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A tissue atlas of ulcerative colitis revealing evidence of 
sex-dependent differences in disease-driving 
inflammatory cell types and resistance to TNF 
inhibitor therapy 
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Although literature suggests that resistance to TNF inhibitor (TNFi) therapy in patients with ulcerative colitis (UC) 
is partially linked to immune cell populations in the inflamed region, there is still substantial uncertainty under-
lying the relevant spatial context. Here, we used the highly multiplexed immunofluorescence imaging technol-
ogy CODEX to create a publicly browsable tissue atlas of inflammation in 42 tissue regions from 29 patients with 
UC and 5 healthy individuals. We analyzed 52 biomarkers on 1,710,973 spatially resolved single cells to deter-
mine cell types, cell-cell contacts, and cellular neighborhoods. We observed that cellular functional states are 
associated with cellular neighborhoods. We further observed that a subset of inflammatory cell types and cel-
lular neighborhoods are present in patients with UC with TNFi treatment, potentially indicating resistant niches. 
Last, we explored applying convolutional neural networks (CNNs) to our dataset with respect to patient clinical 
variables. We note concerns and offer guidelines for reporting CNN-based predictions in similar datasets. 
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INTRODUCTION 
Ulcerative colitis (UC), a chronic relapsing inflammatory bowel 
disease (IBD), is one of the most common autoimmune disorders 
(1, 2). UC results from a dysregulated interplay of genetic, immune, 
environmental, and microbiome factors (1–3). It can persist for 
decades, if not afflicting patients for a lifetime, resulting in high 
medical costs, diminished workplace productivity, and substantially 
impaired quality of life. Because of the chronic inflammation asso-
ciated with UC, patients have a 1.5 times higher long-term risk for 
colorectal cancer compared to healthy individuals (4, 5). In recent 
years, novel treatment options for UC have been introduced, ex-
panding the therapeutic standard of care from broadly immunosup-
pressive monotherapies (i.e., corticosteroids and azathioprine) to 
include more targeted immunomodulatory drugs. The expansion 
of available treatment options requires a shift toward a precision 
medicine approach. This shift is necessary to address the sensitivity 

of treatment selection to underlying patient UC–associated vari-
ables. For example, sex-dependent differences in UC presentation 
are increasingly noted, manifesting in sex-dependent prevalence 
rates, choice of therapy, and chemically induced disease progression 
in animal models (6–8). 

Tumor necrosis factor inhibitors (TNFis) such as infliximab and 
adalimumab are frontline targeted therapies for UC and lead to in-
creased rates of sustained remission and decreased rates of surgery 
(9, 10). These inhibitors have fewer side effects than standard im-
munosuppressants, and the incidence of chronic inflammation- 
induced colorectal cancer is reduced in TNFi-treated patients; 
however, TNFi-treated patients have an increased risk for opportu-
nistic infections and for some malignancies including lymphomas, 
acute myeloid leukemia, myelodysplastic syndromes, and skin car-
cinomas (11). Furthermore, primary nonresponse to TNFi therapy 
occurs in 13 to 40% of patients with UC, and loss of response or 
adverse effects are reported in up to 46% of the remaining patients 
within 12 months of therapy initiation (12–15). Moreover, the in-
troduction of TNFi to standard UC treatment regimens results in 
substantially increased costs. Combined direct and indirect costs 
caused by the disease are estimated at $45 billion per year in the 
United States and Europe (1). Additional biologics, such as vedoli-
zumab, an antibody that antagonizes α4β7 integrins, have been ap-
proved for the treatment of patients with UC, but identification of 
patients who will respond to TNFi remains an unmet clinical chal-
lenge (9, 16). Predictive biomarkers to identify the best therapy for 
each individual patient at the time of diagnosis are lacking (15–17). 
All of the above suggests that UC is a complex, heterogeneous 
disease and underlines the need for biomarkers to guide 
UC therapy. 
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The success of clinical and biological phenotyping in identifying 
novel biomarkers to guide UC therapy has been limited, although 
single-cell omics studies have identified some promising biomark-
ers in the closely related Crohn’s disease. The fecal proteins calpro-
tectin and lactoferrin, which are released by activated neutrophils in 
the gut, are useful in monitoring disease activity but have no role in 
the decision-making process with regard to a specific treatment (10, 
18). Serological markers such as C-reactive protein and anti-neutro-
phil cytoplasmic antibodies were investigated as therapy predictors 
in Crohn’s disease, but data were inconclusive. Studies suggest that 
the only reliable clinical predictor of TNFi therapy failure in IBD 
was the presence of strictures in Crohn’s disease as assessed endo-
scopically or radiologically; however, this may be an indicator of 
disease severity and complications rather than underlying disease 
biology (19). Therefore, recent studies have aimed at enabling pre-
cision medicine in IBD through the use of new technologies like 
single-cell RNA sequencing (scRNA-seq) and mass cytometry to 
predict therapy response and disease activity (20–22). scRNA-seq 
analysis in a cohort of Crohn’s disease patients with ileal disease 
was able to identify pathogenic cellular modules that were weakly, 
although significantly, associated with resistance to TNFi therapy 
(21). The presence of these immune cell modules suggests a 
spatial and functional relationship between the underlying cell 
types, but spatial information is lost during the preparation of 
samples for scRNA-seq, so this has not been tested. 

Imaging technologies capable of spatially mapping immune cell 
states within the tissue at single-cell resolution should improve our 
understanding of how cellular interactions and gut remodeling con-
tribute to UC pathogenesis and TNFi resistance. Multiplexed 
imaging tools are revolutionizing the development of biomarker- 
based diagnostics and have led to novel therapeutic insights in 
other disease settings (23). Imaging mass cytometry has been 
used to better understand the high-dimensional tissue pathology 
in patients with breast cancer and the changing cell populations as-
sociated with diabetes disease progression and, more recently, also 
to dissect the immune and epithelial cell interactions in IBD (24– 
26). A multiplexed immunofluorescence-based imaging technology 
called CO-Detection by indEXing (CODEX) has allowed simultane-
ous visualization of up to 60 biomarkers on intact tissue with single- 
cell resolution (27, 28). These biomarker panels can be custom de-
signed and used to elucidate cell types and their functional states. 
The spatial interplay between these markers can be used to identify 
cell-cell interactions and cellular neighborhoods (CNs). In colorec-
tal cancer, these spatial features have revealed coordinated CNs un-
derlying antitumoral immunity and disease progression. These 
changes in the tumor-immune microenvironment were correlated 
with patient outcomes but were not visible as changes at the single- 
cell level (28). Similarly, these representations of spatial features 
were used in a second study to identify biomarkers of pembrolizu-
mab therapy response in patients with cutaneous T cell lympho-
ma (29). 

