], and combining DeblurGAN-v2 and YOLOv5 [31] to improve the sensitivity
of colon polyp detection and classification. After labeling the features of the SSA ground
truth, we used a condition to overlay them on two other polyp images to generate a mimic
image with the same background and SSA features. This technique increases the quantity
and diversity of SSA databases.

Constant searches for polyps and movement of the colonoscope during the procedure
cause polyp blurriness, which reduces the model’s polyp detection ability. Studies have
focused on endoscopic motion blurriness restoration [32–35]. The model is typically trained
using high-definition images, and the detection rate decreases for blurred polyps. Another
adverse effect is an increase in the number of false positives (FP), which distracts the
endoscopist and hampers the adoption of the system.

The following are the contributions of our study to enhanced real-time polyp detection
and classification.

1. For a comprehensive and balanced model of colon polyp classification, the shortage of
an SSA is an issue. We supplemented it with the GAN method and achieved superior
results compared with the data augmentation technique.

2. The blurriness caused by the endoscopy movement decreases polyp detection accu-
racy. We used a motion-blurred restoration model to deblur the images and improve
the detection.

3. Our GAN-generated database on the state-of-the-art YOLOv5 algorithm performs
outstanding compared with other algorithms.

4. The add-on effect of the GAN method increases the accuracy of polyp detection and
classification compared with other studies.

2. Related Studies

Fonollà et al. [18] implemented a computer-aided diagnostic system for colorectal
polyps using a CNN-based image-classification technique. Their dataset included three
enhancement techniques: white light (WL), blue light (BLI), and linked color imaging
(LCI). EfficienNetB4 was used as the CNN architecture. After training the model, 60 new
colorectal polyp images were provided to the computer-aided system and six endoscopists
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for evaluation. The accuracy, specificity, and sensitivity of the six endoscopists were 81.7%,
94.1%, and 61.1%, respectively. For Fonollà’s model, the results were 95.0%, 93.3%, and
95.6%, respectively. The specificity of the model was slightly lower than that of endoscopists.
The other parameters were significantly higher than those of endoscopists. In terms of
sensitivity, the model resulted in better identification of potential neoplastic polyps.

Qadir et al. [26] used the Mask R-CNN architecture for implementation and applied
the same datasets CVC-ClinicDB and ETIS-Larib from MICCAI 2015 as Brandao et al. [36].
They used the data augmentation method proposed by Shin [13], and Mask R-CNN models
with Resnet50, Resnet101, and Inception Resnet as the backbone were learned through
transfer learning using pre-trained parameters from Microsoft’s COCO. The results revealed
a recall of 64.42% and a precision of 70.23% for Resnet50. For Resnet101, a recall of 72.59%
and a precision of 80.0% were shown. In addition, the recall of Inception ResNet was 64.9%,
and the precision was 77.6%. Resnet101 showed the best polyp-detection performance.

Li et al. [28] implemented a computer-aided diagnostic system using a convolutional
neural network (CNN) image classification technique. Acquiring a polyp dataset from a
collaborating hospital is expensive; thus, the authors obtained a free dataset collected from
public websites such as YouTube, VideoGIE, and Vimeo. A total of 23 videos ranging from 1
to 41 min long were obtained, and the extracted images were augmented through panning,
flipping, and blurring. The final dataset consisted of 15,270 images of polyps, including
2310 SSA images and 20,625 background images. The AlexNet transfer learning technique
was used with pre-trained parameters from ImageNet on Caffe. The final AlexNet model
achieved a sensitivity of 73% and a specificity of 96%. This sensitivity was lower than the
90% reported in other studies. However, its specificity was higher than that reported in
other studies (80%).

Shin et al. [29] used the CVC-ClinicDB dataset from MICCAI 2015. The considerable
diversity in polyps made the public database unrealistic in terms of model training. Sim-
ilar polyps and backgrounds appear repeatedly, affecting the detection rate of the object
detection model. Therefore, we used a conditional GAN approach to enhance the dataset.
They first outlined the polyps in white and marked all their ground truths with a white
background. The remaining images are marked in black. The contour was treated as a
condition, and the original image was treated as the correct answer for conditional GAN
training. The generator had a normal five-layer U-Net architecture and replaced the original
convolution with a dilated convolution, which obtained a wider range of features and
reduced the size of the final feature map. After training, the GAN was provided with a
contour map to generate the corresponding polyp. They pasted a white background of
the ground truth polyp on the colon image without a polyp to simulate a real polyp in the
colon mucosa. This fake contour map was included in the trained GAN to generate the
corresponding fake polyp. In total, 372 fake images were generated. Fake and real images
were trained using a Faster R-CNN model. The precision was 67.2% without GAN and 79%
with GAN, whereas the recall was 61% without GAN and 75% with GAN. Both parameters
revealed that the model trained using GAN achieved better results.

In addition to the above-mentioned image classification techniques used to determine
the presence of polyps, studies using object detection techniques for searching the ground
truth of polyps have also been conducted. Fan et al. [37] used Res2Net as the base architec-
ture. Unlike Res2Net, which integrates all layers, the authors discarded the information of
the low-level layers (the first two layers of the network) and used a parallel partial decoder
to aggregate only the high-level layers (the last three layers of the network). Their study
used reverse attention to identify the areas of a polyp by removing foreground objects.
The mean dice indicator was 0.899. Brandao et al. [36] used a fully convolutional network
(FCN) architecture, replacing the fully connected layers of the network with inverse con-
volutional layers, restoring the image size by upsampling the feature map, and marking
the location of the polyps. The backbone networks AlexNet, GoogLeNet, and VGG were
used. CVC-ClinicDB was used as the training dataset, and ETIS-Larib was used as the test
dataset. Both are from the 2015 MICCAI competition.When applying FCN-AlexNet, a recall
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of 63.78% and precision of 44.08% were attained; for FCN-GoogLeNet, a recall of 65.76%
and precision of 41.85% were achieved; and for FCN-VGG, a recall of 86.31% and precision
of 73.61% were achieved. FCN-VGG exhibited the best polyp detection performance.

