
Citation: Akbulut, Y. Automated

Pneumonia Based Lung Diseases

Classification with Robust Technique

Based on a Customized Deep

Learning Approach. Diagnostics 2023,

13, 260. https://doi.org/

10.3390/diagnostics13020260

Academic Editor: Sameer Antani

Received: 2 December 2022

Revised: 15 December 2022

Accepted: 9 January 2023

Published: 10 January 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Automated Pneumonia Based Lung Diseases Classification with
Robust Technique Based on a Customized Deep Learning Approach
Yaman Akbulut

Department of Software Engineering, Faculty of Technology, Firat University, Elazig 23200, Turkey;
yamanakbulut@firat.edu.tr; Tel.: +90-424-607-4282

Abstract: Many people have been affected by infectious lung diseases (ILD). With the outbreak
of the COVID-19 disease in the last few years, many people have waited for weeks to recover in
the intensive care wards of hospitals. Therefore, early diagnosis of ILD is of great importance to
reduce the occupancy rates of health institutions and the treatment time of patients. Many artificial
intelligence-based studies have been carried out in detecting and classifying diseases from medical
images using imaging applications. The most important goal of these studies was to increase
classification performance and model reliability. In this approach, a powerful algorithm based on a
new customized deep learning model (ACL model), which trained synchronously with the attention
and LSTM model with CNN models, was proposed to classify healthy, COVID-19 and Pneumonia.
The important stains and traces in the chest X-ray (CX-R) image were emphasized with the marker-
controlled watershed (MCW) segmentation algorithm. The ACL model was trained for different
training-test ratios (90–10%, 80–20%, and 70–30%). For 90–10%, 80–20%, and 70–30% training-test
ratios, accuracy scores were 100%, 96%, and 96%, respectively. The best performance results were
obtained compared to the existing methods. In addition, the contribution of the strategies utilized
in the proposed model to classification performance was analyzed in detail. Deep learning-based
applications can be used as a useful decision support tool for physicians in the early diagnosis of ILD
diseases. However, for the reliability of these applications, it is necessary to undertake verification
with many datasets.

Keywords: ILD; MCW segmentation; customized deep learning

1. Introduction

Around the world, acute infections of the lower respiratory tract have been a major
source of illness and death [1]. Millions of people each year are impacted by lung disease,
which poses serious hazards to children, seniors 65 and over, and those with a variety of
clinical cases containing obesity, diabetes, and high blood pressure. Different factors can
bring about lung disease, and the most known cause is viral [2].

A new member of the infectious lung disease back (ILD), COVID-19, first appeared
in Wuhan, China at the end of 2019. The ICTV (International Committee on Taxonomy
of Viruses) initially determined the coronavirus as SARS-CoV-2 [3]. At the beginning of
2020, the WHO (World Health Organization) changed its name to COVID-19. In March
2020, COVID-19 was named by the WHO as a pandemic disease. The number of COVID-19
diseases and fatalities surged so quickly during the pandemic that they reached approx-
imately 600 million and 6.5 million, respectively [4]. The novel coronavirus has spread
throughout the world due to this rise in instances.

Different signs and symptoms of infection, including high fever, diarrhea, coughing,
respiratory conditions, and weariness, can be caused by the COVID-19 disease. In some
active cases, COVID-19 can result in the patient experiencing major issues such as breathing
difficulties, multi-organ failure, pneumonia, abrupt cardiac arrest, and even death. Because
of the exponential boost in the number of active cases, healthcare services had virtually
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disappeared in many affluent nations. Until COVID-19 vaccines were created, most nations
lacked testing supplies and adequate ventilators. The COVID-19 virus also made the
situation more urgent. Many nations have cut off access to other nations because of this.
These nations also pushed their citizens to stay at home and discouraged them from
traveling domestically or internationally [5]. Despite the COVID-19 vaccines appearing
to have brought the pandemic under control, the disease is still prevalent because fewer
individuals are choosing to wear masks and more people feel comfortable going out in
public. It is also of great importance that pneumonia, one of the most established ILD
diseases, can be accurately distinguished from the popular COVID-19 disease.

Isolating infected patients from those who are not sick is one of the most crucial
strategies in the fight against ILD. The most reliable and practical approach to diagnosis is
chest X-ray (CX-R), which is a radiological imaging technique [6,7].

In recent times, the ILD with COVID-19 disease is a hot topic among scientists from
many different academic fields around the world. Some researchers have submitted publi-
cations describing artificial intelligence-based algorithms for automatic ILD categorization
from computed tomography (CT) and CX-R images to assist radiologists and specialists in
making decisions [8–10].

