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Abstract

Background

Diabetic retinopathy is a frequent complication of diabetes mellitus and a leading cause of

blindness in adults. The objective of this study was to elucidate the diabetic retinopathy

pathophysiology in more detail by comparing protein alterations in human vitreous of differ-

ent diabetic retinopathy stages.

Methods

Vitreous samples were obtained from 116 patients undergoing pars plana vitrectomy. Quan-

titative immunoassays were performed of angiogenic factors (VEGF-A, PIGF, Angiopoietin-

1, Angiopoietin-2, Galectin-1) as well as cytokines (IL-1β, IL-8, IFN-γ, TNF-α, CCL3) in sam-

ples from control patients (patients who don’t suffer from diabetes; n = 58) as well as diabe-

tes mellitus patients without retinopathy (n = 25), non-proliferative diabetic retinopathy (n =

12), and proliferative diabetic retinopathy patients (n = 21). In addition, correlation analysis

of protein levels in vitreous samples and fasting glucose values of these patients as well as

correlation analyses of protein levels and VEGF-A were performed.

Results

We detected up-regulated levels of VEGF-A (p = 0.001), PIGF (p<0.001), Angiopoietin-1 (p

= 0.005), Angiopoietin-2 (p<0.001), IL-1β (p = 0.012), and IL-8 (p = 0.018) in proliferative

diabetic retinopathy samples. Interestingly, we found a strong positive correlation between

Angiopoietin-2 and VEGF-A levels as well as a positive correlation between Angiopoietin-1

and VEGF-A.

Conclusion

This indicated that further angiogenic factors, besides VEGF, but also pro-inflammatory

cytokines are involved in disease progression and development of proliferative diabetic reti-

nopathy. In contrast, factors other than angiogenic factors seem to play a crucial role in non-
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proliferative diabetic retinopathy development. A detailed breakdown of the pathophysiology

contributes to future detection and treatment of the disease.

Introduction

Diabetic retinopathy (DR) occurs as a secondary disease of diabetes mellitus (DM), affects

adults aged 20–74 in developed countries, and is one of the most common causes for new cases

of blindness [1]. As a result, patients who are already impacted by DM are confronted with the

social as well as the economic burden of visual impairment and blindness through DR [2].

DR can be subdivided into different stages, starting with the early stage of mild non-prolif-

erative DR (NPDR) and further progressing to the proliferative DR (PDR) stage. NPDR is

mainly characterized by vascular changes and circulatory defects, whereas PDR is character-

ized by pathological preretinal neovascularization [3, 4]. Based on the various DR stages,

which are associated with different mechanisms or factors that contribute to its development,

it is crucial to take these stages into account when studying DR.

As in other neurodegenerative diseases, inflammation plays a pivotal role in DR pathogene-

sis. By upregulating various inflammatory factors, phagocytic monocytes/macrophages and

microglial cells are recruited, which in turn release various cytotoxic cytokines [5, 6]. Cyto-

kines that mainly seem to play a role in the development of retinopathy in DM are the pro-

inflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor (TNF)-α, as

well as the chemokine IL-8 as these are elevated in vitreous samples from PDR patients [7–11].

In our previous study, we were also able to detect an up-regulation of the pro-inflammatory

cytokines IL-1ß and IFN-γ but the pro-inflammatory cytokine IL-6 as well as the anti-inflam-

matory cytokines IL-2, IL-4, and IL-13 were not altered in the vitreous of DR patients [12]. In

this previous study we did not differentiate between different DR stages.

In addition to inflammatory processes neovascularization is the main hallmark of DR path-

ogenesis and VEGF is postulated to be a key regulator of PDR [13]. In addition to VEGF,

recent research has shown that the angiopoietin family also plays an important role in regulat-

ing the growth of new blood vessels [14]. In this process Angiopoietin-1 and 2 are acting ago-

nistically and antagonistically [15]. Angiopoietin-1, predominantly promotes endothelial cell

survival in vitro [16] and dose-dependently blocks diabetic damage to the blood-retinal barrier

[17], suggesting that Angiopoietin-1 has a protective effect against DR. In contrast, Angiopoie-

tin-2 is up-regulated under pathological conditions and seems to be a cooperative driver of

angiogenesis and vascular destabilization along with VEGF [18–20]. Therefore, it is not sur-

prising that Angiopoietin-2 is elevated in serum of PDR patients [21] and seems to support

DR progression.