Debesh et al. [38] applied an image-segmentation method to a medical database.
They used the CVC-ClinicDB dataset from MICCAI, 2015. There are two types of image-
segmentation techniques: FCN and U-Net. The DoubleU-Net architecture was developed
based on U-Net. The first U-Net encoder used the VGG19. The single block of the decoder
was a 2 × 2 bilinear upsampling layer, and the corresponding VGG-19 feature map was
then concatenated, followed by a convolution layer and a batch normalization layer. The
inputs of the second U-Net were the inputs and outputs of the first U-Net. The encoder
block had two convolution layers and one batch normalization layer, which reduced the
internal co-variant. Although the structure of the decoder block was the same as that of the
first U-Net, the decoder of the second U-Net used both VGG-19 feature maps and its own
feature map from the encoder. The final output was the result of an output concatenated
from the two versions of the U-Net. DoubleU-Net was used to recognize the CVC-Clinic
data and obtained a recall of 0.85, which was higher than that of the traditional U-Net at
0.79. In addition, the precision of 0.96 was higher than that of U-Net at 0.93, and the mIoU
at 0.86 was higher than that of U-Net at 0.79.

The real-time application of a trained object detection model is crucial. Many object
detection models have achieved a high detection rate with a low frame rate. YOLOv5 [27]
has high detection and frame rates and is a one-stage object-detection model suitable for
the main algorithm described in this study.

3. Materials and Methods

The colonoscopy images were based on colonoscopies performed with high-definition
colonoscopes (CF-H290I; Olympus, Tokyo, Japan) at Dalin Tzu Chi Hospital, a teaching
hospital in Taiwan, from July 2021 to January 2022, with the approval of the Institutional
Review Board (B11003002). The polyp detection experiments were divided into two parts:
the training of a conditional GAN and YOLO. Three models were trained to generate the
TA, SSA, and HP images. SSA images are scarce in the real world, whereas those of the other
two polyp types are common. The GAN model was trained using all three polyp types
under the same conditions. In Section 3.10, the detailed amount and type of experimental
data are explained. The performance indicators are explained in Section 3.11.

3.1. Modifying the Aspect Ratios of GAN Training Data

The original training dataset had three resolutions of 640 × 480, 720 × 480, and
1980 × 1080 pixels. The GAN model training process consumed a large amount of GPU
resources, and all images were scaled to the same pixel resolution of 512 × 512 pixels.

3.2. GAN Training Data Labeling

“LabelMe” was used to label the GAN training data, allowing the user to click on
multiple dots next to the polyps to form an irregularly shaped part of the image. It
generated a JSON file that recorded the locations of all dots. Each point coordinate in the
JSON file was converted into an image, resulting in the example shown in Figure 1. The
red part represents the labeled polyp, and the black block represents the background.

3.3. Finding Contours Using the Canny Algorithm

The Canny edge algorithm was used to detect the contours of the polyp image, and
its input was restricted to grayscale images. The RBG three-channel colon polyp image
was converted to a grayscale image. Canny edge detection is a fast process that is easily
affected by noise and overmarked contours. Gaussian blurring was therefore implemented
to eliminate noise in an image prior to Canny edge detection. The kernel of the Gaussian
filter was set to (9 × 9), and the “color σ” (standard deviation of the color space) was set
to zero. The larger the “color σ, the greater the weight of the point farther from the center.
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There were two threshold values for the Canny edge detection, and the level of detail of the
contour map differed depending on the threshold value. After the tests were conducted, a
small threshold value of 60 and a large threshold value of 100 were found to be the most
effective for marking the contours of the polyp images (Figure 2).

Diagnostics 2023, 13, x FOR PEER REVIEW 5 of 20 
 

 

file was converted into an image, resulting in the example shown in Figure 1. The red part 
represents the labeled polyp, and the black block represents the background. 

 
Figure 1. “LabelMe” labeled polyp and background. 

3.3. Finding Contours Using the Canny Algorithm 
The Canny edge algorithm was used to detect the contours of the polyp image, and 

its input was restricted to grayscale images. The RBG three-channel colon polyp image 
was converted to a grayscale image. Canny edge detection is a fast process that is easily 
affected by noise and overmarked contours. Gaussian blurring was therefore imple-
mented to eliminate noise in an image prior to Canny edge detection. The kernel of the 
Gaussian filter was set to (9 × 9), and the “color σ” (standard deviation of the color space) 
was set to zero. The larger the “color σ, the greater the weight of the point farther from 
the center. There were two threshold values for the Canny edge detection, and the level 
of detail of the contour map differed depending on the threshold value. After the tests 
were conducted, a small threshold value of 60 and a large threshold value of 100 were 
found to be the most effective for marking the contours of the polyp images (Figure 2). 

  

  

Figure 2. Canny edge marking the contour of a detected polyp. 

3.4. Overlaying a Contour Map on a Ground Truth Map 

Figure 1. “LabelMe” labeled polyp and background.