Here, we used CODEX to create a spatial atlas of the gut and its 
rewiring during UC pathogenesis. In 42 biopsy regions taken from a 
cohort of 34 individuals, we analyzed 52 biomarkers on 1,710,973 
spatially resolved single cells to identify 13 conserved cell types. We 
mapped changes in frequency and functional states during inflam-
mation and in patients with TNFi treatment. By using Voronoi rep-
resentations of our data, we were able to represent it at multiple 
spatial scale cell frequencies, cell-cell pairwise interactions, and 

CNs. These representations allowed us to identify cellular niches 
that may respond to or remain unchanged in the face of TNFi 
therapy. We observe sex differences in the relative abundance of 
these niches in our patient cohort. However, our data suggest that 
these TNFi-responsive or TNFi-resistant niches have only minimal 
predictive value when determining whether the patient as a whole is 
likely to respond to subsequent TNFi therapy. To increase ease of 
user accessibility to our results, we created a cloud-based platform 
called the Explorer that allows users to search our spatial maps for 
additional insights into UC. Our research suggests that examining 
cells within their spatial context may offer insights into developing 
biomarkers for therapy response in UC and that this framework has 
the potential to improve our understanding of inflammatory 
immune diseases. 

RESULTS 
CODEX creates a spatial atlas of the UC inflammatory 
microenvironment 
We used CODEX to characterize the inflammatory microenviron-
ment of the colon in 42 tissue biopsy regions from 29 patients with 
UC and five healthy controls. Fifteen patients with UC were being 
treated with TNFi at the time of biopsy (fig. S1A and table S1). 
Long-term clinical follow-up was available for all patients, allowing 
categorization of the patients into TNFi responders versus nonre-
sponders following the practice guidelines of the American Gastro-
enterological Association for moderate to severe UC (10). In line 
with previous reports (12, 30), in our cohort, ~50% of TNFi- 
treated patients did not subsequently respond to TNFi therapy 
(table S1). We imaged multiple tissue regions per sample with a 
52-plex CODEX antibody panel including markers for immune, ep-
ithelial, and stromal cell components of the intestine as well as func-
tional markers such as 4-1BB [also known as TNF receptor 
superfamily member 9 (TNFRSF9) or CD137], interleukin-6R 
(also known as CD126), and TNFR2 (also known as CD120b) 
(Fig. 1, A and B; fig. S1, B to J; and table S2). After CODEX 
imaging, we performed hematoxylin and eosin (H&E) staining on 
the same tissue sections. We observed excellent morphological cor-
relation between fluorescent markers and H&E images, exemplified 
by cytokeratin positivity in the epithelium, CD19 staining of the B 
cell follicles and CD1c expression in the associated antigen-present-
ing cells, CD3 staining in the surrounding T cell zone, CD15-pos-
itive clusters of granulocytes, and Ki67 staining of the proliferating 
cells in germinal centers and basal epithelia (Fig. 1B). Cellular seg-
mentation and fluorescent marker quantification resulted in spa-
tially resolved single-cell data that were used for downstream 
analysis (Fig. 1C). Using unsupervised X-shift clustering (23) and 
manual cluster curation based on marker expression profiles, 
tissue localization, and tissue morphology, we identified 13 distinct 
cell-type clusters in our samples (Fig. 1, D and E; figs. S2 and S3; and 
Materials and Methods). These included eight distinct immune cell 
clusters and two epithelial clusters as well as smooth muscle, mixed 
stroma, and vasculature clusters. The immune cell clusters consisted 
of adaptive and innate immune cell types, including three types of T 
cells, B cells, plasma cells, and dendritic cells (DCs), neutrophils, 
and granulocytes (Fig. 1, D and E, and figs. S2 and S3). We com-
pared unsupervised clustering results to manual gating of similar 
cell populations based on the marker expression profiles, and the 
frequencies of cell types identified by both methods showed a 

Mayer et al., Sci. Adv. 9, eadd1166 (2023) 20 January 2023                                                                                                                                                     2 of 14  

S C I E N C E  A D VA N C E S | R E S E A R C H  A R T I C L E  



Fig. 1. A spatial atlas of the UC inflammatory microenvironment. (A) CODEX image with Hoechst nuclear stain (gray), cytokeratin (cyan), Ki67 (yellow), CD1c (blue), 
CD19 (red), CD15 (purple), and CD3 (green) shown as a seven-color composite image selected from five markers stained on the same tissue section. (B) Zoomed-in view of 
the region inside the white box in (A) shown as a seven-color composite image (large panel) and as hematoxylin and eosin (H&E) and two-color images of Hoechst and 
each indicated marker individually (small panels). (C) Representative example of single-cell segmentation within the same box with DRAQ5 nuclear staining (gray) and the 
segmentation masks overlaid (colored). (D) Minimum spanning tree of the cell-type clusters identified in this study. Nodes represent clusters with sizes indicative of the 
number of cells across all samples, and distances between nodes indicate their relationships in high-dimensional marker space, not physical space. (E) Examples of marker 
expression profiles, in normalized fluorescent intensity (Norm FI) were extracted and used for the identification of cell types. (F) Single-cell clustering results and cell types 
across the entire cohort, evaluated at the patient level. H, healthy controls; 1 to 3, patients with UC with Mayo scores 1 to 3, respectively. Statistics: Student’s t test with 
Bonferroni correction for multiple comparisons (diseased versus healthy); *P < 0.05, **P < 0.01, and ***P < 0.001. (G and H) Voronoi representations of the identified cell 
types on the same tissue section as shown in (A) and (B). (G) Biopsy overview and legend of cell types. (H) Zoomed-in view of the region denoted in the white box in (G). (I) 
Example mapping of clustering results to H&E images used to validate cell type identity “A” (B cells, top), “B” (T cells, middle), and “C” (epithelium, bottom). 
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strong correlation (fig. S4, A to C). Of these cell types, we observed 
Mayo disease severity score–dependent, statistically significant 
changes in the frequencies of T cells, epithelium, plasma cells, gran-
ulocytes, DCs, and intraepithelial T cells (Fig. 1F and fig. S4C). For 
downstream analyses, we chose cell types identified by unsupervised 
clustering. To verify the clusters and assess their spatial distribution 
in the tissue, we graphically represented the clustering results as 
Voronoi diagrams colored by cell type and overlaid selected clusters 
on the H&E-stained images (Fig. 1, G to I). In summary, by CODEX 
tissue imaging and computational single-cell identification, we 
created a high-dimensional spatial atlas of the inflammatory micro-
environment in patients with UC treated or not with TNFi, which 
can be used for biomarker discovery and clinical correlation using a 
cloud-based online tool that we call Explorer (https://app. 
enablemedicine.com/uc-study). 

