
GENET ICS

ESPRESSO: Robust discovery and quantification of
transcript isoforms from error-prone long-read RNA-
seq data
Yuan Gao1*†‡, Feng Wang1†, Robert Wang1,2†, Eric Kutschera1, Yang Xu1,2, Stephan Xie1,
Yuanyuan Wang1§, Kathryn E. Kadash-Edmondson1, Lan Lin3,4, Yi Xing1,3,5*

Long-read RNA sequencing (RNA-seq) holds great potential for characterizing transcriptome variation and full-
length transcript isoforms, but the relatively high error rate of current long-read sequencing platforms poses a
major challenge. We present ESPRESSO, a computational tool for robust discovery and quantification of tran-
script isoforms from error-prone long reads. ESPRESSO jointly considers alignments of all long reads aligned to a
gene and uses error profiles of individual reads to improve the identification of splice junctions and the discov-
ery of their corresponding transcript isoforms. On both a synthetic spike-in RNA sample and human RNA
samples, ESPRESSO outperforms multiple contemporary tools in not only transcript isoform discovery but
also transcript isoform quantification. In total, we generated and analyzed ~1.1 billion nanopore RNA-seq
reads covering 30 human tissue samples and three human cell lines. ESPRESSO and its companion dataset
provide a useful resource for studying the RNA repertoire of eukaryotic transcriptomes.
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INTRODUCTION
In higher eukaryotes, a single gene can generate multiple transcript
isoforms that diversify the transcriptome and proteome (1). Switch-
es between transcript isoforms and their underlying RNA process-
ing events occur in many biological processes, such as cellular
differentiation (2, 3), and are known to be dysregulated in the
context of human diseases, including cancer (4, 5). Consequently,
it is important to examine the transcriptome diversity of cells not
only at the gene level but also at the isoform level.
Tremendous efforts have been made over the past 20 years in de-

veloping genomic technologies and computational tools to discover
and quantify transcript isoforms (6). In the past decade, short-read
RNA sequencing (RNA-seq) has become awidely used approach for
profiling eukaryotic transcriptomes, and numerous tools have been
developed and optimized to analyze short-read RNA-seq data (7).
However, despite having high sequencing quality and throughput,
short-read RNA-seq is inherently limited in its ability to discover
and quantify transcript isoforms because its limited read lengths
often cannot cover more than one splice junction (SJ), let alone
full-length transcripts (8). By contrast, rapidly developing single-
molecule long-read RNA-seq technologies are capable of generating
reads longer than 10 kb (9, 10), which can span the entirety of
almost all eukaryotic transcripts, and therefore have emerged as a

potentially powerful solution to analyzing transcriptome variation
at the isoform level. One major limitation of long-read RNA-seq
technologies, however, is that their raw reads have a high sequenc-
ing error rate. For example, current long-read sequencing platforms,
including Pacific Biosciences (PacBio) and Oxford Nanopore Tech-
nologies (ONT), are reported to have an average error rate ranging
between 5 and 20% (11, 12). To improve sequencing quality, PacBio
developed a circular consensus sequencing (CCS) protocol that in-
volves reading circularized complementary DNA (cDNA) mole-
cules multiple times to generate accurate consensus reads (13).
Similar strategies are also available in both commercial and custom-
ized ONT sequencing methods, such as 1D squared (1D2) and
rolling circle amplification to concatemeric consensus (R2C2)
(14). While such methods can reduce the sequencing error rate,
they lead to a much lower sequencing throughput and are subject
to systematic biases due to additional size selection and ligation
steps (11). As a result, consensus-free ONT 1D cDNA and direct
RNA-seq (15) represent arguably the most cost-friendly long-read
RNA-seq protocols.
Alignment-based strategies are commonly adopted for analyzing

RNA-seq data (16). Previous studies have demonstrated that align-
ing long RNA-seq reads against high-quality reference genomes can
serve as an initial step in discovering and quantifying transcript iso-
forms (17, 18). Nevertheless, because of the typically high error rate
of long-read sequencing platforms, a nonnegligible proportion of
SJs discovered from raw long RNA-seq reads have incorrect posi-
tions, based on an evaluation of four state-of-the-art aligners
applied to ONT 2D RNA-seq reads (19). The best performer in
this evaluation, minimap2, an algorithm specifically designed for
mapping error-prone long reads, reported incorrect SJ positions
for 6% of detected introns, mainly due to frequent insertion and
deletion errors around splice sites. As human protein-coding tran-
scripts have an average of 10 introns (SJs) per transcript (20), the
high frequency of incorrect SJ positions poses a major challenge
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Fig. 1. Overview of ESPRESSO. (A and B) Proportion of incorrect splice junctions (SJs) among (A) imperfectly aligned or (B) perfectly aligned putative SJs found in raw
long-read-to-genome alignments of ONT 1D cDNA reads (n = 3) and direct RNA reads (n = 3) for Spike-In RNAVariants (SIRVs). Perfectly aligned putative SJs do not have
anymismatches or indels within 10 nt of splice sites. (C) High-confidence SJs are identified from raw long-read-to-genome alignments based on whether they are present
in the existing transcript catalog, or if they have canonical splice site dinucleotidemotifs (GT/AG, GC/AG, or AT/AC) and are supported by at least two (by default) perfectly
aligned reads. The resulting set of high-confidence SJs is used to correct, recover, and evaluate SJs found in individual long reads based on each read’s alignment and
error profile. (D) First, reads are classified into the following categories on the basis of the annotation statuses of their corresponding SJs in the existing transcript catalog:
full splice match (FSM), incomplete splice match (ISM), novel in catalog (NIC), novel not in catalog (NNC), or not completely determined (NCD). Second, FSM and full-
length NIC/NNC reads are used to discover annotated and novel transcript isoforms, respectively. Third, all long reads (full-length and non-full-length) are matched to
compatible transcript isoforms. Last, abundances of discovered isoforms are quantified using an expectation-maximization (EM) algorithm. Thickness of arrows drawn
between reads and compatible transcript isoforms (bottom right) indicates probability of assigning reads to specific transcript isoforms.
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for accurate inference of full-length transcripts and protein
products.
In recent years, various computational tools have been devel-

oped for transcript isoform analysis using long-read RNA-seq
data. However, some of these tools were primarily designed or
tested on consensus reads (e.g., PacBio CCS reads or ONT R2C2
reads) (14, 17, 21), which have a higher sequencing accuracy com-
pared to raw long reads. For example, Mandalorion (14, 21) was pri-
marily designed for ONT 2D RNA-seq reads and R2C2 consensus
reads obtained from rolling circle amplification (RCA). To mitigate
the high sequencing error in raw long RNA-seq reads, some inves-
tigators have proposed and adopted a “hybrid sequencing” strategy,
which combines long-read and short-read data on the same RNA
sample to improve transcript isoform discovery and quantification
(22, 23). However, by requiring both long-read and short-read
RNA-seq data, this strategy increases the complexity and decreases
the flexibility of data acquisition and analysis. For example, Full-
Length Alternative Isoform analysis of RNA (FLAIR) uses short-
read RNA-seq data to correct putative SJs found in long-read align-
ments (23), yet in the absence of short-read data, FLAIR cannot
detect novel SJs. Two recently published tools, Long-read Isoform
Quantification and Analysis (LIQA) (24) and NanoCount (25),
quantify the abundances of annotated transcript isoforms using
long-read RNA-seq data alone, but neither tool discovers novel
transcript isoforms. LIQA focuses on addressing the effects of
long-read RNA-seq coverage biases on transcript isoform quantifi-
cation but does not include any step for improving SJ accuracy or
discovering novel transcript isoforms (24). On the other hand,
NanoCount aligns long RNA-seq reads against a reference tran-
scriptome followed by transcript abundance estimation but is re-
stricted to annotated transcript isoforms (25). Given the
increasingly broad adoption of long-read RNA-seq technologies
and the rapid accumulation of error-prone long-read RNA-seq
data in public repositories, there is an urgent need to develop
robust computational tools for transcript isoform discovery and
quantification using error-prone long-read RNA-seq data alone.
Here, we report ESPRESSO (Error Statistics PRomoted Evalua-

tor of Splice Site Options), a new computational tool for transcript
isoform analysis using long-read RNA-seq data. Instead of relying
on high-accuracy consensus reads or assistance from short-read
RNA-seq data, ESPRESSO can robustly discover and quantify tran-
script isoforms, including novel transcript isoforms, using error-
prone long-read RNA-seq data alone. ESPRESSO is motivated by
two intuitive observations about long-read RNA-seq data. First,
among all putative SJs discovered from long-read RNA-seq data,
SJs with perfect alignments around splice sites are much less
likely to be incorrect than those with imperfect alignments.
Second, by borrowing information from multiple long reads
aligned to a gene, it is feasible to improve SJ discovery from each
long read. Therefore, ESPRESSO jointly considers alignments of
all long reads aligned to a gene and uses the error profiles of indi-
vidual reads to improve the identification of SJs and quantification
of transcript isoforms. We demonstrate the performance and utility
of ESPRESSO by generating and analyzing ~1.1 billion nanopore
RNA-seq reads on synthetic as well as biological samples across
diverse human tissues and cell types.

RESULTS
Computational workflow of ESPRESSO
ESPRESSO consists of three major steps (Fig. 1). First, raw long
RNA-seq reads are aligned to a reference genome and putative SJs
are detected from the long-read-to-genome alignment. A putative
SJ is defined as a high-confidence SJ if it is annotated in the existing
transcript catalog or if it has the canonical splice site dinucleotide
motif (GT/AG, GC/AG, or AT/AC) (26) and is supported by at least
two reads (by default) with perfect alignments around splice sites
(hereafter referred to as “perfectly aligned reads”). To support the
validity of this definition of high-confidence SJs based on alignment
features, we generated and analyzed ONT 1D cDNA and direct
RNA-seq reads on a sample of Spike-In RNAVariants (SIRVs) (Ma-
terials and Methods), which are composed of 68 synthetic tran-
scripts with known transcript structures and concentrations (27).
We found that putative SJs supported by perfectly aligned reads
were much less likely to be incorrect (0.18 to 0.24%) as compared
to putative SJs that were not (8.8 to 13.0%) (Fig. 1, A and B, and
table S1).
Second, for each long RNA-seq read, ESPRESSO considers all

high-confidence SJs for the gene to which the read is mapped and
determines the read’s most optimal set of SJs. Specifically, each long
read is realigned to the sequence of every high-confidence SJ with
overlapping coordinates. Matches, mismatches, insertions, and de-
letions in the long-read-to-high-confidence-SJ realignment are
counted. If a long read has a putative SJ with an imperfect alignment
around splice sites and multiple options for a high-confidence SJ
exist for this putative SJ, then ESPRESSO identifies and selects the
most likely high-confidence SJ using a probability calculated from
the long read’s alignment and error profile (Fig. 1C). This probabil-
ity is calculated on the basis of the assumption that a given long read
has a similar error profile within and outside its SJ regions. In a hy-
pothetical scenario where a long read has two high-confidence SJ
options for a putative SJ (e.g., S13 and S

2
3; Fig. 1C), the probability

for a particular high-confidence SJ option is calculated from a mul-
tivariate hypergeometric distribution, based on the numbers of
matches, mismatches, insertions, and deletions in the long-read-
to-high-confidence-SJ alignment, within versus outside that SJ
region. Among multiple SJ options, the best one with the highest
probability is selected for the given long read if its probability is
at least 10 times that of the second-best option. Notably, this proce-
dure can also recover missing first or last SJs and their associated
terminal exons at alignment ends (Fig. 1C).
Third, after SJ correction and recovery, long reads are classified

into multiple categories based on the annotation statuses of their
corresponding SJs in the existing transcript catalog. Specifically,
we adopted an established classification system for long-read anal-
ysis of transcript isoforms: full splice match (FSM), novel in catalog
(NIC), novel not in catalog (NNC), and incomplete splice match
(ISM) (Materials and Methods) (17). We also introduced a new cat-
egory, not completely determined (NCD), to classify long reads
containing at least one low-confidence SJ that could not be correct-
ed by ESPRESSO. Transcript isoforms are discovered by collapsing
full-length long reads into unique chains of high-confidence SJs. To
maintain stringency in transcript isoform discovery, novel tran-
script isoforms that are not annotated in the existing transcript
catalog are further required to have at least two perfectly aligned
reads supporting each SJ. Once the set of transcript isoforms is
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determined for a given gene, all long reads (full-length and non-full-
length) are matched to compatible transcript isoforms, and the
abundances of individual transcript isoforms are quantified using
an expectation-maximization (EM) algorithm (Fig. 1D) (28, 29).