Diagnostics 2023, 13, x FOR PEER REVIEW 5 of 20 
 

 

file was converted into an image, resulting in the example shown in Figure 1. The red part 
represents the labeled polyp, and the black block represents the background. 

 
Figure 1. “LabelMe” labeled polyp and background. 

3.3. Finding Contours Using the Canny Algorithm 
The Canny edge algorithm was used to detect the contours of the polyp image, and 

its input was restricted to grayscale images. The RBG three-channel colon polyp image 
was converted to a grayscale image. Canny edge detection is a fast process that is easily 
affected by noise and overmarked contours. Gaussian blurring was therefore imple-
mented to eliminate noise in an image prior to Canny edge detection. The kernel of the 
Gaussian filter was set to (9 × 9), and the “color σ” (standard deviation of the color space) 
was set to zero. The larger the “color σ, the greater the weight of the point farther from 
the center. There were two threshold values for the Canny edge detection, and the level 
of detail of the contour map differed depending on the threshold value. After the tests 
were conducted, a small threshold value of 60 and a large threshold value of 100 were 
found to be the most effective for marking the contours of the polyp images (Figure 2). 

  

  

Figure 2. Canny edge marking the contour of a detected polyp. 

3.4. Overlaying a Contour Map on a Ground Truth Map 

Figure 2. Canny edge marking the contour of a detected polyp.

3.4. Overlaying a Contour Map on a Ground Truth Map

After generating a contour map, the polyp contours were pasted onto the ground-truth
map marked in Section B. The Canny contour map is a single-channel greyscale image. The
Canny contour map was first converted into a three-channel RGB color map, which was
pasted on the red ground truth map (Figure 3).

3.5. Overlaying the Ground Truth Map onto the Original Image

We trained the conditional GAN to generate images of different types of polyps
with the same background. To maintain the stability of the generated background, the
ground truth part of the original image was changed into an image from the previous step
(Figure 4).
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3.6. Conditional GAN Architecture

This study applied a conditional GAN framework, which differs from a general
GAN. The input was not a random number but a conditional image allowing the GAN
to generate an image corresponding to the condition. The condition was the conditional
graph generated in Section E, and the target image we intended to generate was the target
image mentioned later. The target image is the original true image. A fake image generated
by the generator is called a generated image. First, the conditional image was sent to
the generator to generate the corresponding image. The target image, conditional image,
and generated image were then sent to the discriminator to determine whether they were
true or fake, and gradients were applied. The GAN generator used was a DoubleU-Net
proposed by Jha et al. [38], which performed better than Unet and its extensions in the
image segmentation of medical images. We discarded the original five-layer U-Net in the
original study on a conditional GAN, replaced it with DoubleU-Net, and modified several
parameters to fit the output. Figure 5 shows the architecture of the DoubleU-Net model.

Encoder 1 is a VGG19, followed by an ASPP, which helps extract high-resolution
feature maps, followed by decoder block 1 (1-1 through 1-4). A decoder block contains
2 × 2 bilinear up-sampling, which can double the size of the image, concatenate the corre-
sponding VGG feature maps, and then connect to the convolution and batch normalization
layers. The original DoubleU-Net output 1 generates a single-channel image with a black
background and a white area for the polyp. Our model generated a three-channel polyp
image. We simulated the FCN approach and directly output a three-channel image by
removing the sigmoid layer. The first input (input of U-net 1) and output 1 were multiplied
by the input of the second U-Net and entered into encoder block 2 (2-1 through 2-4). Each
Encoder block has two convolution layers followed by a batch normalization layer and
is then connected to the squeeze_exite_block to enhance the quality of the feature maps.
Squeeze_excite_block contains GlobalAveragePooling2D and two dense layers and is then
connected to an ASPP and Decoder block 2 (2-1 through 2-4). In the last step, an additional
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deconvolution (Conv2DTranspose) is added to convert the result of the concatenation into
a new feature map. The result of concatenation was transformed to be the same size as the
original image.
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The discriminator network was ResNet50. The architecture was imitated from Patch-
GAN, which turned the final output into a 30 × 30 × 1 tensor. The determined input
was a true image based on these 900 results. There were two types of inputs for the dis-
criminator. The first input is the conditional and target images generated by Section E
(which should be judged as true), and the second is the conditional and generated images
(which should be judged as false). When applying the gradient process, the conditional
images are concatenated with a target or generated image. A Conv2DTranspose layer was
applied to match the input size of ResNet50 and input into ResNet50. ResNet50 uses the
pre-trained ImageNet weight and removes the top layer. The feature map slowly decreased
in size, and thus inverse convolution, ZeroPadding, convolution, BatchNormalization,
LeakyReLU, ZeroPadding, and finally, a convolution layer was added. The output shapes
were set as (30, 30, 1). These 900 parameters were used to determine the truth or falsity of
images. The loss function is based on the manner in which the PatchGAN is expressed.
The original discriminator output of the binary value (real and fake) is converted into a
30 × 30 × 1 matrix, which is then used to discriminate between real and fake images with
a matrix shape of 30 × 30 × 1 made up of all zeros and 1s. A GAN has two networks, a
generator, and a discriminator, each of which has its own loss function. Figure 6 shows the
loss calculation process for the generator. The loss function of the generator consists of two
main losses, one of which is the binary cross-entropy, which calculates the (30, 30, 1) output
of the discriminator. The other has the same shaped matrix, where all values are 1s. The
other loss was the L1 mean absolute error (MAE) loss, which is the average absolute value
of the generated images minus the target images. With these two losses, the total loss was
calculated, and the algorithm was the binary cross-entropy loss + (LAMBDA × L1 loss),
where LAMBDA was changeable and set to 100 to apply the gradients.
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Figure 7 shows the loss calculation process of the discriminator, which received two
sets of images: the first was a conditional image and a generated image, and the second
was a conditional image and a target image. Binary cross-entropy was calculated for both
groups. As the difference between groups, the first was calculated with the same shape
(30, 30, 1), and zero was applied for all values, whereas the values of the other group were
all 1 s. This method was used because the discriminator classified the generated image as a
negative sample. The loss with (30, 30, 1) was calculated as all 0 s, and the discriminator
was used to classify the target image as a positive sample. The loss with (30, 30, 1) was
calculated using all 1s. Finally, the discriminator loss algorithm was binary cross-entropy
(0 s) + binary cross-entropy (1 s) and gradients were applied.
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3.7. Comparison of GAN Output