Immune cell contacts reorganize gut tissue architecture 
and contribute to UC disease heterogeneity 
The frequencies of epithelial, stromal, and immune cell types in the 
colonic microenvironment, as well as their spatial organization, 
should provide insights into how various cell types and their inter-
actions influence UC development, progression, and therapeutic re-
sponse. A simple way of analyzing the spatial organization of cell 
types in tissue is to compute their pairwise contacts. Analysis of 
pairwise contacts in images of samples from healthy controls and 
14 patients who had not been treated with a TNFi at the time of 
biopsy revealed that a spectrum of colonic and immune cell contacts 
contribute to tissue organization (Fig. 2A). The healthy controls 
clustered together and were defined by enriched contacts between 
epithelial cells and stromal cells (Fig. 2A, six bottom rows). Cellular 
contacts in patient with UC samples showed substantial variability 
that was not strongly associated with Mayo score, resulting in two 
clusters (rows 1 to 3 and 4 to 15). In most patient samples, we ob-
served relative enrichment for paired cell-cell contacts between 
innate immune cells (e.g., patient UC8; Fig. 2A, center rows), 
whereas, in a minority of patient samples, we observed enrichment 
for contacts between adaptive immune cells (e.g., patient UC14a; 
Fig. 2A, top three rows). We visualized the cell-type clusters for 
each patient using Voronoi diagrams (Fig. 2B) and plotted the fre-
quencies of pairwise cell-cell contacts using circular “connectivity” 
diagrams (Fig. 2C) (27). The most frequent cell-type clusters and 
contacts in patients with UC were immune related. For example, 
in patient UC8, T cells were the most frequent cell type, followed 
by stroma, plasma cells, granulocytes, neutrophils, and vasculature. 
Epithelial cells were only the seventh most abundant cell-type 
cluster, which reflects their destruction and replacement by the 
immune infiltrate during active UC (Fig. 2, B and C, middle 
panels). The cell-cell connectivity map for patient UC14a revealed 
T cells predominantly connected to B cells and stroma, whereas cell- 
cell contacts to and in-between innate immune cell types, especially 
neutrophils, were less frequent (Fig. 2, B and C, top panels). We hy-
pothesized that the observed heterogeneity between cell-cell con-
tacts in patients with UC contributes to differences in higher- 
order tissue organization and diverging disease states and therapy 
responses. 

Characteristic CNs of the UC immune microenvironment are 
conserved across patients and are associated with immune 
cell functional state 
We previously showed that, in addition to pairwise cell-cell con-
tacts, higher-order tissue structures such as CNs provide important 
information with regard to disease status and therapy response (28). 
CNs can be seen as functional subunits inside intact tissue. We per-
formed CN analysis on the entire dataset of patient with UC and 
identified 10 CNs common to all patients (Fig. 2D). Among these 
was a CN highly enriched in B cells and follicular T cells, which we 
termed the B cell follicle (CN-9); a CN moderately enriched in B 
cells, follicular T cells, and T cells, termed lymphoid aggregate 
(CN-2); a mixed immune CN (CN-4); a basal epithelium CN en-
riched in epithelial cells, proliferating (Ki67+) epithelial cells, intra-
epithelial T cells, and other immune cells (CN-8); a luminal 
epithelium CN with a composition similar to CN-8 but spatially dis-
tinct (CN-1); a lamina propria CN enriched in plasma cells and DCs 
(CN-5); a granulocyte-enriched CN (CN-3); a CN enriched in the 
vasculature, smooth muscle, and neutrophils, which we termed in-
flamed vasculature (CN-7); a CN enriched in the stroma, neutro-
phils, and other immune cells, which we termed inflamed stroma 
(CN-0); and a noninflamed stroma CN (CN-6) (Fig. 2, D and E). 
Significant increases were seen in granulocyte (CN-3), mixed 
immune (CN-4), and lamina propria (CN-5) neighborhoods in as-
sociation with increasing Mayo score. Unexpectedly, the lymphoid 
aggregate (CN-2) neighborhood increased through Mayo score 2 
and then decreased from Mayo score 2 to 3. Significant decreases 
were observed for luminal epithelium (CN-1) and basal epithelium 
(CN-8) as Mayo score increased, consistent with healthy gut tissue 
destruction and the trends observed at the cell frequency level 
(fig. S5). 

In addition to determining the frequencies of CNs across patient 
groups, we also analyzed their “functional states” as previously de-
scribed (28). CN functional states are determined on the basis of the 
local enrichment with one or more specific cell types expressing 
certain functional markers, and their analysis provides a measure 
of how a given CN’s characteristics influence cellular function 
during disease progression and treatment. Specifically, we were in-
terested in how TNFi treatment influenced the distribution of 
TNFR2 on various cell types and how this affected functional 
states. We found that CN-7 (inflamed vasculature) had a signifi-
cantly higher frequency of TNFR2+ neutrophils as compared to 
CN-0 and CN-4, the two other neighborhoods enriched the most 
for neutrophils (Fig. 2, F and G). Similarly, programmed cell 
death-1 (PD-1)+ T cell frequencies varied greatly depending on 
whether a T cell was found in a B cell follicle neighborhood (CN- 
9), a lymphoid aggregate (CN-2), or a mixed immune neighbor-
hood (CN-4) (Fig. 2, H and I). This suggests an important role 
for CNs in the functional states of individual cells. 

Innate immune cell populations may persist during 
TNFi therapy 
Identification of the biological basis for the resistance to TNFi 
might allow for a priori identification of patients with UC who 
will be resistant to TNFi treatment and inform the selection of al-
ternative therapy. Although we lacked longitudinal samples, biop-
sies taken from the same patient before and after treatment, we were 
able to compare biopsies from treated and untreated patients with 
identical Mayo severity scores. To identify potential mechanisms 
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that may underlie resistance to TNFi, we created a framework to 
assess architectural changes associated with gut inflammation 
during disease progression and mucosal healing in patients with 
TNFi treatment. These architectural changes were first depicted 
using minimum spanning trees, where average marker expression 
is visualized as a function of cell type. We observed that the expres-
sion level of the costimulatory TNFR 4-1BB (also known as 

TNFRSF9 or CD137), a marker of T cell activation implicated in 
UC inflammation (31), increased with disease severity, and levels 
decreased in treated patients except for in neutrophils and prolifer-
ative epithelium (Fig. 3A). Architectural changes were further quan-
tified using cell-type frequency. TNFi responsiveness was primarily 
defined by mucosal healing (e.g., epithelium recovery) (Fig. 3A and 
fig. S6). Patients with TNFi therapy had substantial changes in the 