In addition to Angiopoietins, Galectin-1 also plays an important and regulatory role in the

proper execution of the angiogenesis process, such that loss of endogenous Galectin-1 in endo-

thelial cells leads to impaired angiogenesis [22–24]. Recent studies further suggest that Galec-

tin-1 is also involved in the pathogenesis of PDR. Thus, a significant increase of Galectin-1 as

well as a positive correlation between Galectin-1 and VEGF levels were found in vitreous sam-

ples from PDR patients compared to non-diabetic patients [22, 25].

Several potential DR therapies have been investigated in recent years. By now, anti-VEGF

therapy has become the first-line therapy. However, many treatments are often required over

months and years to achieve successful treatment. Moreover, in about 30% of DR patients it

can be observed that they do not respond to initial anti-VEGF treatment [13], which underpins

the importance of other approaches such as targeting inflammatory cytokines.
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This raised the question of what other factors are involved in the development of DR and to

what extent protein changes occur during DR progression. Hence, the aim of our study was to

analyze protein alterations in vitreous samples of patients with different stages of DR, more

precisely with NPDR and PDR, in comparison to DM patients without DR and controls

(patients with macular hole or macular pucker undergoing vitrectomy) to reach a better

understanding of DR pathophysiology. The gained understanding can lead to the development

of further additive treatment options and a more precise adjustment of therapies to the DR

course or form, which would support an individual treatment of the disease and significantly

improve the overall quality of life.

Materials and methods

Subjects, clinical examinations, and sample collection

All patients gave their written informed consent before the start of the study as previously

described and the Declaration of Helsinki was observed [12, 26]. Approval for this study was

granted by the local Ethics Committee of the Ruhr-University Bochum (Bochum, Germany;

approval number: 15–5363).

Prior to sample collection, patients were divided in four groups based on the clinical exami-

nation. The classification was based on the modified Arlie-House classification, also used in

the Early Treatment in Diabetic Retinopathy Studies (ETDRS): Controls, diabetes mellitus

(DM), non-proliferative diabetic retinopathy (NPDR), and proliferative diabetic retinopathy

(PDR). For the first three groups, there was an indication for vitrectomy other than diabetic

retinopathy, for example macular hole or macular pucker. For every patient clinical data,

including mean age, gender, eye, DR stadium, fasting glucose, as well as HbA1c, were collected

(Table 2). Patient with an age under 21, with a presence of glaucoma, or with previous vitrec-

tomy were excluded from this study.

The study originally included 135 patients (27 patients per group). However, vitreous sam-

ples that were too small for the planned ELISA analysis were excluded. Therefore, vitreous

samples (1 ml/patient) from 25 patients with DM, 12 patients with NPDR, and 21 patients

with PDR were collected by transconjunctival pars plana vitrectomy using a 23-gauge cutter.

For this purpose, a core vitrectomy was performed with the gauge cutter after insertion of the

trocars and before turning on the infusion. A 10 ml microsyringe connected to the aspiration

tube of the cutter was used to collect the vitreous sample. The samples were immediately fro-

zen and stored at -80˚C until analysis.

Measurement of cytokines in vitreous samples

All proteins in vitreous samples were quantified using commercially available enzyme-linked

immunosorbent assay kits (ELISA; Table 1). Each assay was performed according to the manu-

facturer’s instructions as previously described [26]. Samples for measurements of CCL3 and

galectin-1 were diluted with sample dilution buffer immediately before the assay as analyzed

(Table 1). Vitreous samples for all other measurements were used without dilution. The subse-

quent analyses were performed on a microplate reader (AESKU Reader with Gen5 ELISA Soft-

ware, AESKU. DIAGNOSTICS, Wendelsheim, Germany) [12].

Statistical analysis

As in previous studies, a commercial predictive analysis program (version 13.3; Statistica,

Tulsa, OK, USA) was used to perform the statistical analyses [26]. ANOVA followed by Tukey

post-hoc test was applied to determine significant differences in vitreous protein
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concentrations among the four groups. P-values below 0.05 were considered to be statistically

significant with �p<0.05, ��p<0.01, and ���p<0.001. All graphs display mean values±standard

error (SEM)±standard deviation (SD).