The original conditional GAN (Pix2Pix) was compared with the proposed GAN. The
input size of the two GANs was 512 × 512 pixels. The differences between the three types
of polyp images generated by the two models and the original images were compared. The
variables are Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM).
These two variables are introduced below: In addition to comparing these two variables, a
visualized comparison of the two GAN-generated images is also attached.

3.7.1. Peak Signal-to-Noise Ratio (PSNR)

The PSNR expresses the pixel difference between two images and is often used to
measure the signal reconstruction quality when compressing the images. The PSNR is
defined as a simple MSE error in Equation (1):

MSE =
1

mn ∑m−1
i=0 ∑n−1

j=0 [I(i, j)− K(i, j)]2 (1)

where mn represents the size of the image (length × width), I and K are two different
images, and (i, j) is the value of the image at pixel position (i, j). This equation represents
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the sum of the squares of the disparity between images I and K at each pixel divided by the
image size. In addition, the peak signal-to-noise ratio is defined by Equation (2).

PSNR = 10· log10

(
MAXI

2

MSE

)
= 20· log10

(
MAXI√

MSE

)
(2)

where MAXI is the maximum value. If each point is represented by 8 bits, the total value is
255. The PSNR algorithm is the square of MAXI divided by the MSE and multiplied by 10.
If the pixel gap between the two images is smaller, the value of the MSE is smaller, and the
PSNR of these two images will become larger, which means that the two images are similar.

3.7.2. Structural Similarity Index Measure (SSIM)

The SSIM is an index used to measure the similarity between two images. Compared
with the PSNR, the SSIM is more in line with the human judgment of image quality. Given
two signals x and y, the SSIM is defined by Equation (3).

SSIM(x, y) = [l(x, y)]α[c(x, y)]β[s(x, y)]γ

l(x, y) = 2µxµy+C1
µx2+µy2+C1

, c(x, y) = 2σxσy+C2
σx2+σy2+C2

, s(x, y) = σxy+C3
σxσy+C3

(3)

where l(x, y) compares the brightness of x and y, c(x, y) compares the contrast of x and y,
and s(x, y) compares the structure of x and y. In addition, α, β, and γ are the parameters
used to adjust the relative importance of l(x, y), c(x, y), and s(x, y), all of which should be
greater than zero. In addition, µx and µy represent the mean of x and y, respectively; σx
and σy represents the standard deviations of x and y; and σxy represents the covariance of
x and y. Moreover, C1, C2, and C3 are constants. If there are two identical images, that is
µx = µy and σx = σy, then SSIM = 1. The SSIM is close to 1, and the similarity between the
two images is greater. To simplify its use, the SSIM is generally set to α = β = γ = 1 and
C3 = C2/2. The simplified equation is as follows:

SSIM(x, y) =

(
2µxµy + C1

)(
2σxy + C2

)(
µx2 + µy2 + C1

)(
σx2 + σy2 + C2

) (4)

3.8. YOLO Data Labeling

The labeling tool of YOLO is LabelImg, which pulls a box around the target object
(bounding box) and assigns a corresponding number or class name to the bounding box,
resulting in a record file labeled Pascal VOC. An experienced endoscopist labeled the image
data. The GAN-generated images and the original images share Pascal VOC because the
polyp positions on both images are the same. The difference lies in the change in the class
name. For example, the class name of the original image converted from a TA image to an
SSA image is changed to SSA. However, the position of the polyp remained unchanged,
and the bounding box of Pascal VOC was maintained.

3.9. YOLO Data Augmentation

For data augmentation, the following methods and rules were used to generate the
two augmented images:

(a) A random rotation of the image within plus or minus 45 degrees.
(b) Random horizontal and vertical shifts of 20% were made toward the left and right

sides of the image, respectively.
(c) Random zoom in or out of the image (80–120% of the original image).
(d) We ensured that the ground truth remained in the image when the above actions

were conducted.
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3.10. Training YOLO

The parameters of YOLO were as follows. The image length and width were set to
608. The batch size was set to 16 because of the GPU memory shortage. The number of
training epochs was set to 6000, and the learning rate was set to 0.001. All the other training
parameters were the same as those used in the original YOLO. We collected the original
TA, SSA, and HP images reviewed by our certified and experienced pathologists. Then, we
extracted the images from the pre-recorded videos during colonoscopy. The SSA, TA, and
HP groups each had 700 images and were divided into training, validation, and testing
groups. There were 600, 50, and 50 images for training, validation, and testing, respectively.
All three polyp-type images were randomly selected and were not repeated. The “Ori”
label was used to represent the 600 SSA, TA, and HP training images. The label “Aug”
represents the augmented images, and “N GAN” indicates the images generated using the
original data and N GAN data. Additionally, 150, 300, 450, and 600 GANs were compared.
Here, 150 GAN indicates 150 images using 50 images for each of the three classes. Several
models were trained, as shown in Table 1, and were divided into the original dataset (Ori),
a dataset trained with the original data plus data augmentation (Ori + Aug), and a dataset
trained with the original data and GAN data. To determine whether the number of images
used in the GAN affected the accuracy, all GAN data were separated, and a total number
of 600 GANs were applied.