In this study, it was aimed to improve the classification performance for ILD, particu-
larly COVID-19, as it has severely impacted the human health system. Therefore, a specific
deep-learning technique was developed for automated classification. The contributions of
the proposed approach were expressed as follows:

• Different regions on images are marked using the MCW segmentation algorithm.
Because of this, it enables the unique information in the data to stand out. The pre-
processing operation with the MCW algorithm increased the classification accuracy.

• The attention structure in the CNN models is used to increase the distinctive represen-
tation. The LSTM blocks in deep learning models are added to benefit the ability to
keep weight information in their memory blocks. Therefore, the attention-CNN LSTM
(ACL) model, which was synchronously trained in the attention structure, convolu-
tional layers, and the LSTM model, improved classification performance compared to
the CNN model which did not contain attention and LSTM structures.

2. Related Works

Particularly in the medical field, numerous computer-aided detection methods have
advanced substantially during the past few decades. Several artificial intelligence (AI)-
based deep learning algorithms have been used in numerous medical applications, most
notably in detection and diagnosis. Recent years have seen success with AI in the identifi-
cation of several illnesses, including plant disease [11], osteoporosis [12], breast cancer [13],
cardiovascular disease [14], and poultry disease [15]. Systems for computer-aided, deep
learning-based ILD identification containing COVID-19 disease are necessary since ILD is
now a popular clinical problem. Therefore, numerous researchers have created different
AI applications employing both X-ray and CT images. Given that X-ray exams are less
expensive than CT scan exams, it is practical and cost-effective to identify ILD utilizing
CX-R images. On an X-ray dataset, Afshar et al. developed the COVIDCAPS framework,
which has a 95.7% accuracy, and a 95.8% specificity [16]. These applications are capable
of handling even little datasets with efficiency. Similar to how ResNet50 and Inception
versions were utilized to build other models, the highest 99.7% accuracy was obtained by
the ResNet50 model for binary classification [8]. Sethy et al. [17] successfully obtained an
accuracy of 95.38% when separating the COVID-19-positive patients from the other cases
using the SVM with the ResNet50 using learnable features from X-ray images.

Additionally, a deep convolutional neural network design has been applied to CX-R
images by several researchers, producing accurate and useful results [9]. Hemdan et al. [18]
built a customized CNN model for automated ILD classification. The structure contain-
ing seven CNN made up the proposed model. For binary and multi-class (pneumonia,
COVID-19, and healthy) categorization, Apostolopoulos et al. [19] attained an accuracy
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of 98.75% and 93.48%, respectively. To classify the ILD samples including 1427 X-ray im-
ages, their deep learning model applied transfer learning. Utilizing data from multimodal
imaging, Horry et al. [20] conducted detection through transfer learning. With the right
parameters, the selected VGG19-based transfer learning model was able to achieve an 86%
precision for ILD from ultrasounds (multi-class classification) and an 84% precision for
CT images (binary classification). Using the DarkCovidNet network, Ozturk et al. [21]
achieved an accuracy of 98.08% and 87.02% for ILD databases consisting of binary- and
multi-classes. There are 17 CNN layers in all, each with a unique set of filters. Learning
parameters were updated by the chaotic squirrel search algorithm, and the prediction
process was carried out using the EfficientNet-B0 network, another hybrid model created
by Altan and Karasu [22]. Transfer learning has been employed by Tsiknakis et al. [23] to
categorize COVID-19 and standard X-ray images. They have determined that the entire
Receiver Operating Characteristics (ROC) curve area is equal to 1. Demir [24] presented a
hybrid deep learning model, which combined convolutional layers and the LSTM model,
to automatically classify ILD. The model, named the DeepCoroNet, reached a classification
accuracy of 96.54%. Ismael and Sengur [25] used a ResNet50 based-transfer learning ap-
proach for binary ILD classification. Deep features were extracted from the ResNet50 model.
COVID-19 samples with deep features conveyed to the SVM algorithm were classified with
an overall 94.7% accuracy. Muralidharan et al. [26] utilized a new deep-learning approach
for automated ILD detection from X-ray images. First, X-ray image levels containing seven
modes were tuned with a wavelet transform-based algorithm. To classify healthy, COVID-
19, and pneumonia samples, these multiscale images were transmitted to the multiscale
deep CNN. An accuracy of 96% was obtained with this model. Demir et al. [27] proposed a
deep autoencoder that consisted of convolutional layers and an autoencoder model for ILD
classification. The compressed layer (pooling layer) representation of the deep autoencoder
network was used to extract features. A multilevel feature selection algorithm named serial
data analysis and regression (SDAR) reduced the feature set sizes and boosted classification
achievement. The classification accuracy of 97.33% was performed by the SVM classifier.