Fig. 2. UC immune cell contacts 
disrupt gut architecture and gen-
erate inflammatory niches. (A) 
Heatmap depicting cell-cell contacts 
in healthy controls (HCs; n = 6 
tissues, five individuals) and TNFi- 
naïve patients with UC (UC; n = 15 
tissues, 11 patients). Columns repre-
sent normalized pairwise cell-cell 
contacts, and rows represent 
samples. The number of clusters was 
selected to highlight healthy con-
trols versus patients with UC. Gray-
scale bars represent the frequencies 
of cell-cell contacts categorized as 
tissue contacts (e.g., epithelial/ 
stromal/vessel), adaptive immune 
contacts (e.g., T cells and B cells), and 
innate immune contacts (e.g., gran-
ulocytes). The bars colored by cell 
type represent the relative frequen-
cies of each contact pair for every cell 
type. (B and C) Representative ex-
amples of (B) cell-type Voronoi dia-
grams and (C) circular connectivity 
diagrams depicting the frequencies 
of cell types and pairwise cell-cell 
contacts. (D) Heatmap of 10 distinct 
cellular neighborhoods (CNs) based 
on spatial enrichment of the 13 cell- 
type clusters. Intensity scale identical 
to (A). (E and F) CN-7 (inflamed 
vessels) (E) mapped on patient 
biopsy UC1 and (F) depicted along-
side cell-type Voronoi diagram and 
three-color immunofluorescent 
image with CD15 (blue), CD16 (red), 
and CD31 (green). Selected cell types 
are shown in corresponding H&E 
images on the right. The asterisk in-
dicates an eosinophil taken from a 
different tissue region for compari-
son. (G) The frequency of neutrophils 
expressing TNFR2 in CN-0 (inflamed 
stroma) versus CN-7 (inflamed 
vessels) and CN-4 (mixed immune). 
Statistics: Student’s t test, *P < 0.05 
and ***P < 0.01 (n = 5). (H) Example 
of CN-9 (B cell follicle) depicted 
alongside its corresponding cell-type 
Voronoi diagram and composite im-
munofluorescent image with CD21 
(blue), CD19 (red), and CD3 (yellow). 
Biaxial plots depict PD1+ T cells as a proportion of all T cells in CN-9 versus CN-4 (mixed immune). (I) Bar plot depicting trend for increased PD1+ T cells in CN-9 versus CN-2 
(lymphoid aggregate) and CN-4 in untreated patients with UC (n = 5). 
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Fig. 3. TNFi therapy shifts adaptive immune cells, contacts, and neighborhoods toward homeostasis. (A) A scaffold depicting minimum spanning tree represen-
tations of cell populations and biomarker expression, e.g. HLA-DR (human leucocuyte antigen DR isotype) along trajectories of UC pathogenesis and healing during TNF 
therapy. Node size represents the average frequency of each cell population for each cohort, and color represents the relative expression of TNFRSF9, a biomarker of 
immune activation. Color scale: green, low; red, high. Cluster D (granulocytes) appears to have high expression of the depicted marker in all subgroups, but this is due to 
the known propensity for antibodies to nonspecifically bind to this population of cells. This population was therefore excluded from further biomarker expression analysis. 
(B and C) Fold change of cell-type frequency relative to healthy controls for Mayo 2 patients (B) without or (C) with TNFi therapy. Statistics treated versus untreated: t test, 
*P < 0.05. Arrows indicate T cells (B) and B cells (A). (D) Volcano plot of cell-cell contact enrichment in Mayo 2 patients with versus without TNFi therapy. (E) T cell contact 
frequencies with epithelium, granulocytes, or other T cells in treated versus untreated Mayo 2 patient cohorts. Statistics: Student’s t test. (F) Principal components analysis 
based on frequency vector of cell neighborhoods for each untreated patient colored by Mayo score. Neighborhood weights (magnitude and direction) are overlaid onto 
principal component dimension 1 (Dim1) and dimension 2 (Dim2). Large circles represent the centroid for each Mayo score (or control). (G) Treated Mayo 2 patients 
projected onto the same principal components as computed in (F). (H) Fold changes of cell neighborhood frequencies relative to healthy controls for Mayo 2 patients 
without (top) or with (bottom) TNFi therapy. Statistics: t test, *P < 0.05 and **P < 0.01. 
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frequencies of adaptive immune cell types (Fig. 3, B and C). Specif-
ically, we observed statistically significant reductions in T cell fre-
quency and increases in the epithelium in treated versus 
untreated Mayo 2 patients. Although B cell levels appeared to de-
crease upon treatment, these differences did not reach statistical sig-
nificance due to the high variability of B cell frequencies in patients 
with UC. Compared to their adaptive counterparts, there were no 
strong trends or significant changes in frequencies of innate 
immune cells in the face of TNF blockade. 

TNFi therapy is associated with altered adaptive immune 
cell contacts 
Given the observation that patients with TNFi therapy had de-
creased adaptive immune cell frequencies such as T cells and B 
cells, we sought to determine whether the treated patients exhibited 
altered immune cell contacts. We observed altered contacts between 
T cells and other adaptive immune cells (e.g., T cell–T cell and T 
cell–B cell). This was similarly true for contacts between T cells 
with gut stroma and epithelium (Fig. 3, D and E). In contrast, T 
cell contacts with innate immune cells such as granulocytes were 
completely unchanged by treatment (Fig. 3, D and E). Homotypic 
innate immune cell contacts such as granulocyte-granulocyte con-
tacts did not differ with or without TNFi therapy either. This rewir-
ing of only certain immune cell contacts suggested that TNFi 
treatment has spatially dependent effects on inflammatory CNs in 
the gut. 

Innate immune neighborhoods are present in TNFi-treated 
patients 
We next examined changes to CNs associated with disease severity, 
progression, and recovery to determine whether observed changes 
in cell frequencies and cell-cell contacts are correlated with higher- 
order architectural changes. To visualize the reorganization of CNs 
during disease progression and therapy, we performed principal 
components analysis on the CN frequencies for healthy controls 
and untreated patients to map the trajectories associated with 
disease progression (Fig. 3F). When CN weights were plotted 
onto principal components 1 and 2, cluster centroids separated 
into roughly four quadrants, with disease severity increasing on 
average along a clockwise trajectory. Healthy controls clustered in 
the top right quadrant and were associated with basal and 
luminal epithelium (CN-8 and CN-1, respectively). Mayo score 1 
patients, although scarce in our dataset, were similar to healthy con-
trols, but the population centroid was pulled into quadrant 2 (Q2) 
due to increased contributions from stroma (CN-6) and inflamed 
stroma (CN-0) neighborhoods (Fig. 3F, Q2). Patients with Mayo 
scores 2 and 3 showed considerable overlap with one another, al-
though patients within these groups were separated into Q3 or 
Q4 driven by differences in their underlying CN organization. Pa-
tients in Q3 were characterized by increased contributions from 
adaptive immune CNs such as lymphoid aggregates (CN-2) and B 
cell follicles (CN-9), whereas patients in Q4 were characterized by 
innate immune CNs such as the granulocyte CN (CN-3) (Fig. 3F, 
Q3 and Q4). 

Comparing now TNFi-treated with untreated patients of the 
same endoscopic score (Mayo 2) highlighted changes in tissue ar-
chitecture associated with TNFi treatment, even when the clinical 
disease severity was similar (Fig. 3G). Here, our analysis uses 
Mayo 2 patients due to their being evenly distributed both across 

current TNFi therapy and being responders to subsequent TNFi 
therapy. The cluster centroid for Mayo 2 TNFi-treated patients lo-
calized between Q4 and Q1 when projected onto the same principal 
component axes as before. This suggested that changes with TNFi 
treatment were predominantly associated with increased epithelial 
neighborhoods CN-1 and CN-8 (Q1) and decreased contributions 
from lymphoid aggregate (CN-2) and B cell follicle (CN-9) neigh-
borhoods (Q3), leading to a shift toward normal-like tissue archi-
tectures upon treatment. Notably, lack of change in the granulocyte 
CN (CN-3, Q4) prevented Mayo 2 TNFi-treated patients from fully 
returning to the healthy state space (Q1). This suggested that these 
innate niches may be resistant to therapy, whereas adaptive immune 
neighborhoods normalize during TNFi treatment. Univariate anal-
ysis of TNFi-treated patients controlled for Mayo score 2 demon-
strated that adaptive immune CNs lymphoid aggregate and B cell 
follicle (CN-2 and CN-9, respectively) showed the greatest decrease 
upon treatment, whereas epithelial CNs like basal epithelium (CN- 
8) increased (Fig. 3H). In contrast, frequencies of innate immune 
CNs did not change significantly upon treatment, suggesting poten-
tial treatment resistance. We observed that adaptive immune cells, 
contacts, and CNs were enriched in female patients compared to 
males (fig. S7), which may underlie the reported higher TNFi treat-
ment response rates in females (32). 