Table 1. Training image data distribution.

Ori

Ori + Aug

Ori + 150 GAN

Ori + 300 GAN

Ori + 450 GAN

Ori + 600 GAN

3.11. Comparison of Model Metrics

The true positive (TP), false positive (FP), false negative (FN), precision, recall, average
precision (AP) of the three categories, mean average precision (mAP), and IoU (Figure 8)
were compared. Precision and recall were evaluated by drawing a curve-treated precision
as the y-axis and recall as the x-axis of the detected object. The curve is labeled as a PR
curve, and the area under the curve indicates the AP of the class. The mAP is the average
of all AP values. To avoid the result from being affected by a single model, we tested each
model five times and averaged the results.

precision =
TP

TP + FP
(5)

recall =
TP

TP + FN
(6)Diagnostics 2023, 13, x FOR PEER REVIEW 11 of 20 
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3.12. Gaussian Blurring of the Test Video

Gaussian blurring was used to adjust the frames of the video to simulate the blurred
images from movement during colonoscopy. The average blurring algorithm was not used
because it produces unnatural images. The average blurring aims to turn each point in the
picture into the average of all points next to it. If the kernel was set to (3 × 3), the center
point was the average of eight surrounding points, whereas if the kernel was (5 × 5), it was
an average of 24 surrounding points in two circles, and so on.

The weight of the kernel setting is positively related to the distance from the point to
the center and not the average of all points, regardless of the distance. We used Gaussian
blur to blur the video, which calculated the normal distribution of the two-dimensional
space and assigned a weight to each point in the kernel (including the center point), with a
total weight of 1. The color σ (standard deviation of the color space) was set to effectively
simulate movement during colonoscopy. This value indicates that the points farther from
the center have more weight, which produces a more blurred image. In this study, the
kernel setting was (15 × 15), and the color σ was set to 10.

After blurring the video, DeblurGAN-v2 deblurring was applied. The pretrained
InceptionResNet-v2 architecture of DeblurGAN-v2 was used, which achieved a better
deblurring effect than other generator networks, such as MobileNet. The training data were
obtained from the GoPro dataset containing 3214 high-definition photographs captured by
a GoPro Hero 4 camera.

3.13. Evaluating the Deblurring Effect

Ten-fold cross-validation was applied to another YOLO model, which classified the
images into two classes (neoplastic and non-neoplastic). The test images were the test sets
in ten-fold cross-validation, and the test data were Gaussian filtered and DeblurGAN-v2.
The detection process is illustrated in Figure 9. The metrics that were compared were TP,
FP, FN, precision, recall, F1, SSA_AP, TA_AP, mAP, and IoU.
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4. Results
4.1. Comparison of GAN-Generated Images

The original Pix2Pix architecture (512 pixels × 512 pixels) was compared with the
proposed conditional GAN composed of DoubleU-Net and ResNet50. The SSIM and PSNR
values of the three classes (HP, TA, and SSA) were compared. These metrics indicate the
similarity between and structure of the generated and original images. The PSNR was
rounded to the first decimal place, and the SSIM was rounded to the second decimal place.
The quality of the generated images was compared visually. SSIM and PSNR are compared
in Tables 2–4.

Table 2. Comparison of SSIM and PSNR for HP.

Avg of PSNR Avg of SSIM

Pix2Pix 24.4 0.92

Ours 25.7 0.93
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Table 3. Comparison of SSIM and PSNR for SSA.

Avg of PSNR Avg of SSIM

Pix2Pix 21.4 0.86

Ours 21.7 0.90

Table 4. Comparison of SSIM and PSNR for TA.

Avg of PSNR Avg of SSIM

Pix2Pix 22.8 0.80

Ours 23.4 0.82

The SSIM approximates 1, and a larger PSNR indicates a better performance. DoubleU-
Net and ResNet50 demonstrated superior performances for all three categories. For the
PSNR of HP, DoubleU-Net and ResNet50 were 1.3 higher than those of Pix2Pix, and the
SSIM was 0.1 higher. For the PSNR of SSA, DoubleU-Net and ResNet50 were 0.3 higher
than those of Pix2Pix, and the SSIM was 0.4 higher. For the PSNR of TA, DoubleU-Net
and ResNet50 were 0.6 higher than those of Pix2Pix, and the SSIM was 0.2 higher. For the
PSNR metric, HP achieved the best performance, followed by TA, and SSA. For the SSIM
metric, HP performed the best, followed by SSA and TA. This study speculated that HP
generated better images, probably because HP had fewer feature details and GAN learned
limited features. The GAN performed best for the HP images. In contrast, SSA and TA had
complicated features, and GAN achieved suboptimal performance. Figures 10–12 show the
images generated by Pix2Pix (left) and GAN (right).
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The output of Pix2Pix on the background was almost the same as that of DoubleU-Net
and ResNet50 GAN (Figure 12). Our GAN had fewer artificial artifacts than Pix2Pix, and
its overall appearance was better.

4.2. Comparison of YOLO Using Different Datasets

Six YOLO models were trained. Here, Ori indicates the original data, Ori + Aug is
the original data with data augmentation, and NGAN represents the original data with N
GAN-generated images. In total, 150, 300, 450, and 600 GANs were compared. The data
are the average results obtained after five training sessions.