A good classification performance could not be obtained with CNN-based approaches
trained from scratch when the approaches related to ILD are examined in general. A
classifier such as SVM is also used to improve classification performance. This has in-
creased the computational cost in the classification process. In the proposed study, superior
performance has been achieved without the need for a separate classifier by increasing the
performance of CNN-based models with attention and residual structures.

3. Dataset

The ILD database that was used contained 1061 CX-R samples in total, gathered from
various accessible public sources. Radiologists and other specialists carried out the labeling
activities. The COVID-19, Normal, and Pneumonia folders were used to reorganize the
CX-R images. The numbers of COVID-19, Normal, and Pneumonia samples were 361, 200,
and 500, respectively. Of the COVID-19 cases, 161 were female, compared to 200 male cases,
and the average age of the individuals was above 45. The combined database with the
COVID-19 and typical (healthy) CX-R samples were collected from the Kaggle database
website links [28,29]. The dataset created by Wang et al. [30] added samples from the
pneumonia class. Figure 1 displays CX-R image samples for each class. In Figure 1, the
normal, COVID-19, and pneumonia classes are represented by the CX-R image samples
included in the first, second and third columns respectively.
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employing the Sobel operator was the initial level in the pre-processing procedure. The 
CX-R samples’ blob regions were highlighted using the gradient operator. In other words, 
the performance of the MCW segmentation was enhanced by the application of the gra-
dient operator. The blobs on the gradient images were segmented using the MCW seg-
mentation at the following level. Segmentation was utilized to lessen gray regions in the 
CX-R sample. In the third level of the pre-processing, CX-R samples were resized to 100 
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nously operated in the training stage. 

Figure 1. The samples of the dataset for each class: (a) Normal, (b) COVID-19, and (c) Pneumonia.

4. Proposed Methodology

In this study, a novel and efficient method for highly accurate ILD detection was devel-
oped. The dataset consisting of CX-R samples was used to evaluate the suggested approach,
shown in Figure 2. Processing with marker-controlled watershed (MCW) segmentation
of CX-R samples, and the attention-CNN LSTM (ACL) model, were the two steps of the
suggested methodology. The CX-R images were subjected to pre-processing procedures
at the initial level to improve classification performance. Gradient operation employing
the Sobel operator was the initial level in the pre-processing procedure. The CX-R samples’
blob regions were highlighted using the gradient operator. In other words, the performance
of the MCW segmentation was enhanced by the application of the gradient operator. The
blobs on the gradient images were segmented using the MCW segmentation at the follow-
ing level. Segmentation was utilized to lessen gray regions in the CX-R sample. In the
third level of the pre-processing, CX-R samples were resized to 100 (height) × 100 (width)
for standardizing CX-R samples and reducing the computational cost. In the last step,
the processed CX-R samples were transmitted to the ACL model, which consisted of the
attention structure, convolutional layers, and the LSTM model. The attention structure in
the ACL model was used to increase the distinctive representation of the highlighted CX-R
samples using the MCW segmentation algorithm. The convolutional layers were utilized to
extract significant feature maps of CX-R samples. The LSTM blocks in the ACL architecture
were added to benefit the ability to keep weight information in their memory blocks. These
three strategies in the ACL model were synchronously operated in the training stage.
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5. Methodology Techniques
5.1. Pre-Processing

The directional gradient is used to compute the gradient magnitudes and directions
for input images in the gradient method. When performing these gradient operations,
a gradient operator like Sobel, Roberts, and Prewitt [31] is used. Surface pixel density,
including light pixel density, is high in the watershed transform. In other words, surfaces
with low pixel density include dark surfaces. The watershed transformation can be used
to identify catchment basins (CatBas) and watershed ridge lines in a sample [32]. The
catchment basin CatBas(mj) Equation (1) of a minima mj is defined in the context of the
watershed transformation as the collection of values (x) that are topographically nearest
to mj compared to other local minimum mi in watershed transformation where function
f ∈ CatBas(D) has minimum {mk}k∈S for a set S:

CatBas
(
mj

)
=

{
x ∈ D

∣∣∇i ∈ S{i} : f
(
mj

)
+ Td

(
x, mj

)
< f (mi) + Td(x, mi)

}
(1)

where domain and topographical distance, respectively, are D and Td. The set of points
with no relation to any CatBas is known as the watershed transformation of f (Wshed( f ))
Equation (2):

Wshed( f ) = D ∩
(
∪j∈SCatBas

(
mj

))
(2)

given that Wshed is a tag, Wshed /∈ S, and Wshed( f ) is a mapping, and β : D → S ∪Wshed is
the result.