TNFi response–associated cell types are enriched in female 
patients 
Among all patients with UC, male patients had lower T cell fraction-
al abundance relative to female patients (P < 0.01). Using a multi-
variate regression, we still observed the dependence of T cell 
fractional abundance on sex in the presence of two confounding 
variables, age (Fig. 4A) and disease severity, that were either imbal-
anced between males and females in our cohort or displayed clear 
links to T cell ratios, respectively. For the expanded multivariate re-
gression of T cell ratios on sex, age, and Mayo, the coefficient on sex 
was still significant (P < 0.05) and was consistent with increased T 
cell ratios in females across age groups. A closer examination of T 
cell subsets (Fig. 4B) revealed that the sex-associated T cell popula-
tions were those associated with T cells in lymphoid aggregate CNs, 
rather than those in CNs associated with follicles or epithelial layers. 
Consistent with our observations regarding T cells being a primary 
responder to TNFi therapy, our patient cohort had higher rates of 
TNFi response among female patients than male patients, although 
the difference missed the standard threshold for statistical signifi-
cance (P < 0.055). Although we identify the clear difference in T 
cell count between males and females, Fig. 4 (A and B) also high-
lights the difficulties of the more clinically relevant patient-level 
prediction (such as predicting sex from T cell count) even when 
the input variables have statistically significant differences 
between experimental groups. Nonetheless, with T cell subsets po-
tentially associated with response to TNFi therapy, we next set out 
to determine whether we could predict TNFi response. These pre-
dictions are assessed at both the patch level and the patient level as 
well as using both images and tabular datasets for inputs. 

Training and classification are performed at both the patch 
and patient level 
We trained our model using two approaches. In the first approach 
(patch-level training), we input patch-level representations into our 
model, which, in turn, output patch-level predictions. The patch- 
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Fig. 4. Sex and TNFi response associated architectural features. (A) Scatter plot of T cell ratios (no. of T cells/no. of total cells), per patient, plotted against age, 
demonstrates increased T cells in females (P < 0.01). Female patients are marked in red, and male patients are marked in blue. (B) Volcano plot illustrating T cell–associated 
interactions and neighborhoods implicated in sex differences. Dots correspond to cell types (yellow), cell-cell interactions (red), and CNs (orange). Features to the left of 
zero are enriched in females, and features to the right of zero are enriched in males. Features above ~1.3 are statistically significant at the P < 0.05 level. (C) Patient-level 
(left; P < 0.01) and patch-level (right; P < 0.01) ROC curves for UC versus healthy using patch-level training with the standard representation. The blue curve is the val-
idation ROC, the green traces are the null ROCs, and the orange line represents the AUROC = 0.5 random guessing ROC. TPR indicates true positive rate, FPR indicates false 
positive rate. (D) Patient-level (left; P < 0.05) and patch-level (right; P < 0.05) ROC curves for mild/moderate versus severe (Mayo 1 + 2 versus 3) using patch-level training 
with the standard representation. (E) Patient-level (left; P = 0.26) and patch-level (right; P = 0.19) ROC curves for TNFi response using patch-level training with the CNN 
representation. 
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level predictions were then averaged to give a patient-level predic-
tion. In the second approach (patient-level training), we aggregated 
the patch-level representations into a patient-level representation. 
This patient-level representation is input into the model, which 
outputs a patient-level prediction. These two approaches address 
potential complications associated with patch-level predictions: In 
situations where the signal is only present in a few patches, the ma-
jority of patch-level embeddings will effectively be incorrectly 
labeled; in contrast, when the signal is dispersed across many 
patches, aggregating the patch-level embeddings into a patient- 
level embedding may unnecessarily blend together distinct and 
salient samples (fig. S8). When performing patient-level classifica-
tions with patch-level training, we average patch-level predictions to 
get patient-level predictions. While we additionally tried the 
maximum and the average of the top and bottom 5, 10, or 20% of 
the patch-level predictions, we did not observe any improvement 
in results. 

Our reported results are from a leave-one-out cross-validation, 
also known as n-fold cross-validation, in which we produce predic-
tions for a given patient “i” from an L2-regularized logistic regres-
sion trained on all the remaining patients. We evaluated 
performance based on both the patient-level validation accuracy 
and receiver operating characteristic (ROC) curve. We classified pa-
tients from their patient-level prediction, where the classification 
threshold for a given patient i, with i ranging over all patients, is 
the maximizer of the Youden index for patient-level classification 
in a further nested leave-one-out cross-validation, which uses all pa-
tients other than patient i. The L2 penalty is determined by selecting 
one of the four regularization strengths over a 4-log range, which 
maximizes validation area under the ROC (AUROC). For compar-
ison, we repeat the analysis N = 100 times after randomly permuting 
the response at the patient level. We present the resulting validation 
ROC curves, which we dub “null ROC curves,” and P values, which 
are valid for testing the null hypothesis that the predictors and re-
sponse are independent. We also tried an L1-regularized regression 
when using the standard representation but did not observe any im-
provement in results. 

TNFi response prediction is performed using two different 
image representations 
To predict TNFi response in patients, we first addressed uncertain-
ties in the relevant size scale of biological features by considering 
two different featurizations of our data. Our first representation 
(standard representation) used cell ratios, cell-cell interaction 
ratios, and CN ratios, as previously reported (28). Our second rep-
resentation [convolutional neural network (CNN) representation] 
is the output of the last hidden layer of ResNet-50, a standard 
CNN architecture pretrained on ImageNet, using 1000 × 1000 
pixels Voronoi patches resized to 500 × 500 pixel images as 
inputs. By inputting the Voronoi images into ResNet-50 for 
feature extraction, we avoid user assumptions regarding relevant 
features. We evaluated the consistency of our results with respect 
to different choices of pretrained ImageNet architectures (ResNet- 
18, ResNet-34, ResNet-101, ResNet-152, and ShuffleNet v2) and 
input patch sizes (500 × 500 pixels resized to 224 × 224 pixels). 

For a given binary classification task, we input these representa-
tions into a model. The model, in turn, outputted a “prediction.” 
Here, the prediction is a value between 0 and 1 and is informally 
interpreted as the probability that the model believes the input 

belongs to class 1 versus class 0. We performed an analysis of 
patch- versus patient-level training and classification before predict-
ing TNFi response (see the Supplementary Materials). We further 
assessed the accuracy and stability of our neural networks by pre-
dicting UC versus healthy as well as disease severity (Fig. 4, C and 
D; see the Supplementary Materials). 

Benchmarking predictive neural networks reveals that they 
are accurate and stable 
Before predicting TNFi response, we benchmarked our approach 
using two binary prediction tasks of increasing difficulty: UC 
versus healthy (n = 19 and 5) and severe (Mayo 3, n = 9) versus 
mild/moderate (Mayo 1/2, n = 10). The first task, UC versus 
healthy, was readily determined by examining the biopsy’s gross 
histological features. The second, severe versus mild/moderate 
UC, was not readily apparent. We evaluated performance for both 
the standard and CNN representations using both patient-level and 
patch-level training and further evaluated performance stability for 
the CNN representation by trying different pretrained networks 
(ResNet-18, ResNet-152, and ShuffleNet v2) and input patch sizes 
(500 × 500 pixels). 