The Pearson’s correlation coefficient (r) was calculated between patient’s individual protein

levels and patient’s fasting glucose level or VEGF-A level.

Results

Preoperative clinical data of the patients

In total, 116 vitreous samples were analyzed, 61 from male and 55 from female patients. The

patients in the control group had a mean age of 77.05±9.01 years and the DM patients a mean

age of 80.11±6.98 years. The DR group was subdivided into NDPR and PDR patients. The

NDPR patients had a mean age of 71.66±8.99 years and the PDR group of 62.26±14.42 years.

Therefore, the control and DM patients were significantly older than the PDR patients (PDR

vs. control or vs. DM: p<0.001).

Regarding gender and side ratio of the operated eye no significant differences were detect-

able between all four groups (p>0.05).

Moreover, laboratory values, which provide diabetic indications, were collected. The

patients in the control group had a mean fasting glucose level of 77.05±9.01 mg/dl and a mean

HbA1c value of 5.65±0.62. Both indicators were significantly higher in the DM, the NPDR,

and the PDR group (all: p<0.001; Table 2).

Strong up-regulation of angiogenic factors in PDR patients

Compared to controls, vitreous samples of PDR patients revealed an up-regulation of all ana-

lyzed angiogenic factors (Fig 1 and Table 3). The mean level of VEGF-A in vitreous samples of

Table 2. Clinical patient data for all groups. Abbreviations: y = year; SD = standard deviation; M = male; F = female; OD = right eye; OS = left eye.

Controls DM NPDR PDR

Samples per group 58 25 12 21

Mean age ± SD (y) 77.05±9.01 80.11±6.98 71.66±8.99 62.26±14.42

Gender (M/F) 29/29 14/11 5/7 13/8

Eye (OD/OS) 26/32 13/12 7/5 10/11

Fasting glucose (mg/dl) 111.63±31.97 158.35±59.97 174.62±45.24 180.81±61.85

HbA1c ± SD 5.65±0.62 7.19±1.40 7.13±0.93 8.10±1.46

https://doi.org/10.1371/journal.pone.0280488.t002

Table 1. Applied ELISA assays including company, catalogue number, dilution, and references.

Protein Company Catalogue number Dilution Reference

Angiopoietin-1 R&D Systems DANG10 undiluted [27]

Angiopoietin-2 R&D Systems DANG20 undiluted [27]

CCL3/MIP-1α R&D Systems DMA00 1:50 [28]

Galectin-1 R&D Systems DGAL10 1:20 [29]

IFN-γ Invitrogen BMS228 undiluted [12]

IL-1β/IL-1F2 R&D Systems DLB50 undiluted [12]

IL-8/CXCL8 R&D Systems D8000C undiluted [30]

TNF-α R&D Systems DTA00D undiluted [31]

PIGF R&D Systems DPG00 undiluted [12]

VEGF-A Invitrogen BMS277-2 undiluted [12, 32]

https://doi.org/10.1371/journal.pone.0280488.t001
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PDR patients (970.55±625.33 pg/ml) was significantly higher than in control patients (57.07

±257.30 pg/ml; p<0.001). Also, in comparison to the DM group (108.23±388.35 pg/ml;

p<0.001) and NPDR group (86.18±153.96 pg/ml; p<0.001), the level of VEGF-A was up-regu-

lated (Fig 1A).

Furthermore, the level of PIGF was significantly up-regulated in PDR patients (189.12

±246.55 pg/ml) in comparison to the controls (18.10±77.28 pg/ml; p<0.001) as well as to

DM (16.20±33.60 pg/ml; p<0.001) and to NPDR samples (22.00±43.19 pg/ml; p = 0.001;

Fig 1B).

Additionally, the Angiopoietin-1 level was elevated in vitreous samples from PDR patients

(184.01±391.08 pg/ml), when compared to control (32.48±47.51 pg/ml; p = 0.005) or DM sam-

ples (25.39±36.92 pg/ml; p = 0.013). In comparison to the NPDR group no difference was

detectable (29.19±50.36 pg/ml; p = 0.083; Fig 1C).