A strong and reliable algorithm for separating items with covered shapes, those
whose borders are described as ledges, has been identified as the MCW segmentation. The
associated objects have markers added to them. The associated items and backgrounds
are given the inner and outer markers, respectively. By separating each object from its
neighbors after segmentation, watershed zones are created on the selected ledges. As a
result, the MCW segmentation algorithm can distinguish each distinctive tiny or large
detail in a radiological image at the regional level. The MCW segmentation technique
contains the following steps:

Step-1 Calculate the segmentation process that divides dark areas into items.
Step-2 Determine the foreground markers, which contain the linked pixel blots inside of each object.
Step-3 Determine background markers or pixels that are not a part of any item.
Step-4 Update for decreasing the foreground and background marker locations’ segmentation functions.
Step-5 Use the revised parameters to calculate the watershed transform.
Step-6 Compute learning parameters.

5.2. Machine Learning Technique

In the sequence folding layer, a set of image queue data is converted into a group of
images, and convolution procedures are then implemented to these image queue data by
employing a period. The data from the sequence folding layer is turned into sequence
structure in the sequence unfolding layer.
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The fundamental structural layer for a CNN called the convolution layer uses the
convolution operation [33]. In this layer, there are several learnable filters. Convolutional
layers extract features from inputs that are present in local, related parts of the dataset and
assign their perspective to a feature map.

The implementation of the batch normalization (BN) layer is done to speed up network
initialization and cut down on training time. Additionally, the vanishing gradient problem
is lessened by employing BN layer operations [34]. The ReLU layer serves as the activation
function and is used to set the gradient vanishing and explosion problems [35].

2-D data from the convolutional structure is converted into 1-D data through the
smoothing layer to be used in the LSTM structure [36]. Classical LSTM layers consist
of controlled structure units with input, output, and forget gates [37]. LSTM layers hold
information data that were decided upon in a prior period and regulated the data transfer in
units by using these gates. LSTM layers also significantly reduce the gradient disappearing
and explosion issues. The forget gate structure resembles a neural network containing
single-layer. Equation (3) states that the forget gate is active when the output is one.

ft = σ
(

W[xt, ht−1, Ct−1] + b f

)
(3)

where the logistic sigmoid function is σ, the weighted vector is W, and the biased values
are b f , the output vector of the preceding LSTM unit is ht−1, the prior LSTM unit memory
is Ct−1, and the accessible LSTM unit input is xt.

The existing memory in the input gate’s structure is made up of a single-layer neural
network with the values of the previous memory units and the hyperbolic tangent function.
Equations (4) and (5) present the respective formulae.

it = σ(W[xt, ht−1, Ct−1] + bi) (4)

Ct = ft·Ct−1 + it·tan h([xt, ht−1, Ct−1]) + bc (5)

The output gate receives the transmission of data and information from the current
LSTM layer. Equations (6) and (7) show the computations for the output gate.

σt = σ(W[xt, ht−1, Ct−1] + bo) (6)

ht = ot·tan h(Ct) (7)

The fully connected (FC) layer connects all of the neurons that are in the upper
and lower layers. Neuron values are used to determine compatibility information for
value and class [38]. The softmax layer receives the final FC layer data, including class
possibility outcomes. The drop-out layer prevents the over-fitting issue by equating a
set of input values to zero with a specified probability during optimization operation in
training [39]. The softmax function Equation (8) for classifying in CNNs, performs the
following functions:

Sk =
exk

∑N
i=1 exi

(8)

The attention structure utilized in the proposed model is given in Figure 3, where
gi depicts a gating signal vector acquired at a coarser scale and xi represents the output
feature map of the ith layer, which subsequently sets the focus region for each pixel [40].
Equations (9) and (10) provide the computation of out using element-wise multiplication.

out = αi × xi (9)

αi = σ
(

ϕT
(

wx
Txi + wg

T gi + bg

)
+ bϕ

)
(10)
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Bias terms are bϕ and bg where linear transformations are w and ϕ using the 1 × 1 × 1
dimensional convolution operator, respectively. The learnable parameters for the attention
modules are initially set at random and are optimized from scratch.

6. Experimental Studies

Coding procedures were operated on the Matlab R2021a program installed in a
Windows-based operating system (Win 10 Pro) equipped with an Intel Core i9 proces-
sor, 32 GB DDR5 RAM, and 4 GB graphics card. Figure 4 shows the layer representation of
the ACL network. The convolutional structure (six convolutional layers) in the ACL model
starts with the convolutional layer named convlnp2d_1 and ends with the convolutional
layer named convlnp2d_6. The attention structure in the ACL model was designed from
the convlnp2d_4 convolutional layer.
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The detailed layer information of the 28-layer ACL model is given in Table 1 in a
sequential layer architecture.