ESPRESSO improves SJ identification from error-prone
long reads
We evaluated ESPRESSO’s definition of high-confidence SJs based
on perfectly aligned reads. For this analysis, we used ONT direct
RNA-seq data on SIRV synthetic RNAs. Direct RNA-seq data are
known to have a higher error rate but may more accurately preserve
transcript structures and abundances as they are free of reverse tran-
scription (RT) and polymerase chain reaction (PCR) amplification
biases (30, 31). We first tested the precision and recall of de novo
(i.e., annotation-free) SJ identification from raw long-read-to-
genome alignments of direct RNA-seq data on SIRVs, using
varying read count thresholds based on either the number of per-
fectly aligned reads or the total number of aligned reads supporting
a given SJ. To ensure an unbiased evaluation of SJ identification, we
did not use SIRV transcript annotations to guide long-read align-
ments around SJs.
As shown in Fig. 2A, compared to cutoffs based on the total

number of aligned reads, cutoffs based on the number of perfectly
aligned reads generally yielded a higher precision for SJ identifica-
tion at the same recall rate. For example, when requiring SJs to be
supported by ≥2 perfectly aligned reads, both a high recall (91.9%)
and a high precision (85.7%) were achieved. By contrast, at the same
recall rate, de novo SJ identification based on total aligned reads
achieved a much lower precision of 34.5%. Overall, de novo SJ iden-
tification on the SIRV data using perfectly aligned reads had a
higher area under the precision-recall curve compared to using
total aligned reads (0.930 versus 0.842, respectively). Collectively,
these results support ESPRESSO’s definition of high-confidence
SJs based on perfectly aligned reads.
We next asked whether de novo SJ correction and recovery by

ESPRESSO based on high-confidence SJs would improve the accu-
racy of SJs identified in error-prone long reads. To this end, we com-
pared SJs identified from raw alignments of direct RNA-seq data on
SIRVs to SJs called by ESPRESSO after SJ correction and recovery,
using SIRV transcript annotations as ground truth. Specifically, we
classified individual long RNA-seq reads into distinct categories
based on the annotation statuses of their SJs, using a classification
system developed by Tardaguila et al. (17). FSM or ISM indicates
that all SJs and their combinations in a given read are consistent
with those in an annotated SIRV transcript, with FSM and ISM
reads representing full-length reads and fragmented reads, respec-
tively. Therefore, reads classified as FSM or ISM are considered as
reads with correct transcript structures. On the other hand, NIC or
NNC indicates a novel combination of annotated or novel splice
sites, respectively. In the context of the SIRV analysis, reads classi-
fied as NIC or NNC are considered as reads with incorrect tran-
script structures.
As shown in Fig. 2B, 49.5% of aligned reads were classified as

FSM based on raw alignments. These FSM reads can be further
divided into reads containing only SJs with canonical splice site di-
nucleotide motifs (45.5%) and reads containing at least one SJ
without the canonical splice site dinucleotide motif (4.0%). The
latter set of “noncanonical FSM” reads exists because some of the
artificial SIRV synthetic transcripts contain SJs without the

canonical splice site dinucleotide motif. After SJ correction and re-
covery by ESPRESSO, the proportion of canonical FSM reads in-
creased from 45.5 to 61.0%. The majority of reads reclassified as
FSM by ESPRESSO were previously classified as NNC (9.3% of
aligned reads) and ISM (6.7% of aligned reads) based on raw align-
ments, demonstrating the efficacy of ESPRESSO to correct SJ posi-
tions and recover missing SJs at alignment ends. Correspondingly,
the proportion of NNC and NIC reads decreased substantially from
24.7 to 6.5%, suggesting that ESPRESSO can effectively remove in-
correct SJs initially identified from raw alignments. Together, after
SJ correction and recovery by ESPRESSO, 18.5% of reads were re-
classified from an incorrect type to a correct type (i.e., from NNC/
NIC to FSM/ISM) or from an incomplete type to a complete type
(i.e., from ISM to FSM). Only 0.96% of reads were reclassified in the
opposite direction.
A small proportion of reads contained at least one SJ in the raw

alignment that was evaluated by ESPRESSO as low-confidence but
could not be corrected by ESPRESSO. These reads were classified as
NCD and constituted 11.2% of reads in the SIRV direct RNA-seq
data after SJ correction and recovery. The majority of these reads
were initially classified as NNC (7.1% of aligned reads) based on
raw alignments. In addition, 4.0% of reads initially classified as non-
canonical FSM reads were reclassified as NCD by ESPRESSO. This
is an expected behavior by ESPRESSO for the SIRV data because
ESPRESSO does not consider SJs without the canonical splice site
dinucleotide motif as high-confidence SJs in an annotation-free
setting. It should be noted that, although NCD reads are not used
for transcript isoform discovery, they are subsequently assigned to
discovered transcript isoforms and used for quantifica-
tion (Fig. 1D).

Systematic evaluation of ESPRESSO for transcript isoform
discovery and quantification
Next, we evaluated the performance of ESPRESSO in discovering
transcript isoforms from ONT direct RNA and 1D cDNA sequenc-
ing data on SIRV synthetic RNAs. For this evaluation, we compared
ESPRESSO to StringTie2 (32) and FLAMES (33), two recently pub-
lished tools that can perform transcript isoform discovery and
quantification using long-read RNA-seq data alone. In particular,
we ran all three tools on the SIRV data using random downsamples
of SIRV transcript annotations, which we varied to contain from 10
to 100% of the transcripts. On direct RNA-seq data, ESPRESSO
showed the best performance in transcript isoform discovery com-
pared to StringTie2 and FLAMES across all sampling thresholds
tested (Fig. 2C). For example, even when only 10% of the SIRV tran-
script annotations were provided as a guide, ESPRESSO’s sensitivity
and precision (0.701 and 0.900, respectively) were far better than
those of StringTie2 (0.275 and 0.459, respectively) and FLAMES
(0.343 and 0.322, respectively). Similarly, for 1D cDNA sequencing
data, ESPRESSO showed the best overall performance in transcript
isoform discovery, when sensitivity and precision are jointly consid-
ered through the F1 score, compared to StringTie2 and FLAMES for
all sampling thresholds tested (fig. S1A). For both direct RNA and
1D cDNA sequencing data of SIRVs, StringTie2 had the lowest sen-
sitivity and FLAMES had the lowest precision. Collectively, these
results demonstrate that ESPRESSO shows the best overall perfor-
mance in discovering transcripts that are not present in annotations.
We also ran ESPRESSO, StringTie2, and FLAMES on ONT

direct RNA and 1D cDNA sequencing data on human embryonic
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kidney (HEK) 293T cells (Materials and Methods) to further eval-
uate the performance of each tool in discovering transcript isoforms
in real human transcriptomes. In the context of RNA-seq data on
human samples, we do not know what transcripts are actually ex-
pressed. Therefore, to evaluate the performance of each tool in
terms of transcript isoform discovery, we adopted an evaluation
framework originally used by StringTie2 (32). In this framework,

among all discovered transcripts, annotated transcripts are treated
as true positives, while novel transcripts are treated as false positives.
For the purpose of this evaluation, these definitions are acceptable
given that human transcript annotations are of relatively high
quality and HEK293T is arguably a well-characterized cell line.
We computed for each tool the number of annotated transcripts dis-
covered (proxy for sensitivity) and the proportion of annotated

Fig. 2. Evaluation of ESPRESSO using ONT direct
RNA-seq data of SIRVs. (A) Precision-recall curves
for de novo SJ identification from raw long-read-to-
genome alignments, combined over n = 3 direct
RNA-seq replicates, using read count thresholds
based on total aligned reads or perfectly aligned
reads supporting a given SJ. (B) Distribution of
transcript isoform categories among aligned reads,
combined over n = 3 direct RNA-seq replicates,
before and after de novo SJ correction. FSM or ISM
indicates that all SJs in a read are consistent with
those in an annotated SIRV transcript, with FSM
and ISM reads representing full-length and frag-
mented reads, respectively. FSM reads are further
partitioned into two subcategories (canonical and
noncanonical) based on whether they contain SJs
without the canonical splice site dinucleotide
motif. NIC or NNC indicates a novel combination of
annotated or novel splice sites, respectively, and
reads classified as NIC or NNC have incorrect tran-
script structures with respect to SIRVs. NCD reads
contain at least one putative SJ in the raw align-
ment that was evaluated as low-confidence but
could not be corrected by ESPRESSO. (C) Sensitiv-
ity, precision, and F1 score of ESPRESSO and two
other tools (StringTie2 and FLAMES) in discovering
SIRV transcripts from direct RNA-seq data (n = 3),
using random downsamples of different propor-
tions of SIRV annotations as a guide. Each point
represents the mean of three random samplings
per downsampling level. (D) Box-and-whisker plots
(median and interquartile range) and correlation
(Pearson’s and Spearman’s) between known con-
centrations of 68 SIRV transcripts and their esti-
mated abundances from ESPRESSO and five other
tools (LIQA, NanoCount, FLAIR, StringTie2, and
FLAMES). For each tool, transcript abundance is
reported as the sum of assigned read counts over
n = 3 direct RNA-seq replicates. Diameters of points
in the box-and-whisker plots are scaled according
to transcript length.
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transcripts among all transcripts discovered (proxy for precision).
For both ONT direct RNA and 1D cDNA sequencing datasets,
ESPRESSO discovered more annotated transcripts compared to
StringTie2 and FLAMES (fig. S2A).Moreover, the proportion of an-
notated transcripts among all transcripts discovered by ESPRESSO
was 2 to 3.5 times that of StringTie2 and FLAMES (fig. S2B). These
comparisons further indicate that ESPRESSO is a robust tool for
transcript isoform discovery.
Besides transcript isoform discovery, another important goal of

long-read RNA-seq analysis is to quantify transcript isoforms. To
evaluate the accuracy of transcript isoform quantification, we ran
ESPRESSO and five other contemporary tools [LIQA (24), Nano-
Count (25), FLAIR (23), StringTie2 (32), and FLAMES (33)] on
ONT direct RNA and 1D cDNA sequencing data of SIRVs. We
compared transcript isoform read counts reported by each tool
against known SIRV transcript concentrations. As several of the
five other tools require existing transcript annotations as their
input, all six tools were run in an annotation-guided setting. For
direct RNA-seq data of SIRVs, ESPRESSO outperformed all five
other tools in terms of quantification accuracy, as evidenced by
the correlation between known SIRV transcript concentrations
and quantifications by individual tools (Fig. 2D). ESPRESSO
yielded SIRV transcript abundance estimates that had a Pearson’s
correlation of 0.914 and a Spearman’s correlation of 0.940 with
ground-truth spike-in concentrations. By contrast, the other five
tools yielded estimates that had Pearson’s correlation values
ranging from 0.400 to 0.874 and Spearman’s correlation values
ranging from 0.373 to 0.889 and tended to show strong quantifica-
tion biases for several SIRV transcript isoforms. ESPRESSO also ex-
hibited a lower bias and variability in transcript quantification
relative to other tools. For example, the coefficient of variation in
estimated abundances of the 19 lowest-concentration SIRV tran-
script isoforms (spike-in concentration of 1/32 fmol/μl) was 89%
for ESPRESSO compared to 151% for NanoCount, which was the
second-best performer in this evaluation but was designed to quan-
tify only annotated transcript isoforms. Similarly, we found that
ESPRESSO outperformed all five other tools when using 1D
cDNA sequencing data for the same SIRV RNAs (fig. S1B). Togeth-
er, ESPRESSO achieves a higher accuracy in transcript isoform
quantification for the two most popular ONT RNA-seq protocols
(1D cDNA and direct RNA), as compared to other contempo-
rary tools.
Having evaluated ESPRESSO for long-read RNA-seq-based

transcript quantification, we also compared the performance of
ESPRESSO to that of short-read RNA-seq-based transcript quanti-
fication. Specifically, we analyzed a publicly available short-read
RNA-seq dataset on the same set of SIRV RNAs (Materials and
Methods) using StringTie2, which can perform transcript isoform
analysis using either short or long RNA-seq reads. We found that
StringTie2 abundance estimates for SIRV transcripts using short-
read RNA-seq data were not as well correlated with ground-truth
spike-in concentrations (Pearson’s correlation of 0.687 and Spear-
man’s correlation of 0.588) compared to StringTie2 abundance es-
timates using ONT 1D cDNA sequencing data (Pearson’s
correlation of 0.755 and Spearman’s correlation of 0.719) (fig. S3).
This observation is consistent with the expectation that long-read
RNA-seq can quantify transcript isoforms more accurately.
Notably, compared to StringTie2, ESPRESSO generated SIRV tran-
script abundance estimates that had an even higher correlation with

ground-truth spike-in concentrations (Pearson’s correlation of
0.777 and Spearman’s correlation of 0.920) (fig. S3).
Last, we performed an additional benchmark evaluation of

