Skip to main content
. 2023 Jan 10;13(2):260. doi: 10.3390/diagnostics13020260

Table 4.

The comparison of the proposed approach compared to existing methodologies.

Authors Methods Dataset Classes # Acc (%) Se (%) Sp (%)
Ozturk et al. [21] DarkCovidNet Public 3 87.02 92.18 89.96
Wang et al. [9] COVID-Net Public 3 92.64 91.37 95.76
Apostolopoulos et al. [19] The pre-trained CNNs Public 3 96.78 98.66 96.46
Ucar and Korkmaz [41] COVIDiagnosis-Net Public 3 98.26 98.33 99.10
Nour et al. [42] Deep CNN, SVM Public 3 98.97 89.39 99.75
Turkoglu [43] AlexNet, Feature Selection, SVM Public 3 99.18 99.13 99.21
Togacar et al. [44] Deep features, SqueezeNet, SVM Public 3 99.27 98.33 99.69
Demir et al. [27] DeepCov19Net Public 3 99.75 99.33 99.79
Demir [24] DeepCoroNet Public 3 100.00 100.00 100.00
Ismael and Sengur [25] ResNet50 Features + SVM Public 2 94.74 91.00 98.89
Muralidharan et al. [26] FB2DEWT + CNN Public 3 96.00 96.00 96.00
Proposed Method Processed images, ACL model Public 3 100.00 100.00 100.00