Table 1. The architecture information of the proposed ACL model.

Layer # Layer Name Layer Layer Info

1 input Sequence Input Sequence input with 100 × 100 × 3 dimensions
2 fold Sequence Folding Sequence folding
3 convInp2d_1 Convolution 16 3 × 3 × 3 convolutions with stride: 1 and padding: 0
4 batchnorm_1 BN BN with 16 channels
5 relu1 ReLU ReLU
6 maxpool2d_1 Max Pooling 3 × 3 max pooling with stride: 1 and padding: 0
7 convInp2d_2 Convolution 16 3 × 3 × 16 convolutions with stride: 1 and padding: 0
8 batchnorm_2 BN BN with 16 channels
9 relu2 ReLU ReLU
10 maxpool2d2 Max Pooling 3 × 3 max pooling with stride: 1 and padding: 0
11 convInp2d_3 Convolution 16 3 × 3 × 16 convolutions with stride: 1 and padding: 0
12 relu_2_1_1_5 ReLU ReLU
13 convInp2d_4 Convolution 16 3 × 3 × 16 convolutions with stride: 1 and padding: 0
14 maxpool2d_2 Max Pooling 3 × 3 max pooling with stride: 1 and padding: 0
15 convInp2d_5 Convolution 16 3 × 3 × 16 convolutions with stride: 1 and padding: 0
16 relu_2_1_1_6 ReLU ReLU
17 convInp2d_6 Convolution 16 3 × 3 × 16 convolutions with stride: 1 and padding: 0
18 sigmoid_1_1_1_3 sigmoidLayer sigmoidLayer
19 mul_1_1_1_3 ElementWiseMultiplication Element Wise Multiplication of 2 inputs
20 unfold Sequence Unfolding Sequence unfolding
21 flatten Flatten Flatten
22 lstm LSTM LSTM with 100 hidden units
23 fc0 FC 100 FC layer
24 ReLu2 ReLU ReLU
25 drop1 Dropout 40% dropout
26 fc1 FC 3 FC layer
27 softmax Softmax softmax
28 class output Classification Output crossentropyex

The initial learning rate, max epochs, validation frequency, and minimum batch size,
which are training option parameters of the ACL model, are selected as 0.001, 5, 30 and
32, respectively. The training optimization solver was stochastic gradient descent with mo-
mentum (SGDM). More detailed information about the simulation parameters performed
is given in Table A1 in Appendix A. The Matlab integrated development environment
(IDE) containing the proposed approach coding was run for 70–30%, 80–20%, and 90–10%
training-test ratios. Accuracy and loss graphs in training-test processes for these options
are given in Figure 5.

As seen in Figure 5, training-test accuracy and training-test loss values are given for all
training-test ratios. The training accuracies for all training-test ratios were 100%. The best
test accuracy (100%) was obtained for the 90–10% training-test ratio, while the worst test
accuracy (94.65%) was obtained for the 70–30% training-test ratio. The best training-test
loss values (0.019–0.01) were obtained for the 90–10% training-test ratio, while the worst
training-test loss values (0.12–0.16) were obtained for the 70–30% training-test ratio.

At the end of the training process, according to class names, the test confusion matrix
results are given in Figure 6 for different training-test ratios.
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As seen in Figure 6, pneumonia samples were predicted with 100% accuracy. The
worst COVID-19 and Normal sample predictions were obtained for the 70–30% training-
test ratio. The COVID-19 samples were predicted with 100% accuracy for the 80–20% and
90–10% training-test ratios. The best prediction for Normal samples was achieved with the
90–10% training-test ratio.

In Table 2, the results of performance metrics, which consisted of sensitivity (Se),
specificity (Sp), precision (Pr), and F-score, are given for different training-test ratios
of the proposed ACL model. Using true positive (TP), true negative (TN), false posi-
tive (FP), and false negative (FN) values, these performance metrics were calculated in
Equations (11)–(14) as follows:

Se =
TP

TP + FN
(11)

Sp =
TN

TN + FP
(12)

Pr =
TP

TP + FP
(13)

F-score =
2× TP

2× TP + FP + FN
(14)
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Table 2. The performance metrics for different training-test ratios of the proposed ACL model.