ESPRESSO and other contemporary tools using simulated ONT
RNA-seq datasets, in which we knew the ground-truth set of tran-
scripts that were present and their abundance levels. Specifically, we
used NanoSim (34) to simulate ONT direct RNA and 1D cDNA
reads of varying sequencing depths (0.5 million, 1 million, 3
million, and 5 million) based on transcript abundance levels, read
length distributions, and error profiles observed in our real ONT
RNA-seq data on HEK293T cells. Across all simulated ONT
RNA-seq datasets, ESPRESSO consistently demonstrated the best
performance in transcript isoform discovery compared to String-
Tie2 and FLAMES, as reflected by the sensitivity, precision, and
F1 score (fig. S4). Consistent with our expectation, the sensitivity
of transcript isoform discovery improved with increasing sequenc-
ing depth for all three tools. Notably, ESPRESSO’s precision in tran-
script isoform discovery (direct RNA, 0.84 to 0.89; 1D cDNA, 0.93
to 0.95) was much higher than that of StringTie2 (direct RNA, 0.65
to 0.80; 1D cDNA, 0.60 to 0.77) and FLAMES (direct RNA, 0.64 to
0.75; 1D cDNA, 0.69 to 0.78). Furthermore, we evaluated the accu-
racy of transcript isoform quantification using our simulated ONT
direct RNA and 1D cDNA sequencing datasets. On the basis of the
correlation of transcript abundance estimates with ground-truth
transcript abundance levels, ESPRESSO consistently outperformed
LIQA, NanoCount, FLAIR, and FLAMES and was a close second or
comparable to StringTie2 (figs. S5 and S6).

Comparison of three nanopore RNA-seq protocols
In addition to direct RNA and 1D cDNA sequencing, the R2C2 pro-
tocol is a recently described alternative strategy for long-read RNA-
seq on the ONT platform (14). Specifically designed for cDNAs,
R2C2 uses RCA of circularized cDNA templates to generate long
concatemeric sequences that can be subsequently processed into
consensus sequences with improved base accuracy. To investigate
how different ONT RNA-seq protocols affect transcript isoform
analysis, we generated data on three human cell lines (PC3E,
GS689, and HEK293T) using three protocols [1D cDNA, direct
RNA, and linear RCA (LRCA), which is an adapted version of the
R2C2 protocol; Materials and Methods] and analyzed the resulting
data using ESPRESSO.
We first assessed basic library statistics such as read length, base

error rate, and library yield. Length distributions of mapped raw
reads (or consensus reads for LRCA) were comparable across the
three protocols (Fig. 3A). As expected, the base error rate was
lowest for LRCA libraries (1.3 to 4.4%) and highest for direct
RNA-seq libraries (11.3 to 16.9%), while 1D cDNA libraries had
an intermediate base error rate (7.3 to 13.2%) (all values shown rep-
resent interquartile ranges) (Fig. 3B). However, the improved base
accuracy of LRCA relative to 1D cDNA and direct RNA came at the
expense of having a significantly lower library yield per flow cell
(Fig. 3C). While we obtained an average of 4.7 million mapped
reads per flow cell for 1D cDNA libraries, the average number of
mapped consensus reads per flow cell was only 0.3 million for
LRCA, even fewer than that of direct RNA (1.2 million).
Using data on SIRV synthetic RNAs spiked into these libraries,

we next investigated how different ONT RNA-seq protocols affect
the accuracy of transcript isoform quantification. Transcript abun-
dances estimated by ESPRESSO using direct RNA-seq data had the
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highest correlation with known SIRV transcript concentrations
(0.914), likely attributed to the fact that the direct RNA-seq protocol
is free of RT and PCR amplification biases (30, 31). 1D cDNA data
yielded an intermediate correlation with known SIRV transcript
concentrations (0.777), while the correlation was the lowest for
LRCA data (0.701). In addition, transcript abundances estimated
from LRCA data exhibited a strong length-dependent bias with
respect to transcript length. SIRV transcript isoforms have lengths
from 161 nucleotides (nt) to 2498 nt. Leveraging this diverse length
distribution, we examined the estimated transcript abundances of
all 68 SIRV transcripts as a function of transcript length. Among
the three library types, LRCA exhibited the most pronounced
length bias for estimated transcript abundances (Fig. 3D), as con-
firmed by an analysis of variance (ANOVA) test comparing the
fits of linear regression models on estimated SIRV transcript abun-
dances with or without transcript length considered (P = 0.016 for
LRCA, P = 0.11 for 1D cDNA, and P = 0.36 for direct RNA; table
S2). This observed length bias did not appear to be a monotonic
function of transcript length, as transcripts shorter than 700 nt or
longer than 2000 nt appeared to have the most pronounced biases
(Fig. 3D). It is possible that additional circularization and size selec-
tion steps during LRCA library preparation may be responsible for

the apparent length-dependent bias in transcript abundance
estimation.

Transcriptome-wide analysis of transcript isoforms in three
human cell lines
Because the 1D cDNA protocol generates by far the highest library
yield per flow cell (Fig. 3C) and is arguably the default ONT RNA-
seq protocol, we generated deep 1D cDNA sequencing data on three
human cell lines (PC3E, GS689, and HEK293T), with a total of 430
million reads from 54 flow cells (table S3). To assess how sequenc-
ing depth affects gene and transcript isoform discovery, we per-
formed a saturation analysis by running ESPRESSO on the full or
randomly downsampled data. The numbers of annotated genes and
annotated transcript isoforms discovered were trending saturation
in all three cell lines, ranging from 24,594 to 25,279 genes and
79,976 to 80,048 transcript isoforms on the full data. By contrast,
the number of novel transcript isoforms discovered (82,998 to
90,314 on the full data) was still far from saturation and higher
than the number of annotated transcript isoforms discovered (fig.
S7 and table S4). These results suggest that a large number of
novel transcript isoforms remain to be discovered with even
deeper sequencing of these cell lines. The estimated transcript

Fig. 3. Comparison of three ONT RNA-seq library types. (A and B) Violin plots showing distributions of (A) mapped read length and (B) base error rate for ONT 1D
cDNA, direct RNA, and linear RCA (LRCA) libraries prepared from PC3E (1D cDNA and LRCA), GS689 (1D cDNA and LRCA), and HEK293T (1D cDNA and direct RNA) cell lines.
(C) Box-and-whisker plots (median and interquartile range) showing number of mapped reads per flow cell (×106) for the same ONT 1D cDNA, direct RNA, and LRCA
libraries in (A) and (B). The number of flow cells per combination of library type and cell line is shown above each box-and-whisker plot. (D) Scatterplots showing abun-
dance estimates for 68 Spike-In RNAVariant (SIRV) transcripts as a function of transcript length for ONT 1D cDNA, direct RNA, and LRCA libraries. SIRVs were spiked into 1D
cDNA and LRCA libraries of PC3E cell lines as well as direct RNA libraries of HEK293T cell lines. Local regression curves were fitted to groups of points corresponding to
transcripts with the same SIRV concentration using the geom_smooth function in R (v4.0.3). The gray area represents a 95% confidence interval for predictions from each
regression curve. Pearson’s correlations between SIRV concentration and estimated abundance for SIRV transcripts are shown.
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abundances were highly correlated across biological replicates
(n = 3) of the same cell line. For example, Pearson’s correlation
values ranged from 0.97 to 0.99 for PC3E replicate pairs and
GS689 replicate pairs (Fig. 4A and figs. S8 and S9). Similar pairwise
correlation values were observed when applied to annotated tran-
script isoforms (0.97 to 0.99) or novel transcript isoforms (0.95
to 0.99).

To further characterize novel transcript isoforms discovered
from these human cell lines, we next compared the distributions
of estimated transcript abundances between annotated and novel
transcript isoforms. As expected, annotated transcript isoforms
were consistently more abundant than novel transcript isoforms
across all three PC3E replicates (Fig. 4B and fig. S8). For example,
across the three PC3E replicates, 12.6 to 14.5% of annotated

Fig. 4. Discovery and quantification of transcript isoforms from deep ONT 1D cDNA data of PC3E and GS689 cell lines. (A) Density plot comparing estimates of
isoform abundance between two PC3E replicates, PC3E-1 and PC3E-2. (B) Cumulative distribution function (CDF) plots showing distributions of isoform abundance for
annotated transcript isoforms (blue) or novel transcript isoforms (red) discovered in the PC3E-1 and PC3E-2 replicates. (C) Stacked barplot showing estimated abundances
of CD44 transcript isoforms across three PC3E (PC3E-1, PC3E-2, and PC3E-3) and three GS689 (GS689-1, GS689-2, and GS689-3) replicates. Isoforms with CPM ≥ 3 in all
three replicates of at least one cell line are represented individually, while the remaining isoforms were grouped together into an “Other” category. (D) ONT 1D cDNA read
coverage tracks for three PC3E and three GS689 replicates, showing alignments of long reads that were uniquely assigned to the seven CD44 isoforms shown in (C) and
classified as being FSM, NIC, or NNC. Transcript structures for the seven CD44 isoforms are displayed using blue boxes and lines. Displays for read coverage tracks and
transcript structures were generated using Integrative Genomics Viewer (v2.8.0). (E) Sashimi plots based on Illumina short-read data for three PC3E and three GS689
replicates, showing an alternative 3′ splice site event involving an NAGNAG alternative splice acceptor site in CD44. This event distinguishes novel isoform ESPRESSO:
chr11:4659:278 from annotated isoform ENST00000415148 and novel isoform ESPRESSO:chr11:4659:279. Sashimi plots were generated using rmats2sashimiplot (v2.0.2).
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transcript isoforms that were discovered had CPM (counts per
million) values > 10. By contrast, 1.7 to 2.4% of novel transcript iso-
forms that were discovered had CPM values > 10 (Fig. 4B and table
S4). While more novel transcript isoforms were discovered com-
pared to annotated transcript isoforms for each PC3E replicate,
83.5 to 86.1% of transcript isoforms with CPM > 10 were annotated.
Among the PC3E replicates, a majority (86.6 to 87.0%) of genes had
an annotated transcript isoform as the major transcript isoform (fig.
S10). However, for genes in which the major transcript isoform’s
proportion was <50%, 32.7 to 34.0% had a novel transcript
isoform as the major transcript isoform. We observed a similar
pattern in GS689 and HEK293T cells.
Using ESPRESSO, we discovered cell type-specific transcript iso-

forms involving complex alternative splicing patterns. For example,
CD44 isoform switching is essential for epithelial-mesenchymal
transition and involves changes in inclusion levels of nine variant
exons within CD44 (35). Using ESPRESSO, we discovered a total
of 52 CD44 transcript isoforms (20 annotated and 32 novel)
across replicates of PC3E and GS689 (n = 3 each), two prostate
cancer cell lines with contrasting epithelial versus mesenchymal
properties (36). Seven CD44 transcript isoforms (four annotated
and three novel) were consistently discovered with CPM ≥ 3 in all
replicates of either cell line. While the composition of CD44 tran-
script isoforms in all PC3E replicates appeared largely heteroge-
neous, CD44 expression in all GS689 replicates shifted almost
entirely to a single, annotated transcript isoform,
ENST00000263398, which lacks all nine variant exons (Fig. 4C).
Using transcript isoform CPM values and raw long-read align-
ments, we found eight of the nine variant exons to be abundantly
expressed across PC3E replicates, but none of the variant exons were
detected in any of the GS689 replicates (Fig. 4D). This observation is
consistent with previous short-read RNA-seq data of PC3E and
GS689 cell lines (37). ESPRESSO was also able to differentiate
and quantify CD44 transcript isoforms with highly similar tran-
script structures at base resolution. For example, three CD44 tran-
script isoforms (annotated transcript isoform ENST00000415148
and novel transcript isoforms ESPRESSO:chr11:4659:279 and
ESPRESSO:chr11:4659:278) that were consistently discovered
across PC3E replicates share highly similar transcript structures
but differ in combinations of NAGNAG alternative splice acceptor
sites for two variant exons. Corresponding short-read RNA-seq data
for the same PC3E replicates confirmed alternative splicing at these
NAGNAG acceptor splice sites (Fig. 4E and fig. S11).