The results were similar to those of the larger GAN datasets (Table 5). For the best
performance, with the highest TP, precision, and recall, and the lowest FP and FN, was
150 GAN. In addition, 450 GAN and 600 GAN achieved a higher FP, presumably because
of the misjudgment of YOLO when using a large amount of GAN data. The size of the
GAN dataset should be adjusted appropriately.

Table 5. Comparison of TP, FP, FN, and precision recall for a GAN.

TP FP FN Precision Recall

Ori 102.0 49.6 68.0 0.67 0.60

Ori + Aug 105.4 47.8 64.6 0.69 0.62

150 GAN 111.4 47.6 58.6 0.70 0.66

300 GAN 110.8 49.8 59.2 0.69 0.65

450 GAN 106.0 54.8 64.0 0.66 0.62

600 GAN 109.6 53.8 60.4 0.67 0.65

Here, 300 GAN achieved the highest AP for both SSA and TA, whereas 150 GAN
achieved the highest AP for HP (Table 6). All GAN models had a higher mAP than that
of the Ori model. The mAP of both 450 and 600 GAN was lower than that of Ori + Aug.
The mAP values of the 150 GAN and 300 GAN were higher than those of Ori + Aug. These
findings are consistent with the results presented in Table 5. We speculate that the excessive
GAN data may have misled the model. In conclusion, the GAN data with 1/12 of the
training data achieved the best performance.

4.3. Comparison of Gaussian Blur and DeblurGAN-v2

The Gaussian blurred images and those generated by DeblurGAN-v2 were compared
visually. Figure 13 shows the Gaussian blurred image, Figure 14 shows the DeblurGAN-v2
deblurred image, and Figure 15 shows the zoomed-in images.
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Table 6. Comparison of AP, mAP, and IoU (GAN).

SSA TA HP mAP IoU

Ori 52.03% 72.42% 75.72% 66.71% 54.83%

Ori + Aug 53.56% 72.55% 76.98% 67.70% 55.26%

150 GAN 54.08% 75.17% 80.97% 70.07% 57.24%

300 GAN 54.60% 75.41% 77.36% 69.12% 55.53%

450 GAN 51.56% 71.62% 77.66% 66.95% 53.44%

600 GAN 50.59% 72.23% 78.96% 67.26% 54.25%

Diagnostics 2023, 13, x FOR PEER REVIEW 14 of 20 
 

 

Table 6. Comparison of AP, mAP, and IoU (GAN). 

 SSA TA HP mAP IoU 
Ori 52.03% 72.42% 75.72% 66.71% 54.83% 

Ori + Aug 53.56% 72.55% 76.98% 67.70% 55.26% 
150 GAN 54.08% 75.17% 80.97% 70.07% 57.24% 
300 GAN 54.60% 75.41% 77.36% 69.12% 55.53% 
450 GAN 51.56% 71.62% 77.66% 66.95% 53.44% 
600 GAN 50.59% 72.23% 78.96% 67.26% 54.25% 

4.3. Comparison of Gaussian Blur and DeblurGAN-v2 

The Gaussian blurred images and those generated by DeblurGAN-v2 were com-
pared visually. Figure 13 shows the Gaussian blurred image, Figure 14 shows the Deblur-
GAN-v2 deblurred image, and Figure 15 shows the zoomed-in images. 

 
Figure 13. Gaussian blurred image. 

 
Figure 14. DeblurGAN-v2 deblurred image. 

  
(a) (b) 

Figure 15. Zoomed-in image. (a) Gaussian blur; (b) DeblurGAN-v2. 

The deblurring effect of DeblurGAN-v2 is shown with white dots (Figure 14). The 
white dots and polyps were blurred, and the borders were indistinguishable (Figure 13). 
After the deblurring effect was achieved by DeblurGAN-v2, the white dots became dis-
tinguishable from the background. 

Figure 13. Gaussian blurred image.

Diagnostics 2023, 13, x FOR PEER REVIEW 14 of 20 
 

 

Table 6. Comparison of AP, mAP, and IoU (GAN). 

 SSA TA HP mAP IoU 
Ori 52.03% 72.42% 75.72% 66.71% 54.83% 

Ori + Aug 53.56% 72.55% 76.98% 67.70% 55.26% 
150 GAN 54.08% 75.17% 80.97% 70.07% 57.24% 
300 GAN 54.60% 75.41% 77.36% 69.12% 55.53% 
450 GAN 51.56% 71.62% 77.66% 66.95% 53.44% 
600 GAN 50.59% 72.23% 78.96% 67.26% 54.25% 

4.3. Comparison of Gaussian Blur and DeblurGAN-v2 

The Gaussian blurred images and those generated by DeblurGAN-v2 were com-
pared visually. Figure 13 shows the Gaussian blurred image, Figure 14 shows the Deblur-
GAN-v2 deblurred image, and Figure 15 shows the zoomed-in images. 

 
Figure 13. Gaussian blurred image. 

 
Figure 14. DeblurGAN-v2 deblurred image. 

  
(a) (b) 

Figure 15. Zoomed-in image. (a) Gaussian blur; (b) DeblurGAN-v2. 

The deblurring effect of DeblurGAN-v2 is shown with white dots (Figure 14). The 
white dots and polyps were blurred, and the borders were indistinguishable (Figure 13). 
After the deblurring effect was achieved by DeblurGAN-v2, the white dots became dis-
tinguishable from the background. 