Findings in regard to Angiopoietin-2 were quite similar. An up-regulated Angiopoietin-

2 expression was measured in PDR samples (1714.85±1194.35 pg/ml) from this study in

contrast to the three other groups, namely controls (370.70±362.42 pg/ml; p<0.001),

DM (638.47±828.36 pg/ml; p<0.001), and NPDR samples (492.46±719.90 pg/ml; p<0.001;

Fig 1D).

Fig 1. Up-regulation of different angiogenic factors in vitreous samples. A) VEGF-A was significantly up-regulated

in vitreous samples of PDR patients in comparison to all other analyzed groups (all: p<0.001). B) Additionally, PIGF

was elevated in the PDR group in contrast to the control (p<0.001), the DM (p<0.001), and the NPDR group

(p = 0.001). C) Angiopoietin-1 was increased in PDR samples compared to control (p = 0.005) and DM samples

(p = 0.013). D) Angiopoietin-2 was also elevated in the PDR group in contrast to the other study groups (all: p<0.001).

DM: diabetes mellitus; NPDR: non-proliferative diabetic retinopathy; PDR: proliferative diabetic retinopathy (PDR);

values are mean ± SEM ± SD; �p<0.05; ��p<0.01; ���p<0.001.

https://doi.org/10.1371/journal.pone.0280488.g001

PLOS ONE Angiopoietins in diabetic retinopathy

PLOS ONE | https://doi.org/10.1371/journal.pone.0280488 January 20, 2023 5 / 16

https://doi.org/10.1371/journal.pone.0280488.g001
https://doi.org/10.1371/journal.pone.0280488


Cytokine up-regulation during DR progression

In addition to the examined angiogenic factors, an up-regulation of inflammatory cytokines

could also be observed in the PDR group (Fig 2 and Table 3). The inflammatory cytokine IL-

1β was elevated in PDR vitreous (0.78±1.23 pg/ml) when compared to control (0.22±0.56 pg/

ml; p = 0.012) or DM samples (0.23±0.42 pg/ml; p = 0.043) but not the NPDR patients (0.17

±0.22 pg/ml; p = 0.090; Fig 2A).

Additionally, the level of the inflamamtory cytokine IL-8 was up-regulated in the PDR

patients (101.49±79.04 pg/ml) in comparison to the control (39.99±53.25 pg/ml; p = 0.018)

and the NPDR (20.67±9.43 pg/ml; p = 0.034) but not the DM patients (82.59±107.41 pg/ml;

p = 0858; Fig 2B).

Furthermore, a trend in up-regulation of Galectin-1, a member of the galactin family which

is known for relatively broad specificity, could be observed in the PDR group (10.77±4.89 ng/

ml) compared to the control group (6.10±6.64; p = 0.053). In comparison to the DM (5.99

±6.47ng/ml; p = 0.099) and the NPDR group (7.73±7.36 ng/ml; p = 0.600) no differences were

observable (Fig 2C).

In addition, the levels of the pro-inflammatory cytokines TNF-α and interferon gamma

(INF-γ) were also analyzed but the expression level was under the detection level in all

samples.

The inflammatory chemokine (C-C motif) ligand 3 (CCL3) was detctable in all vitreous

samples but the expression level, which is regulated by TNF-α and IFN-γ, showed no differ-

ences between the control group, the DM, the NPDR, and the PDR group (Table 3).

Correlation analysis

Correlation analysis of protein concentrations of several markers in vitreous samples and fast-

ing glucose levels were performed. A significant correlation between levels of VEGF-A and

fasting glucose was noted for all samples (r = 0.366; p<0.001; r2 = 0.134; Fig 3A). Additionally,

a positive significant correlation was detectable for the PIGF concentration per patient and

fasting glucose levels of these patients (r = 0.186; p = 0.046; r2 = 0.035; Fig 3B).

Analyzing the correlation between the angiopoietin members and the fasting glucose level

revealed a significant correlation between Angiopoietin-1 and the fasting glucose value for all

Table 3. Cytokine concentration (mean ± SEM) in vitreous samples of control, diabetes mellitus (DM), non-proliferative diabetic retinopathy (NPDR) patients,

and proliferative diabetic retinopathy (PDR) patients measured via ELISA. Significant p-values are in bold.