ESPRESSO enables accurate quantification of intron
retention and other types of alternative splicing events
Intron retention (IR) is a form of alternative splicing that fine-tunes
gene expression and regulates a variety of cellular processes, such as
erythropoiesis and T cell activation (3). However, quantification of
IR events using short-read RNA-seq data is challenging, especially
in regions with complex alternative splicing patterns (38). An inher-
ent limitation in quantifying IR using short-read RNA-seq data is
that some reads counted as deriving from retained intronsmay orig-
inate from overlapping transcripts, such as transcripts with alterna-
tive splice donor or acceptor sites within an intron of interest. For
example, in the toy example in Fig. 5A, IR estimation for intron A
could be inflated by short RNA-seq reads originating from the tran-
script isoform that uses an alternative splice site to splice out intron
B. Long RNA-seq reads can connect multiple alternative splicing

events and span entire introns, potentially improving quantification
of IR events.
To quantify IR events detected from long-read RNA-seq data on

PC3E and GS689 cell lines, we computed the percent of IR (PI),
which is the proportion of reads fully retaining an intron among
reads in which the intron is either fully spliced or retained (Materi-
als and Methods). For IR events detected in each of the six samples
(n = 3 per cell line), PI values calculated from long-read RNA-seq
data were overall highly correlated (0.888 to 0.919) with PI values
calculated from corresponding short-read RNA-seq data (fig.
S12). However, the degree of correlation differed substantially for
subsets of IR events, depending on whether the intron of interest
overlapped with the exonic region of an overlapping transcript dis-
covered from long-read RNA-seq data. For example, 6318 IR events
were detected in a PC3E replicate (PC3E-1), and the PI values cal-
culated from corresponding long-read and short-read data had an
overall Pearson’s correlation of 0.888 (Fig. 5B). Of these IR events,
5103 had no overlapping exonic regions of overlapping transcripts,
and the PI values calculated from corresponding long-read and
short-read data had an even higher Pearson’s correlation of 0.939
(Fig. 5C). By contrast, 1215 IR events detected in this PC3E replicate
had overlapping exonic regions of overlapping transcripts. For these
IR events, the estimated PI values had a much lower Pearson’s cor-
relation of 0.732 between the long-read and short-read data, with
generally higher PI values estimated from short-read data compared
to long-read data (Fig. 5D). A consistent pattern was observed for all
other PC3E/GS689 replicates (fig. S12). To investigate the potential
reason for this lower correlation, for this subset of IR events, we
treated long reads supporting overlapping exonic regions of over-
lapping transcripts as reads supporting the retention of the
introns of interest, to calculate a “biased” long-read-based PI
value in a manner that mimicked PI value estimation using short-
read data (Fig. 5A). Notably, such biased long-read PI values had a
much higher correlation (0.943) with short-read PI values (fig. S13).
Collectively, these results indicate that long-read RNA-seq data can
generate a more reliable quantification of IR events, particularly in
regions with overlapping transcripts and complex alternative splic-
ing patterns.
We also examined, more broadly, how long-read RNA-seq-

based quantification of other types of alternative splicing events,
such as exon skipping and alternative 5′ and 3′ splice site usage,
compares to that of short-read RNA-seq. To this end, we estimated
the percent spliced in (PSI) values of alternative splicing events de-
tected in PC3E and GS689 cell lines using short-read and long-read
RNA-seq data, separately (Materials and Methods). For exon skip-
ping events detected in each of the six samples (n = 3 per cell line),
PSI values calculated from long-read data overall agreed well with
PSI values calculated from corresponding sample-matched short-
read data (Pearson’s correlation between 0.873 and 0.891) (fig.
S14, A and B). On the other hand, the correlation between short-
read- and long-read-based PSI values was even higher for alterna-
tive 5′ splice site usage events (Pearson’s correlation between 0.941
and 0.952) and alternative 3′ splice site usage events (Pearson’s cor-
relation between 0.934 and 0.944).
To further investigate why the correlation between short-read-

and long-read-based PSI values was relatively lower for exon skip-
ping events compared to alternative 5′ and 3′ splice site usage
events, we noticed that short-read data often yielded higher PSI
values for exon skipping events compared to long-read data (fig.
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S14, A and B). When we partitioned the exon skipping events based
on whether they overlap other alternative splicing events (e.g., the
cassette exon itself carries alternative 5′ or 3′ splice sites), the degree
of correlation differed substantially for the two resulting subsets
(fig. S14, C and D). For exon skipping events that do not overlap
other alternative splicing events (i.e., “simple” exon skipping
events), the Pearson’s correlation between short-read and long-
read PSI values ranged between 0.964 and 0.972. In contrast, for
exon skipping events that overlap with other alternative splicing
events (i.e., “complex” exon skipping events), the correlation was
much lower (Pearson’s correlation between 0.825 and 0.847).
Notably, for simple exon skipping events, we observed that short-
read data did not yield higher PSI values compared to long-read
data, yet this pattern still remained for complex exon skip-
ping events.
Last, we sought to investigate how the accuracy of long-read-

based quantification of alternative splicing events changes with de-
creasing long-read RNA-seq depth. Given that short-read RNA-seq
is considered the de facto approach for quantifying alternative splic-
ing events (6, 39), we reasoned that the correlation between short-

read- and long-read-based measurement of alternative splicing
events can be used as a proxy for quantification accuracy. To this
end, we randomly sampled between 1 and 100% of long RNA-seq
reads generated for PC3E and GS689 cell lines, which were subject-
ed to deep long-read RNA-seq (table S3), and used each set of ran-
domly sampled long reads to quantify transcript isoforms and their
associated alternative splicing events. For each of the six samples
(n = 3 per cell line), we examined how the number of randomly
sampled long reads affected the correlation between short-read
and long-read PSI values for simple exon skipping events. We
found that, when the number of sampled long reads was greater
than 5 million, the correlation between short-read and long-read
PSI values remained largely stable. However, when the number of
sampled long reads dropped below 5 million, the degree of correla-
tion rapidly declined (fig. S15).

A comprehensive catalog of transcript isoforms across 30
human tissues
Last, we applied ESPRESSO to discover and quantify transcript iso-
forms from 30 human tissues representing diverse anatomical sites

Fig. 5. Long-read RNA-seq improves quantification of intron retention events. (A) Intron retention (IR) estimation using short-read data may be biased when tran-
script isoforms with overlapping exonic structures are present. The true IR level should be estimated as the number of reads with the intron fully retained, divided by the
number of reads with the intron either fully retained or fully spliced out. For example, consider three equally abundant transcript isoforms. Introns A and B are retained at
the same frequency. Intron B retention level is correctly estimated using short reads. However, short-read-based estimate of intron A retention is confounded by the
exonic read from the second transcript isoform (red) because this read overlaps with the exon-intron junction of the first transcript isoform (blue). This creates a dis-
crepancy/bias between short-read-based measurement of intron A retention and its true retention level (PI, percent of intron retention; EI/IE, exon-intron/intron-exon
junction reads; EE, exon-exon junction reads). (B to D) Comparison of PI values using short versus long reads for (B) all IR events, (C) IR events without overlapping exonic
reads, and (D) IR events with overlapping exonic reads detected in a PC3E replicate. Long-read-based PI values are calculated as the number of long reads that retain an
intron, divided by the number of long reads with the intron either fully retained or fully spliced out. Points in (D) are colored on the basis of estimated bias, calculated as
the difference between observed long-read PI values and biased long-read PI values, which are calculated in a manner that mimics PI value estimation using short-read
data (Materials and Methods).
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(table S5). Specifically, we generated a total of 623 million ONT 1D
cDNA reads, with the number of reads per tissue ranging from 13.2
million to 30.6 million (table S6). Using ESPRESSO, we discovered a
total of 340,149 transcript isoforms from our tissue datasets, includ-
ing 141,640 annotated transcript isoforms and 198,509 novel tran-
script isoforms. For 270,932 transcript isoforms discovered from
annotated genes, the average transcript length and exon number
(1542 nt; 6.2 exons) matched well with those reported for annotated
transcript isoforms in GENCODE (1569 nt; 6.0 exons; GENCODE
v34) (40). The number of transcript isoforms discovered per tissue
ranged from 105,500 in the liver to 181,352 in the testis. In general,
tissues with higher RNA-seq depth tended to have more transcript
isoforms (both annotated and novel), but a few tissues were outliers
(Fig. 6A). For example, the testis had the largest number of tran-
script isoforms, but also had a relatively low RNA-seq depth (17.4
million reads) compared to other tissues. By contrast, skeletal
muscle and pancreas had a high RNA-seq depth but a small
number of transcript isoforms. In each tissue, we found more
novel than annotated transcript isoforms. However, across all
tissues, annotated transcript isoforms had higher RNA-seq read
support compared to novel transcript isoforms (fig. S16), consistent
with the pattern observed on the cell line data (Fig. 4B and figs. S8
and S9).
A useful feature of our tissue dataset is that it allowed us to

examine tissue-specific differences in transcript isoform composi-
tion for any gene across 30 human tissues. For genes containing
at least two transcript isoforms, we first identified genes with signif-
icant shifts in transcript isoform composition in at least one tissue
relative to all tissues and subsequently identified specific transcript
isoforms responsible for the observed shifts in a given tissue (Ma-
terials and Methods). Using this approach, we found a total of
75,111 transcript isoforms exhibiting patterns of tissue-specific in-
clusion, including 33,519 annotated transcript isoforms and 41,592
novel transcript isoforms. The number of transcript isoforms with
tissue-specific inclusion ranged from 3650 in the medulla oblongata
to 13,991 in the testis (Fig. 6B). Neither RNA-seq depth nor total
number of transcript isoforms was correlated to the number of
tissue-specific transcript isoforms identified in each tissue (fig. S17).
We found that the identified tissue-specific transcript isoforms

reflect the biological relationships among these 30 human tissues.
Specifically, when tissues were clustered using proportions of
tissue-specific transcript isoforms, they were largely grouped into
clusters reflecting their biological relationships, such as brain
tissues and hollow organs (e.g., stomach, intestines, and bladder)
(Fig. 6C). Whole blood and testis were both different from the
rest of the tissues and from each other, as indicated by the heights
of dendrogram branches. A similar clustering pattern was obtained
when tissues were clustered using proportions of all transcript iso-
forms (fig. S18). Functional characterization of tissue-specific tran-
script isoforms underlying the observed clustering pattern can shed
insight into how differential transcript isoform usage is important
for tissue function and cellular identity. For example, we found two
transcript isoforms of DNM1L (ENST00000553257 and
ENST00000381000) that are preferentially used in brain tissues
compared to other tissues (Fig. 6D). Relative to the major transcript
isoform of DNM1L in nonbrain tissues (ENST00000452533), these
brain-specific transcript isoforms involve different combinations of
three cassette exons found in two distal regions that are separated by
~1.3 kb in the transcripts (Fig. 6E and fig. S19). More broadly, we

found that transcript isoforms involving multiple combinations of
alternative splicing events comprised a large category of tissue-spe-
cific transcript isoforms discovered across the 30 human tissues (fig.
S20). We also observed that the relative proportions of alternative
splicing event types associated with tissue-specific transcript iso-
forms appeared largely consistent across each of the human
tissues, with the exception of testis, whose tissue-specific transcript
isoforms showed a significant enrichment of alternative first exon
usage events (binomial test of overrepresentation, P = 1.16 ×
10−146). In total, we found 1910 testis-specific transcript isoforms
involving alternative first exon usage, among which 485 transcript
isoforms used an alternative first exon that was novel. We randomly
selected 12 of these transcript isoforms and validated their novel al-
ternative first exons by RT-PCR and Sanger sequencing (fig. S21).