We achieved a high level of success in predicting UC versus 
healthy (Fig. 4C). When training at the patch-level with the 
CNN/standard representation, we observed two/three misclassifica-
tions and achieved a validation AUROC of 0.95/0.98, respectively 
(table S2). Training at the patient-level with the CNN/standard rep-
resentation resulted in one/three misclassifications and gave similar 
validation AUROCs for both. We were also successful in predicting 
severe versus mild/moderate UC, although this task appeared to be 
more difficult (Fig. 4D). For the CNN/standard representation, 
training at the patch-level resulted in four/seven misclassifications 
and gave validation AUROCs of 0.79/0.84. Training at the patient- 
level resulted in five/four misclassifications for the standard repre-
sentation and validation AUROCs of 0.76/0.80, respectively 
(table S4). 

When predicting UC versus healthy, our results are stable with 
respect to the choice of pretrained neural network and input patch 
size. We never had more than three misclassifications and observed 
similar validation AUROCs. In general, patch-level training resulted 
in better validation results than patient-level training (table S4). For 
predicting disease severity, we saw slightly more variable results de-
pending on the choice of pretrained neural network and input patch 
size. We typically had four to six misclassifications when training at 
the patch-level , but patient-level training had consistently worse 
and more variable validation AUROCs (table S4). 

Generally, our patch-level training outperforms and is more 
stable than patient-level training. At times, patch-level training 
also tends to result in seemingly more reasonable patient-level pre-
dictions (fig. S9). To understand why this is the case, we also exam-
ined validation patch-level ROC curves for both tasks (Fig. 4, C and 
D). Our success in predicting at the patch level indicates that the 
signal for the tasks of interest is present in a nontrivial number of 
patches. In principle, this is likely due to a high level of autocorre-
lation among patches from the same patient. However, the relative 
tightness of the null distribution patch-level ROC curves compared 
to the null distribution patient-level ROC curves suggests that 
patches from the same patient are not exactly identical or perfectly 
correlated. If patches from the same patient contain salient, hetero-
geneous examples of the relationship between predictors and 
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response, then patch-level prediction would result in a less variable, 
more generalizable model. 

Predicting TNFi response in patients with UC is variable and 
unstable 
With our approach validated, we next predicted TNFi response for 
responders (n = 9) versus resistors (n = 10). For the CNN/standard 
representation, training at the patch level resulted in six/seven mis-
classifications and gave validation AUROCs of 0.66/0.49, respec-
tively (Fig. 4E). Training at the patient level resulted in 4/11 
misclassifications and gave validation AUROCs of 0.74/0.46, re-
spectively (table S2). While the results for the CNN representation 
may seem promising, the instability over different choices of pre-
trained ImageNet architecture and input patch size is a serious 
cause for concern. Varying these choices resulted in up to 9/10 mis-
classifications for both patient-/patch-level training and showed 
that the four misclassifications were clearly an anomaly (table S2). 
Although some patient-level validation AUROCs are reasonably 
large, the results varied considerably depending on the choice of 
pretrained architecture, getting as low as 0.48. The highest valida-
tion AUROC that we got from patient-level or patch-level training 
had a P value that missed the significance mark (P = 0.13) (fig. S10). 
We did not observe any distinguishing characteristics, including 
whether patient biopsies were obtained before or after treatment, 
with respect to which patients were correctly or incorrectly 
classified. 

DISCUSSION 
UC and other autoimmune diseases are among the most common 
inflammatory disorders worldwide (1, 33, 34). Biological therapies 
such as TNFi have improved patient quality of life and reduced 
long-term complications of these chronic diseases. However, 
because of the toxicities, adverse effects, substantial failure rates, 
and high treatment costs associated with biologics, clinicians are 
in need of predictive biomarkers to guide the choice of therapy 
(12, 14, 32). Recent studies using single-cell technologies such as 
scRNA-seq and mass cytometry have attempted to identify such 
biomarkers and differences in the intramucosal immune systems 
of patients compared to healthy controls; however, these technolo-
gies cannot measure tissue architecture and the spatial interactions 
of cells (20, 21, 35). Cellular organization is known to provide crit-
ical insights into disease progression and treatment response (28). 
We therefore reasoned that analyzing the gut architecture in pa-
tients with UC, treated or not with TNFi, using highly multiplexed 
microscopy to interrogate the tissue at multiple levels simultane-
ously (i.e., at the level of cell-type frequencies, cell-cell contacts, 
and higher-order architectural features such as CNs) should 
enable previously unidentified biologic insights. 

By taking advantage of CODEX’s unique highly multiplexed 
tissue visualization with single-cell spatial resolution, we were able 
to analyze the spatial relationships between different cells to achieve 
important insights into the underlying architectural pathophysiol-
ogy of UC. The ability to map marker expression onto cell type and 
CNs, as in the case of elevated CD137 on neutrophils in the in-
flamed vasculature neighborhood, is a powerful tool for addressing 
how tissue microenvironment affects cell functional states. These 
spatial insights would not have been possible with single-cell tech-
nologies, or standard histological approaches, alone. We used 

semiautonomous algorithms to define and map cell types, cell-cell 
contacts, and neighborhoods in the gut across the UC inflammatory 
spectrum and created a comprehensive tissue atlas of the UC gut. 
We created a cloud-based software platform to make this tissue 
atlas publicly available and queryable. This interface allows the sci-
entific community to explore our dataset, generate, and test addi-
tional hypotheses. This atlas enabled the modeling of disease 
severity and the identification of cellular niches that respond to 
TNFi treatment and that differ between sexes in our patient 
cohort. Our results suggest an intriguing biological basis that may 
underlie some of the complex sex differences observed in patients 
with UC (36). These observations are consistent with existing liter-
ature identifying stronger inflammatory responses in women. 
However, note that the magnitude of sex-dependent incidence 
rates for UC in women is not as extreme as is observed in other 
autoinflammatory disorders (37). It is as yet unclear as to whether 
this biological basis derives from sex-associated behaviors or is di-
rectly linked to sex. We were additionally able to identify tissue ar-
chitecture–dependent signals associated with TNFi resistance. 
Unfortunately, the outputs from our models suggest that this 
signal is lost amidst the complex resistance-associated patient het-
erogeneities. This may be improved by future advances in how cell 
types are classified from CODEX data and how spatial interactions 
are represented. However, given the current technology, the ob-
served heterogeneity is sufficient that marked increases in sample 
size would be required to even begin to resolve the relevant 
patient populations. 