Cytokine concentration P-value

Cytokine Control DM NPDR PDR DM vs.
control

NPDR vs.
control

PDR vs.
control

NPDR vs.
DM

PDR vs.
DM

PDR vs.
NPDR

Angiopoietin-1 [pg/

ml]

32.48±47.51 25.39

±36.92

29.19

±50.36

184.01

±391.08

1.000 1.000 0.005 1.000 0.013 0.083

Angiopoietin-2 [pg/

ml]

370.70

±362.42

638.47

±828.36

492.46

±719.90

1714.85

±1194.35

0.424 0.957 <0.001 0.944 <0.001 <0.001

CCL3/MIP-α [pg/

ml]

178.82

±235.57

65.22

±163.81

71.74

±162.59

89.55±141.27 0.122 0.373 0.317 1.000 0.978 0.995

Galectin-1 [ng/ml] 6.10±6.64 5.99±6.47 7.73±7.36 10.77±4.89 1.000 0.891 0.053 0.897 0.099 0.600

IL-1β [pg/ml] 0.22±0.56 0.23±0.42 0.17±0.22 0.78±1.23 1.000 1.000 0.012 0.994 0.043 0.090

IL-8 [pg/ml] 39.99±53.25 82.59

±107.41

20.67±9.43 101.49±79.04 0.204 0.892 0.018 0.170 0.858 0.034

PIGF [pg/ml] 18.10

±77.28

16.20

±33.60

22.00

±43.19

189.12

±246.55

1.000 1.000 <0.001 1.000 <0.001 0.001

VEGF-A [pg/ml] 57.07

±257.30

108.23

±388.35

86.18

±153.96

970.55

±625.33

0.9596 0.989 <0.001 0.999 <0.001 <0.001

https://doi.org/10.1371/journal.pone.0280488.t003
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samples (r = 0.328; p<0.001; r2 = 0.076; Fig 3C). In addition, a significant correlation was seen

for Angiopoietin-2 and fasting glucose (r = 0.348; p<0.001; r2 = 0.121; Fig 3D).

In contrast, no significant correlation was found between patients individual IL-1β level

and fasting glucose levels (r = 0.023; p = 0.813; r2 = 0.001; Fig 3E). Whereas for IL-8, a signifi-

cant correlation between IL-8 and fasting glucose levels was detectable (r = 0.374; p<0.001; r2

= 0.140; Fig 3F).

Furthermore, no significant correlation was found between the individual Galectin-1 con-

centrations and fasting glucose levels (r = 0.099; p = 0.386; r2 = 0.010, Fig 3G).

We additionally evaluated whether the level of Angiopoietin-1 level correlates with the level

of Angiopoietin-2. We observed a significant correlation between both angiogenic factors

(r = 0.245; p = 0.011; r2 = 0.060; Fig 3H).

In addition to the correlation analysis of the fasting glucose level and the protein concentra-

tions in the vitreous, correlation analyses between VEGF-A as a key marker for DR and the

other proteins were also carried out.

Fig 2. Increased pro-inflammatory cytokine expression in PDR. A) An increased IL-1β expression level was noted

in PDR vitreous in contrast to control (p = 0.012) and DM (p = 0.043) samples. B) In addition, the IL-8 concentration

was significantly higher in PDR patients than in control (p = 0.018) and NPDR patients (p = 0.034). C) Galectin-1

displayed a trend towards an up-regulation in PDR samples when compared to control samples (p = 0.053). DM:

diabetes mellitus; NPDR: non-proliferative diabetic retinopathy; PDR: proliferative diabetic retinopathy; values are

mean ± SEM ± SD; �p<0.05.

https://doi.org/10.1371/journal.pone.0280488.g002
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Fig 3. Correlation of protein concentration and fasting glucose level. A) Correlation analysis of VEGF-A concentration

in vitreous humour and fasting glucose level revealed a significant correlation for all samples (r = 0.366; p<0.001; r2 =

0.134). B) Correlation analysis of PIGF concentration and fasting glucose also showed a significant correlation (r = 0.186;

p = 0.046; r2 = 0.035). C) Scatterplot of Angiopoietin-1 versus fasting glucose. A significant correlation between