DISCUSSION
Long-read RNA-seq has emerged as a powerful and increasingly
popular technology for transcriptome analysis (9, 10). However,
the high sequencing error rate of current long-read sequencing plat-
forms (e.g., PacBio and ONT) can result in alignment artifacts
posing as novel splice sites and, consequently, present a major chal-
lenge for accurate discovery and quantification of transcript iso-
forms (11, 12, 19). Existing methods for transcript isoform
discovery from error-prone long-read RNA-seq data correct spuri-
ous alignments near splice sites by using SJs that are either present
in existing transcript annotations or identified in highly accurate
short-read RNA-seq data (22–25). However, in the absence of
matching short-read RNA-seq data on the same biological
samples, it has been difficult to reliably discover novel SJs and
their corresponding transcript isoforms using long-read RNA-seq
data alone.
Here, we report ESPRESSO, a new computational tool for dis-

covering and quantifying transcript isoforms from error-prone
long-read RNA-seq data. ESPRESSO is designed to reliably identify
novel SJs and discover novel transcript isoforms using long-read
RNA-seq data alone, without relying on short-read RNA-seq data.
The core innovation of ESPRESSO lies in its ability to correct puta-
tive SJs found in individual long reads by borrowing information
from other long reads aligned to the same genomic region.
Notably, we observed from direct RNA and 1D cDNA sequencing
data of SIRV synthetic RNAs that putative SJs found in long reads
with perfect alignments around splice sites are much less likely to be
incorrect (0.18 to 0.24%) compared to those with imperfect align-
ments (8.8 to 13.0%) (Fig. 1, A and B, and table S1). Motivated by
this observation, we reasoned that, for any given gene, a set of high-
confidence SJs could be reliably defined from a collection of raw
long-read-to-genome alignments based on whether there are align-
ment errors around splice sites.While the proportion of putative SJs
with perfect alignments around splice sites could vary among data-
sets (e.g., 15.4 to 38.6% among all putative SJs identified from the
SIRV data; table S1), such SJs have a high reliability and could be
used for correcting putative SJs found in individual long reads, cir-
cumventing the need to rely on matching short-read data to identify
and verify novel SJs.
To this end, ESPRESSO first defines a set of high-confidence SJs

from aligned long reads of a given gene. A putative SJ is defined as
high-confidence if it is present in existing transcript annotations. If
a putative SJ is novel, then ESPRESSO defines it as high-confidence
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based on several criteria, requiring that the SJ carries the canonical
splice site dinucleotide motif (26) and that the number of support-
ing long reads with perfect alignments around splice sites exceeds a
threshold (2 by default). Next, ESPRESSO uses this set of high-con-
fidence SJs to determine the most optimal set of SJs for individual
long reads based on each read’s alignment and error profile. After
low-confidence SJs are corrected and missing SJs at alignment ends

are recovered, ESPRESSO collapses full-length long reads into
unique chains of high-confidence SJs representing distinct tran-
script isoforms, and the abundances of transcript isoforms are esti-
mated using an EM algorithm.
The ESPRESSO computational workflow uses reference tran-

script annotations for transcript isoform analysis in multiple
ways. First, before running ESPRESSO, users are recommended to

Fig. 6. Characterization of transcript isoforms across 30 human tissues. (A) Scatterplots showing the Spearman’s correlation between ONT 1D cDNA sequencing
depth (×106 reads) and the number of discovered transcript isoforms that are annotated (left column) or novel (right column) for 30 human tissues (14 brain tissues and 16
nonbrain tissues). (B) Stacked barplot showing the number of tissue-specific transcript isoforms [false discovery rate (FDR) < 1%, Materials and Methods] that are anno-
tated (blue) or novel (red) for each of the 30 human tissues. (C) Heatmap displaying pairwise Pearson’s correlations in isoform proportions for tissue-specific transcript
isoforms across 30 human tissues. Hierarchical clustering was applied to the correlation matrix to group similar tissues. The correlation heatmap with hierarchical clus-
tering was generated using the heatmap.2 function from the gplots package (v3.1.1) on R (v4.1.0). (D) Stacked barplot showing estimated abundances for transcript
isoforms of DNM1L discovered across 30 human tissues. Five DNM1L transcript isoforms with the highest average CPM across 30 human tissues are displayed individually,
while the remaining transcript isoforms were grouped together into an Other category. (E) Transcript structures of three DNM1L isoforms—ENST00000452533 (purple),
ENST00000553257 (green), and ENST00000381000 (yellow)—displayed in a 5′ to 3′ orientation. Boxes are drawn around transcript regions involving alternative splic-
ing events.
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provide reference transcript annotations when aligning long RNA-
seq reads to a reference genome. The long-read RNA-seq aligner
used by ESPRESSO is minimap2, arguably the most widely used
long-read RNA-seq aligner (19). However, othermore recently pub-
lished long-read RNA-seq aligners [e.g., deSALT (41), 2passtools
(42), and uLTRA (43)] exist, and in the future, it would be interest-
ing to investigate whether using these newer alternative aligners
could further improve the performance of ESPRESSO. Second, in
the ESPRESSO algorithm, reference transcript annotations are
used when defining high-confidence SJs from raw long-read-to-
genome alignments. If a putative SJ found in a long read is annotat-
ed, then ESPRESSO classifies the SJ as high-confidence by default.
Third, reference transcript annotations are also used to check
whether a putative transcript isoform discovered from long-read
RNA-seq data is annotated or novel. Novel transcript isoforms
(i.e., not present in reference transcript annotations) are required
to have at least two perfectly aligned reads supporting each SJ.
Using real ONT RNA-seq data of SIRV synthetic RNAs, which

have known transcript structures and concentrations, as well as a
human cell line (HEK293T), we systematically assessed the perfor-
mance of ESPRESSO for transcript isoform analysis. We demon-
strate that, in an annotation-free setting, ESPRESSO improves
both the accuracy and completeness of transcript structures discov-
ered from long RNA-seq reads, over the raw long-read-to-genome
alignments (Fig. 2B). Furthermore, on ONT direct RNA and 1D
cDNA sequencing data, we show that, for transcript isoform discov-
ery, ESPRESSO outperforms two existing state-of-the-art tools that
can also discover novel transcript isoforms using long-read RNA-
seq data alone (Fig. 2C and figs. S1A and S2). Last, we demonstrate
that, in an annotation-guided setting, ESPRESSO achieves the best
accuracy in transcript isoform quantification, as compared to five
recently published tools for long-read RNA-seq transcript quantifi-
cation (Fig. 2D and fig. S1B).
By running ESPRESSO on data generated from different ONT

RNA-seq protocols, we obtained insights into how differences in
library preparation protocols influence transcript isoform analysis
(Fig. 3). We observed that, compared to 1D cDNA and direct
RNA libraries, LRCA libraries had the lowest base error rate,
which is consistent with the expectation that CCS generates consen-
sus reads with a higher base accuracy (13, 14). However, the im-
proved base accuracy of LRCA libraries came at the expense of
having a substantially lower library yield, as well as a significant
length-dependent bias and the lowest accuracy in transcript quan-
tification. By contrast, both 1D cDNA and direct RNA libraries had
a substantially higher base error rate, but they also had a substan-
tially higher library yield and more accurate transcript quantifica-
tion. Among the three protocols, the 1D cDNA protocol
generated the highest library yield while the direct RNA protocol
achieved the highest quantification accuracy. The superior perfor-
mance of the direct RNA protocol for transcript quantification
likely reflects the fact that this protocol is free of RT and PCR am-
plification biases (30, 31). However, the higher error rate of direct
RNA libraries is a known issue for transcript isoform discovery (30).
Thus, ESPRESSO’s ability to reliably discover and quantify tran-
script isoforms from data generated by 1D cDNA and direct RNA
protocols, which are much more cost-effective (in terms of library
yield), but also more error-prone (in terms of base error rate), is
expected to benefit future long-read RNA-seq studies of eukaryotic
transcriptomes.

We demonstrate that ESPRESSO enables accurate quantification
of IR using long-read RNA-seq data (Fig. 5). As a specific mode of
alternative splicing, IR has recently emerged as an important mech-
anism for fine-tuning transcript and protein products in a tissue-
specific or developmentally regulated manner (2, 3). While short-
read RNA-seq data have been the primary source for IR analysis
(38, 44), an inherent limitation is that introns in mammalian
genes are large (20) such that individual short RNA-seq reads
cannot cover the entirety of most introns. Consequently, some
short RNA-seq reads counted as deriving from retained introns
may originate from overlapping transcripts, such as transcripts
with alternative donor or acceptor splice sites within an intron of
interest (38). By contrast, long-read RNA-seq data have an inherent
advantage for IR analysis, as they can provide direct evidence of full-
length transcripts corresponding to intron-retained or intron-
spliced isoforms. By comparing long-read and short-read RNA-
seq data generated on the same biological samples, we provide ev-
idence that long-read RNA-seq data can generate more reliable
quantifications of IR events, particularly in regions with overlap-
ping transcripts and complex alternative splicing patterns.
Notably, the apparent discrepancy in IR quantification between
long-read and short-read RNA-seq data for a certain subset of
introns can be explained by modeling confounding short-read
RNA-seq signals from overlapping transcripts (Fig. 5 and fig. S13).
More broadly, long-read and short-read RNA-seq data overall

agree well with each other in quantifying other types of alternative
splicing events, such as alternative 5′ and 3′ splice site usage as well
as a subset of exon skipping events in which the cassette exon does
not overlap other alternative splicing events (i.e., simple exon skip-
ping events) (fig. S14). However, for exon skipping events that
overlap other alternative splicing events (i.e., complex exon skip-
ping events), we observed a general tendency for short-read
RNA-seq data to yield higher estimates of cassette exon inclusion
levels (PSI values) compared to long-read RNA-seq data. It is pos-
sible that, for complex exon skipping events, short-read data may
yield overestimates of PSI values. Individual short reads are typically
not long enough to span both upstream and downstream inclusion
junctions associated with an exon skipping event, so short reads
covering at least one inclusion junction are typically used for quan-
tifying PSI values. However, for complex exon skipping events, the
inclusion junctions may be shared with other overlapping alterna-
tive splicing events, which can inflate the number of short reads
supporting cassette exon inclusion. By contrast, long reads can
provide direct evidence for whether or not a cassette exon is includ-
ed or not, suggesting that long-read RNA-seq data can provide a
more unbiased quantification of complex exon skipping events.
This pattern appears to mirror the observation that we made for
IR, in which we found that long-read RNA-seq data can yield
more reliable quantifications of IR events, particularly in regions
with overlapping transcripts and complex alternative splicing
patterns.
As low sequencing throughput remains a bottleneck for long-

read sequencing technologies (45), an important question is what
is the minimum sequencing depth recommended for using long-
read RNA-seq to study transcript isoform variation and alternative
splicing. Our analysis of short-read and long-read RNA-seq data
generated on the same human samples revealed that 5 million
long reads represent the threshold below which the correlation
between long-read versus short-read quantification of alternative
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splicing rapidly declines (fig. S15). On the basis of this observation,
we would recommend generating at least 5 million long RNA-seq
reads for profiling transcript isoform variation and alternative splic-
ing in a human sample. Using read length distributions observed
across the long-read RNA-seq datasets generated in this work, we
estimate that the “information content” of 5 million long reads cor-
responds to 22.7 to 25.4 million short-read pairs, assuming a read
length of 2 × 101 base pairs for short-read RNA-seq. This sequenc-
ing depth is comparable to the short-read RNA-seq depth of the
ENCODE phase III project that studied alternative splicing and
its regulation by RNA binding proteins (46).
Note that while the SJ correction and recovery procedure in

ESPRESSO improves transcript isoform discovery and quantifica-
tion, it represents a computational bottleneck in the overall work-
flow, as each individual long read needs to be realigned to high-
confidence SJs of the corresponding gene (Materials and
Methods). To improve computational efficiency and reduce
runtime, we have now implemented ESPRESSO to support multiple
threads, such that reads from nonoverlapping genomic regions of
the same gene can be processed in parallel during SJ correction
and recovery. In addition, individual samples in a large dataset
can be processed in parallel. These optimizations led to several
times speed-up when running ESPRESSO on an HPC cluster and
are integrated in the latest pre-release of ESPRESSO (“version
1.3.0-beta”), which is publicly available at https://github.com/
Xinglab/espresso/releases/tag/v1.3.0-beta. Notably, to maintain
consistency, all analyses conducted here were done using the orig-
inal (slower) version of 1.2.2, which remains the latest official release
of ESPRESSO and is publicly available at https://github.com/
Xinglab/espresso. Moreover, to facilitate easy use of ESPRESSO,
we also provide a Snakemake pipeline that covers all of the main
steps in ESPRESSO and upstream preprocessing steps, such as base-
calling and read alignment.
In summary, we have developed ESPRESSO, a new computa-

tional tool for discovering and quantifying transcript isoforms
using error-prone long-read RNA-seq data. We assessed the perfor-
mance and demonstrated the utility of ESPRESSO using extensive
data on synthetic and biological samples. We also generated and an-
alyzed ~1.1 billion ONT RNA-seq reads covering 30 diverse human
tissues and three human cell lines, providing a useful data resource
for studying human transcriptome variation at the level of full-
length transcript isoforms. Given the increasingly wide adoption
of long-read RNA-seq in biomedical research, we envision that
ESPRESSO will be a useful tool for researchers to explore the
RNA repertoire of eukaryotic cells in diverse settings.