Training-Test Ratios Classes Se Sp Pr F-score

70–30%
COVID-19 0.94 0.96 0.93 0.94

Normal 0.87 0.98 0.90 0.88
Pneumonia 1.0 1.0 1.0 1.0

80–20%
COVID-19 1.0 0.94 0.90 0.95

Normal 0.80 1.0 1.0 0.89
Pneumonia 1.0 1.0 1.0 1.0

90–10%
COVID-19 1.0 1.0 1.0 1.0

Normal 1.0 1.0 1.0 1.0
Pneumonia 1.0 1.0 1.0 1.0

In the 70–30% training-test ratio, the best Se was 1.0 for the Pneumonia class and the
worst Se was 0.87 for the Normal class. The best Sp was 1.0 for the Pneumonia class and
the worst Sp was 0.96 for the COVID-19 class. The best Pr was 1.0 for the Pneumonia class
and the worst Pr was 0.90 for the Normal class. The best F-score was 1.0 for the Pneumonia
class and the worst F-score was 0.88 for the Normal class. In the 80–20% training-test
ratio, all metric results of the Pneumonia class were 1.0. The Se (1.0) of the COVID-19 class
outperformed the Normal class. The worst Sp (0.94) and Pr (0.90) were obtained with the
COVID-19 class while the worst F-score (0.89) was obtained with the Normal class. In the
90–10% training-test ratio, all metric results were 1.0 for all classes.

In Figure 7, ROC graphs and AUC results are given for all training-test ratios. The
AUC values of the Pneumonia class were 1.0 in all training-test ratios. For the 70–30%
training-test and 80–20% training-test, the COVID-19 class AUC results were 0.9532 and
0.9714, respectively. For the 70–30% training-test and 80–20% training-test, the Normal
class AUC results were 0.9517 and 0.9000, respectively. In the 90–10% training-test ratio,
the AUC values were 1.0 for the COVID-19 and Normal classes.
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Figure 7. The ROC curves and AUC values for different training-test ratios of the proposed ACL model.

7. Discussion

In Figure 8, for all training-test ratios, confusion matrix results are given to evaluate
the performance of the attention strategy and LSTM structure. In Table 3, the performance
metrics results are calculated using TP, TN, FP, and FN values in these confusion matrices.

As seen in Table 3, attention strategy and LSTM structure, which synchronously
operated in the ACL model, improved all performance metrics for all training-test ratios.
The worst performance metrics results were obtained with the CNN model (Case 1) without
the attention strategy and LSTM structure. The CNN model (Case 3) with only the attention
strategy outperformed the CNN model (Case 2) with the only LSTM structure. According
to the models in cases 1, 2, and 3, in the 70–30% training-test ratio, the Acc scores of the ACL
model (Case 4) were improved by 4%, 3%, and 2%, respectively. In the 80–20% training-test
ratio, the Acc scores of the ACL model were improved by 5%, 3%, and 1%, respectively.
In the 90–10% training-test ratio, the Acc scores of the ACL model were improved by
15%, 10%, and 2%, respectively. For 70–30%, 80–20%, and 90–10% training-test ratios, the
classification accuracies of MCW images compared to raw images were improved by 2%,
4%, and 5%, respectively.
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To interpret the performance metrics in Table 3 more clearly, the graph in Figure 9 was
created from the values in Table 3.
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Table 3. The performance scores that show the effects of Attention and LSTM structures on the
proposed CNN model.