Angiopoietin-1 level and fasting glucose level could be observed (r = 0.3275; p<0.001; r2 = 0.076). D) Also, a significant

correlation was found between Angiopoietin-2 and fasting glucose level (r = 0.348; p<0.001; r2 = 0.121). E) A correlation

between levels of IL-1β and fasting glucose could not be observed (r = 0.023; p = 0.813; r2 = 0.001). F) In contrast, a

significant correlation between IL-8 and fasting glucose level was detectable (r = 0.374; p<0.001; r2 = 0,140). G) Scatterplot

of Galectin-1 levels and fasting glucose levels revealed no correlation (r = 0.099; p = 0.386; r2 = 0.0098). H) A significant

correlation between Angiopoietin-1 and Angiopoietin-2 levels were detectable, excluding one outlier patient (patient #52;

r = 0.245; p = 0.011; r2 = 0.060). Each blue dot represents one patient, linear regressions are displayed as solid grey lines.

https://doi.org/10.1371/journal.pone.0280488.g003
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A significant correlation between levels of Angiopoietin-1 and VEGF-A (r = 0.228; p = 0.023;

r2 = 0.052; Fig 4A) was observed. Moreover, a very strong correlation was noted between Angio-

poietin-2 and VEGF-A (r = 0.348; p<0.001; r2 = 0.121; Fig 4B) as well as PIFG and VEGF-A

(r = 0.479; p<0.001; r2 = 0.229; Fig 4C). In addition, level of Galectin-1 and VEGF-A (r = 0.271;

p = 0.019; r2 = 0.074; Fig 4D) and IL-8 and VEGF-A showed a significant correlation (r = 0.371;

p<0.001; r2 = 0.138; Fig 4E). In contrast no significant correlation was detectable between patients

individual IL-1β and VEGF-A level (r = 0.196; p = 0.051; r2 = 0.039; Fig 4F).

Discussion

DR is a sight-threatening condition that is set to increase worldwide over the next few decades

due to the aging of society and the increase in DM. Anti-VEGF therapies are applied in case of

Fig 4. Correlation of VEGF-A levels with other protein concentrations. A) A significant correlation of Angiopoietin-1

and VEGF-A was noted for all samples (r = 0.228; p = 0.023; r2 = 0.052). B) Scatterplot of Angiopoietin-2 versus VEGF-A. A

significant correlation between Angiopoietin-2 level and VEGF-A could be observed (r = 0.348; p<0.001; r2 = 0.121). C)

Correlation analysis of VEGF-A and PIGF concentration also showed a significant correlation (r = 0.479; p< .001; r2 =

0.229). D) Also, between Galectin-1 and VEGF-A a significant correlation was detectable (r = 0.271; p = 0.019; r2 = 0.074).

E) A significant correlation between IL-8 and VEGF-A was detectable (r = 0.371; p<0.001; r2 = 0.138). F) In contrast, a

correlation between levels of IL-1β and VEGF-A could not be observed (r = 0.196; p = 0.051; r2 = 0.039). Each blue dot

represents one patient, linear regressions are displayed as solid grey lines.

https://doi.org/10.1371/journal.pone.0280488.g004
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PDR or diabetic macular edema, but frequent administration is required, and the macula

edema of some patients does not respond to the various available anti VEGF therapies result-

ing in significant visual loss despite treatment [13, 33].

However, other candidates besides VEGF might contribute to disease progression. This led

to the objective of this prospective study, which investigated which other factors are involved

in the pathogenesis of DR and to what extent protein changes occur during DR progression.

Therefore, in addition to VEGF, the level of other angiogenic factors and inflammatory cyto-

kines in the aqueous humour between NDPR and PDR patients was directly compared in the

present study.

Therefore, we evaluated protein alterations during different stages of DR of 116 patients

undergoing pars plana vitrectomy. The control and DM patients were significantly older than

the PDR patients. The acquisition of patients undergoing pars plana vitrectomy for indications

other than DR may result in an age difference between the groups. Using patients who

undergo a pars plana vitrectomy as a control group is an established approach [10, 34, 35],

since otherwise only cadavers are available [7]. However, freshly obtained samples are prefera-

ble to post-mortem tissue/liquids, since the human tissue is getting worse with every post-mor-

tem hour.