MATERIALS AND METHODS
Cell lines
All cells were grown at 37°C in a humidified chamber with 5% CO2.
Low-passage HEK293T cells [American Type Culture Collection
(ATCC), Manassas, VA, #CRL-3216] were maintained in Dulbec-
co’s modified Eagle’s medium (DMEM; Gibco, #11-885-084) sup-
plemented with 10% fetal bovine serum (FBS; Corning, #35-010-
CV), 1% GlutaMAX (Gibco, #35050061), and penicillin-streptomy-
cin (100 U/ml; Gibco, #15140122). Human prostate cancer cell lines
PC3E and GS689 (gifts of M. D. Henry, University of Iowa) were
generated as previously described (36, 47). Briefly, the PC3E cell
line was derived from the PC-3 cell line (ATCC, #CRL-1435) by

isolating E-cadherin-positive cells by flow cytometry. E-cadherin-
positive PC-3 cells (PC3E cells) were confirmed to have an epithe-
lial-like phenotype in subsequent assays (36, 47). The GS689 cell
line, a metastatic variant of the PC-3 cell line, was isolated from a
secondary metastatic liver tumor by in vivo passaging of PC-3 cells
in SCID mice. Low-passage PC3E and GS689 cells were maintained
in DMEM/F-12 (Gibco, #11330032) with 10% FBS, 1× nonessential
amino acids (Gibco, #11140050), and G418 (400 μg/ml; Gibco,
#10131035). The identity of each cell line was validated by short
tandem repeat analysis. All cells were examined and confirmed to
be negative for mycoplasma.

RNA extraction and preparation
SIRV-Set 1-E2 (Lexogen, lot no. 001418) consists of 68 artificial
transcripts from seven model genes with concentrations that
cover more than two orders of magnitude. The difference in tran-
script number for this lot compared to the Lexogen website (68
versus 69 transcripts) was due to the exclusion of SIRV108 during
the SIRV production quality assurance process, as per the manufac-
turer ’s communications (“Amendment for SIRV-Set 1 Lot No.
00141N,” Lexogen, Jun 2017). RNA purity and individual concen-
trations of SIRVs were verified by the manufacturer. Total RNAwas
extracted from HEK293T, PC3E, and GS689 cell lines using TRIzol
reagent (Invitrogen, #15596018), according to the manufacturer’s
instructions. RNA concentrations and RNA integrity were mea-
sured by NanoDrop 2000 Spectrophotometer and Agilent 4200 Ta-
peStation respectively. Poly(A) + RNA (5 μg) from 30 human tissue
samples (table S5) was purchased from Clontech. Most tissue RNA
samples were isolated from pooled tissues of multiple donors.
Poly(A) + RNA quality (size, 0.2 to 10 kb) was confirmed by dena-
turing gel electrophoresis, as indicated by the manufacturer.

Direct RNA library construction and nanopore sequencing
A 20-μg aliquot of total RNA extracted from HEK293T cells was
subjected to poly(A) + RNA selection using the Dynabeads
mRNA DIRECT purification kit (Invitrogen, #61011), in accor-
dance with the manufacturer ’s instructions. Approximately 500
ng of the resulting poly(A) + RNA, along with 25 ng of SIRV-Set
1-E2 RNA, was pooled in one tube as input for direct RNA
library generation. Libraries were made by following the standard
SQK-RNA002 protocol with the optional RT step included. All li-
braries were loaded onto R9.4.1 flow cells (ONT) and sequenced on
MinION/GridION devices.

cDNA synthesis
Templates for cDNA synthesis included the following: (i) 200 ng of
total RNA extracted from PC3E cells, together with 100 pg of SIRV-
Set 1-E2 RNA; (ii) 500 ng of total RNA extracted from either the
HEK293T, PC3E, or GS689 cell line; or (iii) 50 ng of Poly(A) + RNA
from one of the 30 human tissues. The cDNA synthesis process fol-
lowed the SMART-seq2 protocol (48) with some modifications.
Briefly, the RT and template-switching reaction was performed
with Maxima H minus reverse transcriptase (Thermo Fisher Scien-
tific, #EP0751) under the following conditions: 42°C for 90min, fol-
lowed by 85°C for 5 min. PCR amplification of first-strand cDNA
using the KAPA HiFi ReadyMix (KAPA Biosystems, #KK2602) was
performed by incubating the mixture at 95°C for 3 min, followed by
13 to 15 cycles of (98°C for 20 s, 67°C for 20 s, and 72°C for 4 min),
with a final extension at 72°C for 5 min. A 13-cycle PCR was
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performed for cell line and tissue RNA samples, whereas a 15-cycle
PCR was performed for RNA samples with SIRVs. PCR products
were treated with Exonuclease I [New England Biolabs (NEB),
#M0293] to remove unused primers and then purified using 0.8×
volumes of SPRIselect beads (Beckman Coulter, #B23318). Ampli-
fied cDNAwas measured by using the Qubit double-stranded DNA
(dsDNA) High Sensitivity assay and Agilent High Sensitivity D5000
ScreenTape assay on a 4200 TapeStation. Sequences for all oligos/
primers are detailed in table S7.

1D library construction and nanopore sequencing
We constructed 1D libraries using 1 μg of amplified cDNA accord-
ing to the standard SQK-LSK109 protocol. Briefly, cDNA products
were end-repaired and dA-tailed using the NEBNext Ultra II End
Repair/dA-Tailing Module (NEB, #E7546) by incubating at 20°C
for 20 min and 65°C for 20 min. End-repaired cDNA was purified
with 1× volume of AMPure XP beads (Beckman Coulter, #A63881)
and eluted in 60 μl of nuclease-free water. Adapter ligation was per-
formed using NEBNext Quick T4 DNA ligase (NEB, #E6056) at
room temperature for 10 min. After ligation, libraries were purified
using 0.45× volumes of AMPure XP beads and short fragment
buffer to enrich all fragments equally. The final libraries were
loaded onto R9.4.1 or R10.3 flow cells (ONT) and sequenced on
MinION/GridION devices for 72 hours. Sequencing statistics, in-
cluding library information, chemistry, flow cell types, and sequenc-
ing output, are detailed in tables S3 and S6.

LRCA library construction and nanopore sequencing
The LRCA protocol is an adapted version of the R2C2 method (14)
with the following modifications:
1) First-strand cDNA synthesis. The cDNA was generated in a

20-μl reaction by using the abovementioned cDNA synthesis proto-
col. Additional reverse-transcribed oligo(dT) primers were digested
with 1 μl of Exonuclease I at 37°C for 20 min and 80°C for 10 min.
The 3′ end of cDNA was protected from digestion by the hybrid
structure of the cDNA and template-switching oligo.
2) Labeling cDNA with unique molecular identifier (UMI) se-

quences. After RT, a UMI sequence was added to the 3′ end of
cDNA by the strand extension reaction using Phusion HiFi DNA
polymerase (NEB, #M0530), a template oligo including 60
random bases of C, G, and T (B60), and a 3′ 3C-spacer. The reaction
was performed by incubating the mixture at 95°C for 3 min, fol-
lowed by 5 cycles of (98°C for 15 s, 67°C for 15 s, and 72°C for 15
s), with a final extension at 72°C for 5 min.
3) PCR preamplification of cDNA. UMI-coded cDNA products

were aliquoted into multiple tubes and PCR-amplified using the
KAPA HiFi ReadyMix by incubating at 95°C for 3 min, followed
by 13 cycles of (98°C for 20 s, 67°C for 15 s, and 72°C for 4 min),
with a final extension at 72°C for 5 min. PCR products were purified
with 1× volume of AMPure XP beads.
4) Circularization of cDNA. Purified cDNA was denatured at

95°C for 5 min and circularized via template-mediated enzymatic
ligation by incubating 1 μg of cDNA with 200 ng of template
oligos and 2 μl (80 U) of Taq DNA ligase at 50°C for 60 min. The
template oligo is composed of sequences that are complementary to
the 5′- and 3′-end adapters (table S7). Linear DNA was digested
using a mixture of Exonuclease I and III (NEB, #M0206) at 37°C
for 4 to 12 hours and 80°C for 15 min.

5) LRCA reaction. To initiate LRCA, a universal oligo that
anneals to the PCR adapter sequence of circular dsDNA generated
in step 4 was used. The LRCA reaction was performed by incubating
circular dsDNA products with 4 μl of Phi29 DNA polymerase (10
U/μl; NEB, #M0269), 8 μl of dNTPs (NEB, #N0447), 8 μl of univer-
sal oligo [10 μM; Integrated DNA Technologies (IDT)], 2 μl of
bovine serum albumin (20 mg/ml; NEB, #M0269), and 20 μl of
10× Phi29 DNA polymerase buffer (NEB, #M0269) in a 200-μl re-
action at 30°C for 16 hours and 65°C for 15 min. LRCA products
were purified with 0.7× volumes of SPRIselect beads.
6) Second-strand DNA synthesis and DNA shearing. Second-

strand synthesis of LRCA products was performed using Phusion
DNA polymerase and Taq DNA ligase (NEB, #M0208) by the
gap-filling and ligation reaction at 50°C for 60 min. The dsDNA se-
quences were then sheared by g-TUBE (Covaris, #520079) to the
desired size (around 8 to 10 kb) by following the vendor’s
instructions.
7) Library construction and sequencing. Sheared DNA products

were purified with 0.5× volumes of SPRIselect beads and subjected
to 1D library construction by following the standard SQK-LSK109
protocol. Sequences of all oligos/primers are detailed in table S7.
Sequencing statistics, including library information, chemistry,
flow cell types, and sequencing output, are detailed in table S3.

RT-PCR and Sanger sequencing validation of novel
alternative first exons
cDNAwas synthesized from 20 ng of human testis poly(A) + RNA
using random hexamer primed RT as described in the Maxima H
minus reverse transcriptase protocol. Next, PCR was performed in a
50-μl reaction by using first-strand cDNA synthesized from testis
poly(A) + RNA, 25 μl of the KAPA HiFi ReadyMix, and 20 pmol
of a primer pair. All primer pairs are listed in table S8. PCR ampli-
fication was carried out in a Veriti 96-well Thermal Cycler (Applied
Biosystems, catalog no. 43-757-86) by incubating the mixture at
95°C for 2 min, followed by 28 cycles of (98°C for 20 s, 65°C for
20 s, and 72°C for 25 s) with a final extension at 72°C for 2 min.
Amplified products were analyzed by 1.5% agarose gel electropho-
resis and purified by using the QIAquick Gel Extraction Kit
(Qiagen, catalog no. 28706X4). SJ sequences of novel alternative
first exons were confirmed by Sanger sequencing of the purified
PCR products.

Basecalling of raw nanopore sequencing data
Basecalling was performed in fast mode with Guppy (v3.6.0) for all
nanopore sequencing data in this study (https://community.
nanoporetech.com/downloads). Basecalling of direct RNA and
cDNA libraries was done using config files rna_r9.4.1_70bps_fast.cfg
and dna_r9.4.1_450bps_fast.cfg, respectively.