Last, we examined the application of neural networks to CODEX 
data as a subset of the more general problem of using neural net-
works for image analysis in the setting of medical experiments, 
where having large sample sizes is often impractical. We developed 
a set of recommendations for reinforcing confidence in the quality 
of the analytical procedure and its outcomes for similar experi-
ments, which should be useful for guiding other investigators. Crit-
ically, we strongly suggest using k > 1 when using k-fold cross- 
validation. Using a onefold cross-validation with such a small 
number of patients gives highly variable and, at times, overly opti-
mistic results depending on which patients are held out. Other rec-
ommendations include generating sets of null ROC curves for 
statistical comparison with the experimental ROC curve, consider-
ing model performance and any underlying patterns in which pa-
tients are correctly or incorrectly classified and reporting both 
validation AUROCs and misclassification rates. In our benchmark 
tasks, we observe differences between our misclassification rates and 
the misclassification rates resulting from selecting the optimal 
threshold derived from the validation data. This points to the diffi-
culty of selecting a prediction threshold from the training data that 
will generalize to new, unseen data (table S2). Furthermore, fine- 
tuning neural networks is not advisable in data regimes (small 
number of correlated samples) like ours. We observed that fine- 
tuning did not appreciably change our results and was computa-
tionally intensive to the extent that k-fold cross-validation along 
with the generation of null ROC curves would be impractical. 
Notably, while our neural networks suggested that much of the clin-
ically relevant signal that we observed appears to be well dispersed 
throughout the tissue, the lack of significance in B cell changes 
(Fig. 3, B and C) likely reflects slice-slice variability with regard to 
the relatively large B cell follicle tissue architectures. As the CODEX 
technology matures, we anticipate that being able to feasibly image 
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multiple slices per biopsy, across greatly increased numbers of pa-
tients, will positively affect the variability observed in our dataset. 

This study offers insights into the central biological question of 
how higher-order tissue properties emerge from a cellular organi-
zation. Although we have identified architectural motifs associated 
with TNFi response in UC in this patient cohort, it is still unclear 
how these motifs mechanistically lead to TNFi resistance and how 
these might be therapeutically altered to regain TNFi responsive-
ness. The presence of these motifs provides insights into the cellular 
basis of inflammation, although it is still uncertain as to whether 
these motifs are inherently pathological or whether they are re-
quired components of a normal inflammatory response and it is 
only their aberrant persistence that is pathological. Here, animal 
models mimicking UC coupled with knockout strategies can help 
with understanding pathogenesis. The use of longitudinal data, 
with biopsies obtained before and after TNFi treatment, is critical 
for further experiments. Our data, to an extent, support existing lit-
erature that suggests that combination therapies targeting innate 
immune cells such as neutrophils merit further investigation (38– 
40). However, the neutrophil-associated signal observed in our 
study was so low as to not reach statistical significance. This discrep-
ancy suggests that exploring different approaches to patient-level 
representation may be useful in predicting TNFi response. We en-
courage testing and validating such beliefs on new patient data. The 
tools that we have developed are broadly applicable for the study of 
other immune-driven diseases, and the potential roles of these 
motifs in other autoinflammatory disorders should be 
further studied. 

MATERIALS AND METHODS 
Patient recruitment and tissue collection 
The University of California San Diego (UCSD) Inflammatory 
Bowel Disease Biobank was established through the Human Re-
search Protection Programs at UCSD. Patients were identified and 
consented to follow Institutional Review Board protocols 131487 
(UCSD). Patients aged 18 years and older who were presenting 
for routine colonoscopies from 2012 to 2018 without a history of 
IBDs were recruited as controls, and patients aged 18 years and 
older with a confirmed diagnosis of UC were recruited. Informed 
consent was obtained. Intestinal tissue biopsies were collected 
using standard biopsy forceps and immediately placed into cryo-
vials on dry ice. These collections were taken from various areas 
of the distal colon. Samples were stored at −80°C before use. The 
study included 29 patients with UC and five healthy controls. 
Table S1 shows the patient characteristics. We acquired multiple 
regions from several patients’ biopsies of the distal colon, creating 
a total of 42 samples in our analysis and allowing for inter- and in-
trasample assessment of cellular and spatial heterogeneity. 

Participant cohort characteristics 
Each patient’s clinical phenotype was assessed by an IBD specialist 
to define disease subtype, location, and phenotype based on the 
Montreal disease classification (41). In our cohort of 29 patients 
with diagnosed UC, 15 individuals were now on TNFi (table S1): 
two with mild UC (Mayo score 1), six with moderate UC (Mayo 
score 2), and seven with severe UC (Mayo score 3) based on pro-
spectively scored endoscopic reports. Of the 14 individuals not on 
TNFi therapy at the time of biopsy, two had mild UC (Mayo score 

1), seven had moderate UC (Mayo score 2), and five had severe UC 
(Mayo score 3). Outcomes and subsequent TNFi responses were 
collected. In the cohort of patients with UC not treated with 
TNFi at the time of biopsy, six patients were later treated with 
TNFi and could be identified in regard to their therapy outcome. 
Three were subsequent responders to TNFi, and three were subse-
quent nonresponders. The UC cohort on TNFi had seven nonre-
sponders and six responders. Clinical information on TNFi 
response was not available for the remaining participants. 

Generation of CODEX DNA-conjugated antibodies 
Purified, carrier-free monoclonal and polyclonal antibodies (table 
S2) were conjugated to unique DNA oligonucleotides (TriLink Bio-
Technologies) as described before (28). Each antibody was concen-
trated on a preblocked 50-kDa centrifugal filter column (Amicon 
Ultra, EMD Millipore, no. UFC505096), and a partial antibody re-
duction was performed using a Tris(2-carboxyethyl)phosphine hy-
drochloride (TCEP)reduction solution containing 2.5 mM TCEP 
(Sigma-Aldrich, no. C4706-10G) and 2.5 mM EDTA (Sigma- 
Aldrich, no. 93302) in phosphate-buffered saline (PBS; pH 7.0). 
The partial reduction was allowed to run for 30 min. Toluene-de-
protected, lyophilized, and maleimide-modified DNA oligonucleo-
tides were then conjugated to the antibodies at a 2:1 w/w ratio for 
2 hours, with at least 100 μg of antibody per reaction. Conjugated 
antibodies were washed and eluted in PBS-based antibody stabilizer 
(Thermo Fisher Scientific, no. NC0436689) containing 500 mM 
NaCl, 5 mM EDTA, and 0.1% (w/v) NaN3 (Sigma-Aldrich, 
no. S8032). 