Our study data showed an up-regulation of VEGF-A in the group of PDR compared to

other groups. In addition, the VEGF-A concentration was positively correlated with fasting

glucose level. This result agrees with the past studies of VEGF concentrations in the fluids of

the eye and the known role of VEGF in PDR [34]. The successful development of therapies to

DR by targeting this factor supports this concept and encourage to search for other potentially

active factors in the pathological process.

However, not only VEGF-A, but also the other examined angiogenic factors showed this

up-regulation in the PDR group compared to the other groups. Thus, PIGF was significantly

up-regulated in the PDR group and positively correlated with VEGF-A levels. This result is

consistent with our previous study [12] as well as other studies examining this factor in the vit-

reous [36, 37]. PIGF assumes a major role in angiogenesis [38]. On the one hand, PIGF acti-

vates its own signaling via the VEGF receptor 1 (VEGFR-1) and on the other hand, it enhances

the VEGFR-2 pathway in the direction of neovascularization by displacing VEGF-A from

VEGFR-1 [39]. Therefore, the results of the study support the statement that PIGF, as an

angiogenetic factor, seems to be involved in the progression of DR. Furthermore, our data sup-

port the assumption that several VEGF family members should be used as targets for PDR

treatment in the future. In line, aflibercept, which binds both VEGF-A and PIGF, is already

successfully used for the treatment of diabetic macula edema [40]. However, whether binding

PIGF is actually the reason why aflibercept has an advantage in patients is not yet been conclu-

sively proven.

In addition to the VEGF family, recent studies revealed that the angiopoietin family also

plays a role in regulating blood vessel sprouting and growing. In this context, Angiopoietin-1

and -2 seems to act agonistic and antagonistic [15]. Angiopoietin-1 blocks diabetic damage

dose-dependently to the blood-retina barrier and appears to be protective effect against DR

[17]. In contrast, Angiopoietin-2 is expressed under pathological conditions, when VEGF lev-

els are high and proinflammatory cytokines are expressed. Therefore, Angiopoietin-2 synergis-

tically promotes vascular permeability and stimulates retinal neovascularization [18, 20],

hence it is not surprising that Angiopoietin-2 was elevated in the serum of PDR patients [21,

41]. Interestingly, we found both Angiopoietin-1 and -2 up-regulated in the vitreous samples

of the PDR patients compared to the other groups. In addition, a significant positive correla-

tion between the Angiopoietin-1 and -2 levels, as well as a positive correlation between Angio-

poietin-1 and VEGF-A as well as Angiopoietin-2 and VEGF-A could be detected. The data of
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Angiopoietin-2 are in line with a previous study which also demonstrated an increase of

Angiopoietin-2 in the vitreous fluid of patients with PDR and suggested an association of

Angiopoietin-2 and VEGF with angiogenic activity in PDR [42]. However, the strong up-regu-

lation of Angiopoietin-1 levels in PDR patients could not confirm data from previous studies

in animal models [43], the previously described up-regulation in the serum of NPDR patients

[21] and its known antagonistic effect on Angiopoietin-2 [15]. The regulation of Angiopoie-

tin-1 in the vitreous humor in DR has not yet been studied in detail. However, the data support

the relevance of both members (Angiopoietin-1 and -2) as a target for DR therapy, although

the function and role of Angiopoietin-1 as well its interaction with Angiopoietin-2 needs to be

further investigated. The focus should be on clarifying whether the high level of Angiopoietin-

1 represents an attempt to counteract the increased level of Angiopoietin-2 or itself represents

a deleterious influence in PDR pathogenesis. The available data on Angiopoietin-2 inhibition

to the therapeutic value still remains controversial.

The role of faricimab as a simultaneous inhibitor of Angiopoietin-2 and VEGF-A to treat

diabetic macula edema is now established, and a commercial preparation is available [44]. The

faricimab showed non inferiority in the treatment of diabetic macula edema compared to afli-

bercept and an anatomical and functional improvement with intervals up to 16 weeks [45].