Alignment to the reference genome
Basecalled ONT direct RNA and 1D cDNA sequencing reads gen-
erated on SIRV synthetic RNAs (n = 3 per library type) were
mapped to the SIRV reference genome using minimap2 (v2.17-
r974-dirty), which was run with parameters “-ax splice --splice-
flank=no -w 4 -k 14”, as recommended by the developer. When
SIRV transcript annotation was used for read mapping, it was con-
verted to BED format using the “paftools.js gff2bed” command (in-
cluded as part of minimap2) and provided to minimap2 using the
“--junc-bed” option. Basecalled ONT RNA-seq reads (i.e., 1D
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cDNA reads, direct RNA reads, and LRCA consensus reads) gener-
ated on human RNA samples were mapped to the GRCh37/hg19
reference genome using minimap2 (v2.17-r974-dirty) with param-
eters “-ax splice --splice-flank=no -w 4 -k 14” together with tran-
script annotations from GENCODE v34 (www.gencodegenes.org/
human/release_34lift37.html).
A publicly available short-read RNA-seq dataset [Sequence Read

Archive (SRA) accession ERR4330671] (49) that contained SIRV
synthetic RNAs from SIRV-Set 1 E2 was aligned to the SIRV refer-
ence genome using STAR (v2.7.1a) (50) on two-pass mode with pa-
rameters “--alignSJoverhangMin 8 --alignSJDBoverhangMin 1
--alignEndsType EndToEnd” together with SIRV transcript anno-
tations. Short-read RNA-seq datasets for PC3E and GS689 cell lines,
which were taken from a previous study (37), were mapped to the
GRCh37/hg19 reference genome using STAR (v2.7.1a) on two-pass
mode with parameters “--alignSJoverhangMin 8 --alignSJDBover-
hangMin 1 --alignEndsType EndToEnd” together with transcript
annotations from GENCODE v31 (www.gencodegenes.org/
human/release_31lift37.html).

ESPRESSO workflow
ESPRESSO was designed to discover and quantify transcript iso-
forms from long-read RNA-seq data that have been mapped to a
reference genome. ESPRESSO is composed of three major steps:
high-confidence SJ identification (“S”), SJ correction and recovery
(“C”), and transcript isoform discovery and quantification (“Q”).
A cutoff for mapping quality (≥1 by default) is first applied to

reads from all input samples. For a read with multiple alignments,
only the alignment with the longest mapped length or highest
mapping quality (ordered by priority) is used for further analysis.
Next, ESPRESSO groups reads into independent clusters based on
their mapping positions on the reference genome. Briefly, for each
read in an ESPRESSO-defined cluster, the interval between the start
and end positions of the read’s alignment must have an overlap of at
least 1 nt with the interval of at least one other read in the same
cluster. ESPRESSO then determines high-confidence SJs from
each cluster using the following criteria. Any putative SJ that is an-
notated in a user-provided transcript annotation file is considered
high-confidence. Novel putative SJs identified from raw long-read-
to-genome alignments are considered high-confidence if the fol-
lowing two conditions are met: (i) the SJ has a canonical splice
site dinucleotide motif (GT/AG, GC/AG, or AT/AC) with respect
to the reference genome, and (ii) the SJ is supported by at least
two (by default) long reads with perfect alignments (i.e., no mis-
matches, insertions, or deletions) within a 10-nt distance of the cor-
responding splice sites (Fig. 1, A and B).
For each unique high-confidence SJ, ESPRESSO concatenates

two 25-nt genomic sequences of putative exons flanking the splice
sites. All long reads harboring a putative SJ within a 35-nt distance
to the high-confidence SJ with respect to the reference genome are
queried against the concatenated sequence using a blastn (51)
search with the following settings: blastn -task blastn -word_size 4
-reward 5 -penalty -4 -gapopen 8 -gapextend 6 -evalue 10 -dust no
-soft_masking false (Fig. 1C, right). For each putative SJ position on
a read, any high-confidence SJ with a blastn hit is listed as a candi-
date SJ. The probability of using a particular candidate SJ at a given
putative SJ position is modeled using a multivariate hypergeometric
distribution and is computed as follows. Given a raw long-read-to-
genome alignment harboring n putative SJ positions, the probability

of using the lth candidate SJ at the ith putative SJ position is calcu-
lated using the following formula
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where j represents one of the four possible alignment types (mis-
match, insertion, deletion, or match) and klij represents the
number of times that the jth alignment type appears within a
window of 20 nt (by default) surrounding the candidate SJ (10 nt
on each side) within the long-read-to-candidate-SJ alignment gen-
erated by blastn.Kj represents the number of times that the jth align-
ment type appears in any part of the raw long-read-to-genome
alignment that is more than 10 nt away from any of the n putative
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sum of all alignment types. For each putative SJ position, all candi-
date SJs are evaluated based on their calculated probabilities to de-
termine the most likely candidate SJ. Briefly, if a candidate SJ has a
probability that is at least 10 times higher than the probability of the
second-best candidate SJ, then this candidate SJ is determined to be
the most likely candidate SJ at this putative SJ position
(Fig. 1C, right).
After evaluating and correcting putative SJs in raw long-read-to-

genome alignments, ESPRESSO next recovers missing first or last
SJs and their associated terminal exons at alignment ends that the
aligner may fail to detect. For each read, a high-confidence SJ that
has a blastn hit before the first or after the last putative SJ position on
the read is evaluated as a candidate missing first or last SJ if the high-
confidence SJ has a probability that is higher than one tenth of the
minimum probability across all high-confidence or corrected SJs
determined for the read. Next, ESPRESSO uses nhmmer (52)
with parameters “-T 3 --max” to query the read’s sequence
against the sequences of candidate missing first or last SJs as well
as the genomic sequence to which the end of the read was initially
aligned. A candidate missing first or last SJ is considered recovered
if its corresponding query has an nhmmer score that is at least two
points higher than those of all other queries. For reads that have re-
covered first or last SJs, their mapping start and end positions on the
reference genome are updated according to the alignment positions
of the nhmmer queries.
Following SJ correction and recovery for individual long reads,

ESPRESSO classifies reads into multiple categories by comparing
the combination of SJs observed in a read against SJ combinations
observed in all annotated transcript isoforms of the corresponding
gene. Specifically, we adopted a classification system developed by
Tardaguila et al. (17). Full-length or fragmented reads with SJ com-
binations that are consistent with those observed in annotated
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transcript isoforms are classified as FSM or ISM, respectively. On
the other hand, reads harboring a novel combination of annotated
or novel splice sites are classified as NIC or NNC, respectively. Last,
reads with at least one low-confidence SJ that could not be corrected
by ESPRESSO are classified as NCD (Fig. 1D). An annotated tran-
script isoform is considered as detected if ESPRESSO identifies at
least one supporting read that is classified as FSM. ESPRESSO
does not require the supporting read to have the exact 5′ and 3′
ends of the annotated transcript isoform, as annotation of transcript
ends, or discovery of them from RNA-seq data, is imprecise (8). To
minimize the number of false positive transcript isoforms reported,
ESPRESSO adopts more stringent criteria for novel transcript iso-
forms. Specifically, a SJ combination observed in an NIC or NNC
read is defined as a novel transcript isoform only if the following
two criteria are met: (i) each SJ is supported by at least two (by
default) perfectly aligned reads and (ii) the combination of SJs is
not a substring of any other SJ combinations in other novel tran-
script isoforms discovered. The second criterion means that if one
novel transcript isoform is a substring of another novel transcript
isoform, ESPRESSO consolidates them and reports the longer tran-
script isoform as the novel transcript isoform. For each novel tran-
script isoform discovered using these criteria, ESPRESSO assigns a
unique identifier composed of four colon-separated fields, with the
string “ESPRESSO” used as the first field. The second and third
fields are, respectively, the chromosome and ESPRESSO-defined
cluster (represented by a numerical index) associated with the
novel transcript isoform. Last, the fourth field is a cluster-specific
numerical index representing the SJ combination of the novel tran-
script isoform.
After transcript isoform discovery, reads of all five categories

(FSM, ISM, NIC, NNC, and NCD) are assigned to transcript iso-
forms based on the compatibility of their SJ combinations. Subse-
quently, the abundances of individual transcript isoforms are
estimated using an EM algorithm (53). The EM algorithm used
for transcript isoform quantification was from Xing et al. (28), orig-
inally developed for transcript isoform quantification using ex-
pressed sequence tag data. This algorithm has been widely used
in short-read and long-read RNA-seq models (54). The detailed
statistical formulation and algorithmic solution can be found in
Xing et al. (28).

Running ESPRESSO
ESPRESSO (v1.2.2) was run on default settings to jointly discover
and quantify transcript isoforms from the following sets of ONT
RNA-seq alignments: (i) direct RNA data for SIRVs; (ii) 1D
cDNA data for SIRVs; (iii) LRCA data for SIRVs; (iv) 1D cDNA
data for PC3E, GS689, and HEK293T cell lines; (v) LRCA data for
PC3E and GS689 cell lines; (vi) direct RNA data for HEK293T cell
line; (vii) 1D cDNA data for HEK293T cell line; and (viii) 1D cDNA
data for 30 human tissues. Information on the number of biological
samples/replicates and number of ONT RNA-seq libraries prepared
per biological sample/replicate can be found in tables S3 and S6. For
ONT RNA-seq datasets aligned to the GRCh37/hg19 reference
genome, reads that were mapped to the mitochondrial genome or
contained large continuous insertions (≥20 nt) in the raw long-
read-to-genome alignments were filtered out.
Read count estimates for transcript isoforms discovered by

ESPRESSO were normalized into CPM by dividing the read count
estimate of a transcript isoform by the sum of read counts assigned

across all transcript isoforms discovered in a sample and multiply-
ing this number by 1 million. We also calculated isoform propor-
tions by dividing the CPM value of a transcript isoform by the CPM
value for the corresponding gene (i.e., sum of CPM values over all
transcript isoforms discovered for the gene). In cases where the gene
has a CPM value of 0 in a given sample, we assigned all transcript
isoforms of that gene an isoform proportion of 0.

Running LIQA
LIQA (v1.1.22) was run on ONT direct RNA and 1D cDNA se-
quencing alignment data for SIRVs to estimate the abundances of
68 SIRV transcripts. Before running LIQA, read alignments were
filtered using SAMtools with parameters “-F 2308 -q 50” as recom-
mended by the developer. The “quantify” module of LIQAwas run
on the filtered read alignments with parameters “-max_distance 10
-f_weight 1” as recommended by the developer.

Running NanoCount
Given that NanoCount is designed to work with reads aligned to a
reference transcriptome, we first mapped basecalled ONT direct
RNA and 1D cDNA sequencing reads for SIRVs to the sequences
of 68 SIRV transcripts using minimap2 (v2.17-r974-dirty) with pa-
rameters “-ax map-ont -p 0 -N 10” as recommended by the devel-
oper of NanoCount. The resulting set of transcriptome alignments
was then processed by NanoCount (v1.0.0.post6) using default tool
settings.

Running FLAIR
FLAIR (v1.5.1 pre-release) was run directly on basecalled ONT
direct RNA and 1D cDNA sequencing reads for SIRVs, as it con-
tains an internal module (“align”) that can align reads to the
SIRV reference genome with minimap2 (v2.17-r974-dirty). To
ensure that FLAIR was using information from all replicates to dis-
cover transcript isoforms, we merged FLAIR corrected read align-
ments for replicates of a given library type before running the
FLAIR “collapse” module, as recommended by the developer.
SIRV transcript annotations were provided to all FLAIR modules,
which were run with parameter “--nvrna” for direct RNA data
and default settings for 1D cDNA data.

Running StringTie2
StringTie2 (v2.2.1) was run with the “-L” option on the following
sets of ONT RNA-seq alignments: (i) direct RNA data for SIRVs,
(ii) 1D cDNA data for SIRVs, (iii) direct RNA data for HEK293T
cell line, and (iv) 1D cDNA data for HEK293T cell line. Before
running StringTie2, we merged alignments across all replicates to
ensure that StringTie2 uses information from all replicates to dis-
cover transcript isoforms. SIRV transcript annotations were provid-
ed when processing long-read alignments to the SIRV reference
genome, and GENCODE v34 annotations were provided when pro-
cessing long-read alignments to the GRCh37/hg19 reference
genome. We also ran StringTie2 with the “--rf” option and SIRV
transcript annotations on a publicly available short-read RNA-seq
dataset (SRA accession ERR4330671) (49) that we aligned to the
SIRV reference genome.

Running FLAMES
We ran the “bulk_long_pipeline.py” script contained in FLAMES
(v0.1, downloaded 11 June 2022) directly on basecalled ONT
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RNA-seq reads, as FLAMES has an internal module dedicated to
aligning reads to a reference genome with minimap2 (v2.17-r974-
dirty). Specifically, we ran the Python script on the following sets of
basecalled reads: (i) direct RNA data for SIRVs, (ii) 1D cDNA data
for SIRVs, (iii) direct RNA data for HEK293T cell line, and (iv) 1D
cDNA data for HEK293T cell line. SIRV transcript annotations
were provided when processing reads derived from SIRV synthetic
RNAs, and GENCODE v34 annotations were provided when pro-
cessing reads derived from human samples. The bulk_long_pipeli-
ne.py script was run with parameters contained in the default config
file (“config_sclr_nanopore_default.json”), and we used the follow-
ing parameters: “has_UMI: false”, “generate_raw_isoform: true”, as
well as “strand_specific: 1” for direct RNAdata and “strand_specific:
0” for 1D cDNA data.