CODEX antibody validation, titration, and staining 
DNA-conjugated antibodies were validated on fresh-frozen tonsil 
and colon biopsy tissues under the supervision of a board-certified 
surgical pathologist (C.M.S.), and staining patterns were confirmed 
with online databases [The Human Protein Atlas, www. 
proteinatlas.org (21); Pathology Outlines, www.pathologyoutlines. 
com] and the published literature. Flash-frozen colon biopsies 
from patients with UC and healthy controls were embedded into 
a precooled (4°C) optimal cutting temperature medium (VWR/ 
Sakura, no. 25680-930) in a cryostat and refrozen immediately. 
Five to seven biopsies were assembled into tissue arrays, sectioned 
at 7 μm, and placed on 22 mm–by–22 mm glass coverslips (Electron 
Microscopy Sciences, no. 72204-01) precoated with poly-L-lysine 
(Sigma-Aldrich, no. P8920). Coverslips were stored at −80°C until 
further use. CODEX staining buffers S1, S2, S4, and H2; blocking 
buffer; rendering buffer; and stripping buffer were prepared as de-
scribed before (28). Coverslips were thawed to room temperature on 
Drierite indicating desiccant (Thermo Fisher Scientific, no. 07-578- 
3A) for 2 min, incubated in 100% acetone at room temperature for 
10 min, and air-dried on top of a humidity chamber for 2 min. 
Then, tissues were rehydrated in buffer S1 twice for 2 min, followed 
by fixation in buffer S1 containing 1.6% (v/v) paraformaldehyde 
(PFA; Thermo Fisher Scientific, no. 50-980-487) for 10 min. Cov-
erslips were briefly washed in S1 twice and equilibrated in buffer S2 
for up to 30 min. Tissues were stained with the CODEX antibody 
cocktail in a final volume of 200 μl of blocking buffer per coverslip 
for 1.5 to 3 hours at room temperature in a humidity chamber with 
gentle shaking. After staining, coverslips were washed in buffer S2 
twice for 2 min, fixed in buffer S4 containing 1.6% (v/v) PFA for 10 
min, briefly washed in PBS three times, and incubated in ice-cold 
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methanol for 5 min on ice. After briefly washing in PBS three times, 
coverslips were fixed in BS3 (3 mg/ml; Thermo Fisher Scientific, no. 
21580) for 20 min at room temperature, followed by briefly washing 
in PBS three times, and stored in buffer S4 at 4°C. 

CODEX multicycle reaction and image acquisition 
CODEX multicycle reactions and image acquisition were per-
formed as described before (28). Stained coverslips were mounted 
onto custom-made acrylic plates (Bayview Plastic Solutions) using 
coverslip mounting gaskets (Qintay, no. TMG-22), and the tissue 
was stained with Hoechst 33342 (1:1000; Thermo Fisher Scientific, 
no. 62249). Acrylic plates were mounted onto a custom-designed 
plate holder and secured onto the stage of a BZ-X710 inverted fluo-
rescence microscope (Keyence). Multicycle plates were prepared by 
adding fluorescently labeled oligonucleotides (concentration, 400 
nM) in 250 μl of buffer H2 containing Hoechst nuclear stain 
(1:600) and sheared salmon sperm DNA (0.5 mg/ml; Thermo 
Fisher Scientific, no. AM9680). The first well did not contain fluo-
rescent oligonucleotides (“blank” cycle to determine autofluores-
cence for background subtraction). DRAQ5 nuclear stain (Cell 
Signaling Technology, no. 4084L) was added to the last well at a 
1:100 dilution. For details on the order of fluorescent oligonucleo-
tides and microscope light exposure times, see table S2. Automated 
image acquisition and fluidics exchange were performed using a 
CODEX instrument and CODEX driver software (Akoya Bioscienc-
es), according to the manufacturer’s instructions, with slight mod-
ifications. Tissue overview images were acquired manually using a 
CFI Plan Apo λ 2×/0.10 objective (Nikon), and automated imaging 
was performed using a CFI Plan Apo λ 20×/0.75 objective (Nikon). 
After each multicycle reaction, H&E stainings were performed ac-
cording to standard pathology procedures, and tissues were reim-
aged in bright-field mode. 

Computational image processing 
Raw TIFF image files were processed, deconvolved, and background 
subtracted using the CODEX Toolkit uploader and Microvolution 
software (Microvolution) as described before (28). Antibody stain-
ings were visually assessed for each channel and cycle in each tissue 
region using ImageJ software (Fiji, version 2.0.0), and seven-color 
overlay figures for selected markers were generated. TIFF Hyper-
stacks were segmented on the basis of DRAQ5 nuclear stain, pixel 
intensities were quantified, and spatial fluorescence compensation 
was performed using the CODEX toolkit segmenter, which gener-
ated comma-separated value (CSV) and flow cytometry standard 
(FCS) files for further downstream analysis. 

Cleanup gating, unsupervised clustering, and cluster 
validation 
FCS files were imported into CellEngine (CellEngine Sign In), and 
cleanup gating was performed as previously described (27, 28). 
Briefly, nucleated cells were identified by double positivity for 
Hoechst and DRAQ5, and out-of-focus cells were removed by 
gating on Z planes. FCS files were then reexported and imported 
into Vortex (28) using the following settings: Numerical transfor-
mation: none. Noise threshold: no. Feature rescaling: none. Nor-
malization: none. Merge all files into one dataset: yes. Clustering 
was based on 34 validated cell identification antibody markers 
(fig. S1A) and was performed using the following settings: Distance 
measure: angular distance. Clustering algorithm: X-shift (gradient 

assignment). Density estimate: N nearest neighbors (fast). The 
number of neighbors for density estimate (K ): from 5 to 200, 
steps 40. The number of neighbors: determine automatically. The 
optimal cluster number was determined using the elbow point val-
idation tool at K = 100. Clusters containing less than 10 cells were 
grouped together. Data were exported as CSV files, and clusters 
were manually verified and assigned to cell types by overlaying 
the single cells from each cluster onto the stitched fluorescent and 
H&E-stained tissue images in ImageJ/Fiji, based on the unique 
cluster identifiers and cellular X/Y position, using custom-made 
scripts (available at https://github.com/bmyury) (27). Clusters 
with similar morphological appearance in the tissue and similar 
marker expression profiles were merged, and artifacts (such as fluo-
rescent precipitates and tissue folds) were removed, resulting in 13 
final clusters. Minimal spanning trees of the clusters were generated 
in Vortex, based on angular distance, and were exported for each 
marker and patient group. 

Manual gating of functional marker–positive cell types 
After cleanup gating, the frequencies of major immune cell types 
and their expression of functional markers (fig. S2B) were manually 
gated using CellEngine. The investigator was blinded to tissue 
sample metadata. Gating strategies were validated by plotting pop-
ulations on fluorescent tissue images for relevant markers, and pop-
ulation statistics were exported for further analysis. Statistically 
significant conclusions were validated by manually examining rele-
vant cells to ensure that conclusions represent genuine cellular 
signal rather than spillover signal from the segmentation process. 

Generation of Voronoi diagrams and cell-cell contact 
matrices 
Voronoi diagrams and cell-to-cell contact matrices were created 
using a custom-made Java algorithm with FCS files exported from 
Vortex, both of which were developed in Goltsev et al. (27). 

Identification of CNs 
CNs were identified as previously described (28). Briefly, for each 
cell in the tissue, a “window” of 10 cells (the center cell and its 
nine nearest spatial neighbors) was captured, and these windows 
were clustered by their compositions based on the 13 cell types iden-
tified using X-shift clustering and supervised merging/annotation. 
We then clustered these windows using Python’s scikit-learn imple-
mentation of MiniBatchKMeans with k = 10. Each cell was then al-
located to the same CN as the window in which it was centered. CNs 
were annotated on the basis of the enrichment of cell types within 
them and by comparing CN Voronoi diagrams to the original fluo-
rescent and H&E-stained tissue images. 

Sex-based inference 
We used a one-sided two-sample t test to assess T cell ratio differ-
ences between male and female patients. We used the standard one- 
sided t test for regression coefficients to assess the statistical signifi-
cance of the sex coefficient in the multivariate regression of T cell 
ratios on sex, age, and Mayo score. We used Fisher’s exact test to 
assess the statistical significance of different TNFi response frequen-
cies between male and female patients. 
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