Figure 14. DeblurGAN-v2 deblurred image.

Diagnostics 2023, 13, x FOR PEER REVIEW 14 of 20 
 

 

Table 6. Comparison of AP, mAP, and IoU (GAN). 

 SSA TA HP mAP IoU 
Ori 52.03% 72.42% 75.72% 66.71% 54.83% 

Ori + Aug 53.56% 72.55% 76.98% 67.70% 55.26% 
150 GAN 54.08% 75.17% 80.97% 70.07% 57.24% 
300 GAN 54.60% 75.41% 77.36% 69.12% 55.53% 
450 GAN 51.56% 71.62% 77.66% 66.95% 53.44% 
600 GAN 50.59% 72.23% 78.96% 67.26% 54.25% 

4.3. Comparison of Gaussian Blur and DeblurGAN-v2 

The Gaussian blurred images and those generated by DeblurGAN-v2 were com-
pared visually. Figure 13 shows the Gaussian blurred image, Figure 14 shows the Deblur-
GAN-v2 deblurred image, and Figure 15 shows the zoomed-in images. 

 
Figure 13. Gaussian blurred image. 

 
Figure 14. DeblurGAN-v2 deblurred image. 

  
(a) (b) 

Figure 15. Zoomed-in image. (a) Gaussian blur; (b) DeblurGAN-v2. 

The deblurring effect of DeblurGAN-v2 is shown with white dots (Figure 14). The 
white dots and polyps were blurred, and the borders were indistinguishable (Figure 13). 
After the deblurring effect was achieved by DeblurGAN-v2, the white dots became dis-
tinguishable from the background. 
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The deblurring effect of DeblurGAN-v2 is shown with white dots (Figure 14). The
white dots and polyps were blurred, and the borders were indistinguishable (Figure 13).
After the deblurring effect was achieved by DeblurGAN-v2, the white dots became distin-
guishable from the background.
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4.4. Comparison of YOLO Using DeblurGAN-v2

Here, “G” indicates the results of Gaussian blur, and “D” shows the results of
DeblurGAN-v2. The tested models were classified into two classes (neoplastic and nonneo-
plastic). The following tables show the average results of the ten-fold cross-validation test
presented in Table 7. TP, FP, and FN included decimal points, and precision, recall, and F1
were rounded to the second decimal place. The performance indicators are represented
by real numbers in Tables 5 and 7, as we used a 10-fold cross validation mechanism in
the experiment.

Table 7. Comparison of TP, FP, FN, precision, and recall (Deblur).

TP FP FN Precision Recall F1

G 39.1 60.8 119.8 0.39 0.25 0.30

D 43.3 63.6 115.6 0.40 0.27 0.33

Table 7 lists the YOLO results of Gaussian blur and DeblurGAN-v2. The TP and FN
of DeblurGAN-v2 achieved better performance. The FP was suboptimal. The precision,
recall, and F1 were improved. Table 8 shows the AP, mAP, and IoU of the Gaussian blur
and DeblurGAN-v2.

Table 8. Comparison of AP, mAP, and IoU (Deblur).

SSA TA mAP IoU

G 26.63% 24.65% 25.64% 28.95%

D 28.47% 33.01% 30.74% 30.46%

Table 8 shows the AP, mAP, and IoU of Gaussian blur and DeblurGAN-v2. All
indicators improved with DeblurGAN-v2, that is, SSA_AP by 1.84%, TA_AP by 8.36%,
mAP by 5.1%, and IoU by 1.51%. Using DeblurGAN-v2 to deblur blurred images improves
the detection rate of the object detection model.

4.5. Performance Comparison with Other Object Detection and Classification Models

To demonstrate the performance of our proposed computer-aided detection/diagnosis
system in comparison with other famous detection and classification models, we trained
YoloV3, YoloV4, YoloR, and YoloX on the same polyp dataset that we used to train the
YoloV5 architecture. The results presented in Tables 9 and 10 reveal that the YoloV5
architecture outperforms other modes in terms of mAP and precision. YoloV5 remains
the best choice for fine-tuning polyp datasets for better detection and classification results.
The experimental results show that the detection and classification of polyps are not
very effective. The main reason for this is that the polyps are too small in colonoscopy
examination and the characteristics of different polyps are very similar, so it is not easy to
distinguish the types. Table 11 shows the analysis of the error range for each value.

Table 9. Comparison of mAP and IoU for different models.

SSA TA HP mAP IoU

Yolov3 33.68% 51.67% 45.74% 43.70% 44.22%

Yolov4 44.72% 73.03% 71.32% 61.72% 52.77%

Yolov5 61.01% 77.97% 78.06% 72.37% 45.80%

YoloR 58.28% 77.18% 76.62% 70.67% 45.83%

YoloX 57.12% 75.79% 76.73% 69.88% 46.12%
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Table 10. Comparison of TP, FP, FN, precision, and recall for different models.

TP FP FN Precision Recall

Yolov3 58.20 36.1 125.7 0.62 0.32

Yolov4 111.1 55.3 72.80 0.67 0.61

Yolov5 138.5 41.2 45.40 0.76 0.67

YoloR 129.5 64.4 54.40 0.67 0.70

YoloX 155.2 67.4 28.70 0.70 0.84

Table 11. The analysis of the error range for each value.