Benchmarking transcript isoform discovery using
downsampled SIRV transcript annotations
We generated downsampled SIRV transcript annotations by ran-
domly sampling a specified proportion (10, 20, 30, 40, 50, 60, 70,
80, or 90%) of SIRV transcripts. This procedure was performed
three times per sampling level. Basecalled ONT direct RNA and
1D cDNA sequencing reads for SIRVs were first realigned to the
SIRV reference genome using the downsampled annotations as a
guide. The resulting long-read-to-genome alignments were subse-
quently processed by ESPRESSO, StringTie2, and FLAMES as pre-
viously described, where for each tool, transcript discovery and
quantification were guided by the downsampled annotations.
Among transcripts discovered by a given tool, true positives were
composed of known SIRV transcripts including those removed
from the downsampled annotations. False positives were novel tran-
scripts whose combinations of SJs and/or exons did not match those
of known SIRV transcripts. False negatives were known SIRV tran-
scripts that were not discovered.

Evaluating transcript isoform discovery and quantification
using simulated ONT RNA-seq data
Simulated ONT direct RNA and 1D cDNA sequencing reads were
generated with NanoSim (v3.1.0). We trained NanoSim on real
ONT direct RNA and 1D cDNA sequencing data that we generated
on HEK293T cells. Specifically, the real data that we used for train-
ing were composed of either ONT direct RNA reads or 1D cDNA
reads merged across the first technical replicates of three biological
replicates of HEK293T cells. We ran the characterization stage of
NanoSim (read_analysis.py) on “transcriptome” mode such that
reads in the training data were first aligned to the sequences of an-
notated transcripts from GENCODE v34 using minimap2 (v2.17-
r974-dirty). NanoSim uses the resulting set of transcriptome align-
ments to characterize the length distributions and error profiles of
the training reads. We also ran the characterization stage on "quan-
tify" mode to estimate the abundance levels of annotated transcripts
from GENCODE v34. These learned features were subsequently
used by NanoSim to guide simulation of ONT RNA-seq data. Spe-
cifically, using the files generated during the characterization stage
as input, we ran the simulation stage of NanoSim (simulator.py) on
“transcriptome”modewith parameters “-n 5000000 -k 6 -b guppy -r
dRNA --no_model_ir --fastq” to generate 5 million ONT direct
RNA reads. The same approach was used to generate 5 million
ONT 1D cDNA reads, except that the parameter “-r” was set to
“cDNA_1D”. Next, we downsampled each of our 5 million ONT

RNA-seq datasets to 3 million, 1 million, and 0.5 million reads.
All simulated ONT RNA-seq datasets were subsequently processed
by ESPRESSO, LIQA, NanoCount, FLAIR, StringTie2, and
FLAMES as previously described, where for each tool, the
GRCh37/hg19 reference genome and GENCODE v34 annotations
were provided.
To evaluate the performance of a given tool in discovering tran-

scripts from a set of simulated reads, we first defined a “positive” set
of transcripts as those whose abundance levels were estimated to be
nonzero by NanoSim in the training data. True positives were
defined as transcripts in the positive set that were discovered,
whereas false negatives were defined as transcripts in the positive
set that were not discovered. On the other hand, false positives
were defined as discovered transcripts that were not in the positive
set. For our assessments of transcript quantification accuracy, we
computed the Spearman’s correlation between transcript abun-
dance estimates from a given tool and ground-truth transcript
abundance levels used for read simulation, focusing on transcripts
whose abundance levels were estimated to be nonzero by NanoSim
in the training data.
FASTQ files containing simulated ONT RNA-seq reads, togeth-

er with the transcript expression profiles [tab-separated values
(TSV) format] used to guide read simulation, are available at
Zenodo (https://doi.org/10.5281/zenodo.7246437).

SPIRIT pipeline
We also designed the SPIRIT (splint improved repeat identifier for
transcripts) pipeline (https://github.com/Xinglab/SPIRIT) to
obtain consensus sequences from long concatemeric cDNA reads
generated from LRCA libraries. SPIRIT differs from previous
methods (14, 55) for generating consensus sequences from RCA
concatemers in that it uses known sequences of DNA splints to
perform consensus calling. Briefly, nhmmer (52) is used to first
identify splint sequences from each concatemeric read using the pa-
rameters “-T 8 --max”. Sequences that are separated by pairs of
neighboring splint sequences and have a length difference of less
than 15% of the length of the longest sequence are considered
copies of the same cDNA sequence. If three or more cDNA se-
quence copies are identified on a concatemeric read, then their con-
sensus sequence is obtained using adaptive banded Partial Order
Alignment (abPOA) (56), a fast implementation of the multiple se-
quence alignment algorithm Partial Order Alignment (POA) (57).

Analysis of transcript length bias on transcript
quantification for different ONT RNA-seq library types
CPM values for 68 SIRV transcripts estimated by ESPRESSO
(v1.2.2) from 1D cDNA, direct RNA, and LRCA data for SIRV syn-
thetic RNAs were summed across replicates of the same library type.
Next, the following two linear regression models were fitted (with
intercepts) on summed CPM values of SIRV transcripts for each
ONT RNA-seq library type, with spike-in concentration and
length of SIRV transcripts used as model covariates

CPM ≏ Concentration
CPM ≏ Concentrationþ Length

All linear regression analyses were done using R (v4.0.3). Specif-
ically, linear regression models were fitted using the lm function
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(with default settings), and the fits of both models were compared
using the anova function (with default settings).

Detection and quantification of alternative splicing events
We identified IR events from transcript isoforms recorded in the
transcript annotation file generated by ESPRESSO for ONT 1D
cDNA data of PC3E and GS689 cell line replicates (n = 3 per cell
line). For each identified IR event, all long reads in a given cell
line replicate with the intron either fully retained (inclusion reads,
I) or spliced out (spliced reads, S) were counted. The PI value using
long-read data was then calculated using the equation:
PILONG ¼ I

SþI. For identified IR events in which one or more over-
lapping exonic reads (I′) were detected, a potentially biased estimate
of PI values based on long-read data was calculated using the equa-
tion: PILONG BIASED ¼

IþI0
SþIþI0 (fig. S13), in a manner that mimicked

PI value estimation using short-read data. We estimated the bias in
short-read-based PI values relative to long-read PI values using the
equation: bias = PILONG_BIASED − PILONG. Short-read PI values
(PISHORT) for the same set of IR events were computed by
running SIRI (https://github.com/Xinglab/siri) (38) with default
settings on short-read RNA-seq data generated on the same cell
line samples (37). To compare short-read and long-read PI values
for IR events identified in each of the PC3E and GS689 cell line rep-
licates, we focused on events with at least 20 supporting reads in
both long-read and short-read datasets.
We detected and quantified exon skipping as well as alternative

5′ and 3′ splice site usage from short-read RNA-seq data of the same
PC3E and GS689 cell line replicates using rMATS (v4.1.2) (58, 59).
For each alternative 5′ or 3′ splice site usage event detected by
rMATS from short-read data of a given cell line replicate, we used
ESPRESSO results generated on long-read data of the same sample
to count the number of long reads carrying the inclusion junction
(inclusion reads, I) and the number of long reads carrying the skip-
ping junction (skipping reads, S). Similarly, for each exon skipping
event detected by rMATS from short-read data of a given cell line
replicate, we used ESPRESSO results for long-read data of the same
sample to count the number of long reads harboring the cassette
exon (inclusion reads, I ) and the number of long reads in which
the cassette exon is skipped (skipping reads, S). The PSI value of
a given event using long-read data was then calculated using the
equation: PSI ¼ I

SþI. To compare short-read and long-read PSI
values, we focused on events satisfying the following criteria: (i)
the number of short reads and the number of long reads supporting
the inclusion junction(s) are both nonzero, (ii) the number of short
reads and the number of long reads supporting the skipping junc-
tion are both nonzero, and (iii) the total number of short reads and
the total number of long reads supporting either the inclusion junc-
tion(s) or skipping junction are both at least 20. Furthermore, we
classified exon skipping events detected in a given cell line replicate
as either simple (i.e., the cassette exon does not overlap any other
alternative splicing events) or complex (i.e., the cassette exon over-
laps other alternative splicing events) based on transcript isoforms
discovered by ESPRESSO from long-read data. Specifically, an exon
skipping event was considered simple if the number of transcript
isoforms harboring both upstream and downstream inclusion junc-
tions was equivalent to the number of transcript isoforms harboring
either the upstream or the downstream inclusion junction. If this

requirement was not met, then the exon skipping event was consid-
ered complex.

Identification of tissue-specific transcript isoforms
We sought to identify transcript isoforms with tissue-specific
isoform proportions across ONT 1D cDNA sequencing data for
30 human tissues. For each gene, we generated an m × 30 contin-
gency table composed of read counts (rounded to the nearest
integer) for m discovered isoforms across 30 tissues. Using this
matrix, we computed gene expression levels in each tissue as the
sum of read counts over all transcript isoforms of the gene. We
ignored genes that only had one discovered isoform or were ex-
pressed in only one tissue. We also omitted tissues from the contin-
gency table if the gene of interest was not expressed in those tissues.
Next, we ran a chi-square test of homogeneity [false discovery

rate (FDR) < 1%] on the contingency table to identify genes in
which isoform proportions are not homogeneous across the consid-
ered tissues. To determine the minimum sample size for running
the chi-square test on an R × C matrix, we applied Cohen’s w
formula. The threshold on the total matrix read count, N, was
chosen to be the smallest value of N for which an effect size of
w = 0.5 (commonly interpreted as a large effect size) can be detected
from running a chi-square test on an R × Cmatrix at a significance
level of 0.01 (60)

N �
χ2ðR� 1Þ�ðC� 1Þð0:01Þ

w2

Using the genes identified by the chi-square test with FDR < 1%,
we subsequently ran a post hoc test to identify tissue-transcript
isoform pairs in which the isoform proportion in the given tissue
is significantly higher than the overall isoform proportion across
all tissues (i.e., sum of read counts of the transcript isoform over
all tissues divided by the sum of read counts of the gene over all
tissues) (one-tailed binomial test, FDR < 1%). Our procedure for
identifying tissue-specific transcript isoforms is contained in a
custom Python script “SampleSpecificIsoforms.py” that can be
downloaded from https://github.com/Xinglab/espresso in the
folder “tissue_specific_analysis.”

Classifying alternative splicing events underlying tissue-
specific transcript isoforms
Using the Ensembl BioMart database (Release 106, April 2022), we
obtained canonical transcripts for genes with at least one tissue-spe-
cific transcript isoform discovered at FDR < 1% from ONT 1D
cDNA sequencing data for 30 human tissues. The genomic coordi-
nates of each canonical transcript were taken from GENCODE v40
transcript annotations (www.gencodegenes.org/human/release_
40lift37.html), as Ensembl Release 106 annotations are based on
GENCODE v40.We next compared the structure of each tissue-spe-
cific transcript isoformwith the structure of the canonical transcript
isoform for the corresponding gene, and we classified local differ-
ences in transcript structure into basic types of alternative splicing
events, including exon skipping, alternative 5′ splice site usage, al-
ternative 3′ splice site usage, mutually exclusive exon, intron reten-
tion, alternative first exon, and alternative last exon. Any local
differences in transcript structure that could not be classified as
one of the basic types of alternative splicing events were classified
as “complex splicing.” If a tissue-specific transcript isoform harbors
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multiple transcript regions that differ in transcript structure com-
pared to the canonical transcript isoform, then we classified the
tissue-specific transcript isoform as having a combination of
events. Notably, in our comparisons of transcript structure, we fil-
tered out tissue-specific transcript isoforms that (i) were also the ca-
nonical transcript isoform of the corresponding gene, (ii) only
differed in transcript ends relative to the canonical transcript
isoform, or (iii) were expressed from a gene whose canonical tran-
script isoform is not defined in GENCODE v40.

Supplementary Materials
This PDF file includes:
Figs. S1 to S21
Tables S1 to S8

View/request a protocol for this paper from Bio-protocol.
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