Case # Models Training-Test Ratios Classes Se Sp Pr F-score Acc

1 No Attention and LSTM Structures

70–30%
COVID-19 0.91 0.96 0.92 0.91

0.92Normal 0.82 0.97 0.86 0.84
Pneumonia 0.98 0.95 0.95 0.97

80–20%
COVID-19 0.93 0.93 0.88 0.91

0.91Normal 0.75 0.96 0.83 0.79
Pneumonia 0.96 0.96 0.96 0.96

90–10%
COVID-19 0.83 0.91 0.83 0.83

0.85Normal 0.75 0.91 0.68 0.71
Pneumonia 0.9 0.94 0.94 0.92

2 Only LSTM Structure

70–30%
COVID-19 0.93 0.96 0.92 0.92

0.94Normal 0.83 0.98 0.91 0.87
Pneumonia 0.99 0.96 0.96 0.97

80–20%
COVID-19 0.96 0.93 0.88 0.92

0.93Normal 0.75 0.98 0.91 0.82
Pneumonia 0.98 0.97 0.97 0.98

90–10%
COVID-19 0.89 0.95 0.91 0.90

0.90Normal 0.85 0.94 0.77 0.81
Pneumonia 0.92 0.94 0.94 0.93

3 Only Attention Structure

70–30%
COVID-19 0.93 0.96 0.93 0.93

0.95Normal 0.87 0.98 0.91 0.89
Pneumonia 0.99 0.97 0.97 0.98

80–20%
COVID-19 0.99 1.0 1.0 0.99

0.95Normal 0.78 1.0 1.0 0.87
Pneumonia 1.0 0.97 0.97 0.99

90–10%
COVID-19 0.97 0.99 0.97 0.97

0.98Normal 0.95 0.99 0.95 0.95
Pneumonia 1.0 1.0 1.0 1.0

4 Proposed Approach

70–30%
COVID-19 0.94 0.96 0.93 0.94

0.96Normal 0.87 0.98 0.90 0.88
Pneumonia 1.0 1.0 1.0 1.0

80–20%
COVID-19 1.0 0.94 0.90 0.95

0.96Normal 0.80 1.0 1.0 0.89
Pneumonia 1.0 1.0 1.0 1.0

90–10%
COVID-19 1.0 1.0 1.0 1.0

1.0Normal 1.0 1.0 1.0 1.0
Pneumonia 1.0 1.0 1.0 1.0
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Figure 9. The graphical analysis of performance metrics given in Table 3 for all training-test ratios.

As seen in Figure 9, the slope is positive for most performance metrics, given that a
curve is fitted from Case 1 to Case 4. This means that the proposed approach improves
the classification performance in these metric values. However, the slope from Case 1 to
Case 4 was zero for the Sp metric in the COVID-19 class at a training-test rate of 70–30%.
In other words, classification performance was not improved for this metric and class.
The slope from Case 3 to Case 4 was negative for the Sp, Pr, and F-score metrics in the
COVID-19 class at the 80–20% training-test ratio. The proposed approach achieved worse
classification performance for the COVID-19 class on these metrics than the model in Case 3.
Contributions of the MCW segmentation algorithm, attention structure, and LSTM model
in the proposed approach are given in Figure A1 of Appendix A.

In Table 4, the proposed approach was compared to the state-of-the-art techniques.
These existing studies are included in Table 4 for two reasons. First, these studies have
been popular in the COVID-19 field. Second, other methods were added due to their high
performance. Acc, Se, and Sp metrics in Table 4 were taken into consideration as they are
common metrics in all studies. The bar graph in Figure 10 was created using the data in
Table 4 to better examine the performance results among existing studies. It cannot be
said that the proposed approach and the existing studies are completely superior to each
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other. This is because the COVID-19 dataset is not standardized, and training-test ratios
and model training parameters are different.

Table 4. The comparison of the proposed approach compared to existing methodologies.

Authors Methods Dataset Classes # Acc (%) Se (%) Sp (%)

Ozturk et al. [21] DarkCovidNet Public 3 87.02 92.18 89.96
Wang et al. [9] COVID-Net Public 3 92.64 91.37 95.76
Apostolopoulos et al. [19] The pre-trained CNNs Public 3 96.78 98.66 96.46
Ucar and Korkmaz [41] COVIDiagnosis-Net Public 3 98.26 98.33 99.10
Nour et al. [42] Deep CNN, SVM Public 3 98.97 89.39 99.75
Turkoglu [43] AlexNet, Feature Selection, SVM Public 3 99.18 99.13 99.21