On the other hand, nesvacumab, an Angiopoeitin-2 inhibitor, in combination with afliber-

cept revealed no vison improvement for patients with diabetic macula oedema in comparison

to VEGF/PIGF inhibition monotherapy by aflibercept [46]. Therefore, the application of an

Angiopoeitin-2 inhibitor for the treatment of DR needs to be further investigation and seems

to be strongly dependent on the level of other factors such as VEGF but also Angiopoietin-1. It

would thus be interesting to investigate whether a simultaneous modification of Angiopoietin-

1 (inhibition/activation) and Angiopoietin-2 improves the success of the treatment.

Similar to the angiogenesis factors, we could find an upregulation of pro-inflammatory

cytokines. It should be noted that IL-1β values were generally very low and close detection

limit of the ELISA kits and in the PDR group near the detection limit. Nevertheless, this result

is consistent with our previous study, in which we did not differentiate between NDPR and

PDR patients [12]. In addition, other research groups were also able to find post mortem

increased levels of IL-1β and its activator molecule caspase-1 in the vitreous body of patients

with PDR [7].

Moreover, we could detect an up-regulation of IL-8 in comparison to the controls and the

NPDR, but not the DM group, which in this case is most likely due to the strong scatter in the

DM group. Moreover, for the first time we could find that the individual IL-8 concentrations

significantly correlate with the fasting glucose levels. The up-regulation of IL-8 in vitreous

PDR patients has already been mentioned [47], including a recent study by Loporchio et al.

[35]. Interestingly, a prospective study by Yenihayat and colleagues revealed that a relatively

small number of NPDR patients, showed a higher IL-8 concentration according to the presen-

tation of subretinal fluids in the macula. However, in this study the VEGF levels showed no

dependence on the sub-retinal fluid. This suggests that inflammation is an important factor in

the progression of diabetic macular oedema, leading to subretinal fluid formation in diabetic

patients [48].

Regarding the pro-inflammatory cytokines TNF-α and INF-γ, no expression was detectable

with the used ELISA kits. There are contradictory statements in the literature regarding the

importance of TNF-α as a vitreous marker for PDR. It was initially considered a marker [49,

50], but this could not be detected in the latest studies [35]. The same applies to INF-γ, which

is postulated by some studies as a vitreous marker for PDR [50], and was not detectable in our

case. Both markers seem to be subject to strong fluctuations and the importance of these cyto-

kines in PDR should be determined in future studies.
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Furthermore, the expression levels of the inflammatory chemokine CCL3 showed no differ-

ences between the four groups. This is consistent with the fact that TNF-α and INF-γ expres-

sion is not altered, since the expression of CCL3 is regulated by TNF-α and IFN-γ [51, 52].

Galectin-1 is responsible for the proper execution of the angiogenesis process also by acti-

vating the VEGFR-1 [23, 24, 53]. In our study, a positive correlation between Galectin-1 and

VEGF-A levels as well as a trend toward an up-regulation in the PDR patients compared to the

controls could be found. This finding is consistent with a study by Abu El-Asrar et al. who

found a significant increase in Galectin-1 in vitreous samples of PDR patients compared to

non-diabetics [22]. Furthermore, both Galectin-1 and VEGF are up-regulated in hypoxic

microenvironments by HIF-dependent signalling [54], suggesting that Galectin-1 alongside

VEGF seems to be an interesting marker to treat the disturbed vascularization in DR.

Thus, our study indicates pro-inflammatory cytokines as well as angiogenetic factors,

which contribute to the pathogenesis of DR. Interestingly all analyzed proteins revealed alter-

ations in PDR but not in NPDR patients. Hence, additional identifications of protein alter-

ations in DR patients should be performed to identify NPDR specific alterations. For the PDR

treatment in the future, both anti-inflammatory and anti-neovascularization agents could be

used, possibly simultaneously. Therefore, the role of Angiopoietin-1 and Galectin-1 should be

analyzed in more detail.

Conclusion

Our study demonstrates the importance of angiogenic factors, besides VEGF, in the develop-

ment of PDR. Angiopoietin-1 and -2 as well as the new marker Galectin-1 seem to represent

an interesting starting point for further treatment development for DR. Furthermore, we were

able to confirm an increase in the pro-inflammatory biomarker IL-8 in patients with PDR.

Interestingly, all investigated pro-inflammatory factors were not elevated in the NPDR

patients. The results highlight new potential avenues for targeted or additive therapies that can

help to identify and treat severe complications of DR to save and improve vision.
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