Range of Accuracy Range of Error Standard Deviation

Yolov3 35.8% (min.)~46.8% (max.) 43.70% ± 1.00% 3.27%

Yolov4 59.7% (min.)~66.6% (max.) 61.72% ± 1.52% 2.25%

Yolov5 68.5% (min.)~75.8% (max.) 72.37% ± 0.60% 2.86%

YoloR 64.0% (min.)~73.8% (max.) 70.67% ± 5.01% 3.13%

YoloX 66.4% (min.)~75.5% (max.) 69.88% ± 3.07% 3.27%

4.6. Model Optimization

To improve the classification accuracy of the YOLOv5 model, this study aims to modify
the model’s parameters. The first step is to increase the number of training epochs (which
is set to 300 by default) and the input image size (which is set to 640 by default). According
to the results shown in Table 12, increasing the number of training epochs beyond 350 does
not significantly improve accuracy and may cause overfitting. In addition, increasing the
input image size does not improve the classification accuracy for colorectal polyps and may
even decrease accuracy due to reduced image resolution.

Table 12. The comparison of mAP for different Epochs.

Epochs
Img-Size 640 1280

200 65.47% 52.52%

300 67.06% 59.95%

The highest value 73.47% (Epoch = 352) 66.89% (Epoch = 360)

400 71.71% 61.84%

500 70.29% 64.87%

600 70.25% 62.96%

700 70.45% 62.39%

800 70.65% 63.84%

900 71.35% 62.60%

To further improve the YOLOv5 model, we experimented with different model ar-
chitectures. We evaluated five architectures: YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l,
and YOLOv5x. The number of layers and parameters for each model is shown in Table 13.
The inference speed for all of the models was around 10 milliseconds, with YOLOv5s
being the fastest at approximately 9.8 milliseconds and YOLOv5x being the slowest at
11.2 milliseconds due to its larger number of layers and more complex parameters. In terms
of accuracy, the results in Table 14 show that YOLOv5l had the best overall performance,
with a precision of 80.18%, the highest among the five models. Considering the balance



Diagnostics 2023, 13, 170 17 of 20

between inference speed and accuracy, the YOLOv5l is the most suitable model architecture
for classifying polyps.

Table 13. Parameters for different model architectures.

Model Name Layers Parameters Inference Speed

Yolov5n 213 1,779,460 10.3 ms

Yolov5s 213 7,050,580 9.8 ms

Yolov5m 213 1,779,460 10.2 ms

Yolov5l 367 46,183,668 9.9 ms

Yolov5x 444 86,267,620 11.2 ms

Table 14. The comparison of accuracy for different model architectures.

Yolov5n Yolov5s Yolov5m Yolov5l Yolov5x

Precision 0.7857 0.7452 0.7806 0.8018 0.7559

Recall 0.6874 0.6453 0.6720 0.6765 0.6874

5. Discussion

Colorectal cancer (CRC) is a preventable disease. Early detection of colon polyps
prevents their progression to CRC. Although a computer-aided detection system was
developed to aid endoscopists, misdetection of polyps still occurs. The American Society
for Gastrointestinal Endoscopy proposed a “resect and discard” and “diagnose and leave”
strategy, and suggested leaving a non-neoplastic polyp in situ. Therefore, reliable computer-
aided detection and diagnostic systems are essential. However, a large image database is
required to train a high-accuracy computer-aided diagnosis and classification model. SSA
is a rare type of neoplastic polyp. We used a conditional GAN to generate SSA images to
supplement the database. A contour map combined with a mask filter for the polyps and
background was used as the condition for a conditional GAN. A conditional GAN with
DoubleU-Net used as a generator and ResNet50 used as a discriminator was applied to
overlay different classes of polyps on an original polyp image and to generate a diverse
polyp database. In the YOLO results, the 300 GAN model showed the highest AP of
54.60% and 75.41% for SSA and TA, respectively. This result was better than that of the
data augmentation method, for which the AP of SSA and TA was 53.56% and 72.55%,
respectively. In addition, the 300 GAN model achieved the highest AP, mAP, and IoU of
the HP at 80.97%, 70.07%, and 57.24%, respectively. These results were better than those
of the data augmentation method, which showed values of 76.98%, 67.70%, and 55.26%,
respectively. It is important to note that the GAN data achieved better results, and the
amount of GAN data should be appropriately adjusted.

Blurred images that occur during a colonoscopy procedure are another issue. A
blurred image misleads the object detection model, and an endoscopist might, therefore,
miss a polyp. The DeblurGAN-v2 was used to address this issue. We used a Gaussian filter
to simulate a blurred image taken during colonoscopy and then applied DeblurGAN-v2
to deblur the image. The results indicate that, although the use of DeblurGAN-v2 might
increase FP, better TP, FN, precision, recall, F1, mAP, and IoU are achieved. The mAP
increased by 5.1%, from 25.64% to 30.74%. All results indicate that using the proposed
GAN and DeblurGAN-v2 improves colon polyp detection capability during colonoscopy.

Our study had several limitations. First, the images were obtained from a single
hospital. Datasets from different locations could increase the accuracy of the model. Second,
the images used to establish the model were selected to avoid duplicate polyps. Increasing
the number of single-polyp images is challenging because it requires a large number of
patients. Third, our model for detection and classification works effectively in real-time.
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Implementation in a real clinical scenario requires further investigation. The application of
the model in a real-time colonoscope and conducting a clinical study will be the subject of
a future study.

6. Conclusions

Our data showed that the polyp detection accuracy after implementing the proposed
GAN method to generate rare polyp images was better than that obtained with the com-
monly used augmentation technique. The results indicated that an optimal sample number
was crucial for achieving a better GAN outcome compared with non-GAN training. Colon
polyp detection and classification sensitivity were improved with GAN and DeblurGAN-v2
combined with the YOLOv5 method.
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