Togacar et al. [44] Deep features, SqueezeNet,
SVM Public 3 99.27 98.33 99.69

Demir et al. [27] DeepCov19Net Public 3 99.75 99.33 99.79
Demir [24] DeepCoroNet Public 3 100.00 100.00 100.00
Ismael and Sengur [25] ResNet50 Features + SVM Public 2 94.74 91.00 98.89
Muralidharan et al. [26] FB2DEWT + CNN Public 3 96.00 96.00 96.00
Proposed Method Processed images, ACL model Public 3 100.00 100.00 100.00
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Ozturk et al. [21] used a deep CNN model, which included the end-to-end learning
strategy, for automated ILD classification. This model, named the DarkCovidNet, reached
an accuracy of 87.02%. This study, which was first published in the scope of COVID-19, can
be considered one of the baseline models. In Ref. [9], ILD was automatically detected from
chest X-ray images using an end-to-end-trained CNN architecture with numerous residual
blocks. ResNet-50 and VGG-19 CNN models were not as effective as this model. With this
approach, the scores for Acc, Se, and Sp were 92.64%, 91.37%, and 95.76, respectively. In
Ref [19], the Acc, Sp, and Se metrics were used to compare the performance of transfer
learning models such MobileNet v2, VGG19, and Inception. The MobileNet v2 model
produced the best results. For automated ILD diagnosis, a SqueezeNet Model trained with
the enhanced dataset from scratch was suggested in Ref. [41]. Additionally, hyperparameter
optimization employed the Bayesian approach. Values of 98.26%, 98.33%, and 99.10%,
respectively, were the highest ones recorded for Acc, Se, and Sp. In Ref [42], deep features
from chest X-ray images were extracted using an end-to-end-trained CNN model with five
convolutional layers. The SVM classifier with radial basis function kernel achieved an Acc
of 98.97%, an Se of 89.39%, and an Sp of 99.75 during the classification stage. Deep features
from the fully connected and convolutional layers of the AlexNet model were retrieved for
Ref [43]. The Relief algorithm decreased a total of 10,568 deep features to 1500 deep features.
This model had 99.18% Acc, 99.13% Se, and 99.21% Sp, respectively. In Ref [44], MobileNet
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v2 and SqueezeNet models were used to create the integrated features. The SVM classifier
achieved an Acc of 99.27%, Se of 98.33%, and Sp of 99.69% after hyperparameters were
tweaked with the Social Mimic method. Seven convolutional layers of the compressed
CA model were used in the DeepCov19Net Model [27] to extract deep features. Three
techniques were utilized in the pre-processing (Laplacian), feature selection (SDAR), and
hyperparameter tuning (Bayesian) stages to improve classification performance. With an
accuracy of 99.75%, sensitivity of 99.33%, and specificity of 99.79%, the suggested approach
performed well. Convolutional layers and the LSTM model were merged in Demir’s hybrid
deep learning model [24] to automatically detect ILD. The DeepCoroNet model achieved a
classification accuracy of 96.54%. For ILD classification, Ismael and Sengur [25] employed a
ResNet50 based-transfer learning method. The ResNet50 model’s deep characteristics were
taken. The SVM method was able to classify ILD samples with deep features with an overall
accuracy of 94.7%. An innovative deep learning technique was used by Muralidharan
et al. [26] to detect ILD automatically from X-ray images. First, the fixed boundary-based
two-dimensional empirical wavelet transform (FB2DEWT) approach was used to fine-tune
X-ray image levels with seven modes. These multiscale images were sent to the multiscale
deep CNN to classify healthy, COVID-19, and pneumonia samples. Using this model, an
accuracy of 96% was achieved.

The accuracy (100%) of the proposed approach is valid for a 90–10% training-test ratio.
As this ratio is decreased, it has been observed that the classification performance decreases.
In addition, the limitation of sample input sizes to 100 × 100 also affected the classification
performance. Classification performance can be improved by increasing the input size with
more powerful hardware.

The datasets used in this study were brought together from three different sources.
This limits a more realistic performance comparison with existing studies. Evaluations that
will be made with samples obtained from a more organized and single database will be
able to make more reliable performance comparisons.

8. Conclusions

In this study, ILD classification was performed with a powerful customized deep learning-
based method. In the proposed approach, the MCW segmentation algorithm, which empha-
sizes the spots and traces in CX-R images in the COVID-19 class, is used for a more efficient
operation of the attention structure in the ACL model. Attention and LSTM architectures in
the ACL model have increased the classification performance as mentioned in the Discussion
section. The classification performance of the model was evaluated for different training-test
ratios. Classification accuracy reached 100% at a test rate of 90–10%. At test rates of 80–20%
and 70–30%, the success rate was over 96%. The performance of the model was compared
with both baseline and high classification methods. Although the classification performance
of the proposed approach is good according to these methods, it is not correct to talk about
the superiority of the methods because the data sets and evaluation methods used are not the
same. The classification performance was obtained with low-size input data such as 100× 100.
If the hardware performance is further increased, it is possible to increase the classification
performance even more. Additionally, it has been seen that the hyperparameter selection in
the proposed deep learning model is very important in classification performance. These
hyperparameters are tuned for empirical outputs. In future studies, the hyperparameters of
deep learning models will be automatically tuned by optimization techniques such as the
Bayesian optimization algorithm.

Funding: This research received no external funding.

Data Availability Statement: In this paper, the dataset is publicly available.
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Appendix A

Table A1. Training option parameters of the SGDM solver.

SGDM Options Values

Momentum 0.9
Initial Learn Rate 0.001
Learn Rate Schedule ‘none’
Learn Rate Drop Factor 0.1
Learn Rate Drop Period 10
L2 Regularization 0.0001
Gradient Threshold Method ‘l2norm’
Gradient Threshold Inf
Max Epochs 5
Mini-BatchSize 32
Verbose 0
Verbose Frequency 50
Validation Frequency 30
Validation Patience Inf
Shuffle ‘every-epoch’
Execution Environment ‘auto’
Sequence Length ‘longest’
Sequence Padding Value 0
Sequence Padding Direction ‘right’
Dispatch In Background 0
Reset Input Normalization 1
Batch Normalization Statistics ‘population’
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