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Abstract: Multi-level thresholding image segmentation divides an image into multiple regions of
interest and is a key step in image processing and image analysis. Aiming toward the problems of the
low segmentation accuracy and slow convergence speed of traditional multi-level threshold image
segmentation methods, in this paper, we present multi-level thresholding image segmentation based
on an improved slime mould algorithm (ISMA) and symmetric cross-entropy for global optimization
and image segmentation tasks. First, elite opposition-based learning (EOBL) was used to improve the
quality and diversity of the initial population and accelerate the convergence speed. The adaptive
probability threshold was used to adjust the selection probability of the slime mould to enhance the
ability of the algorithm to jump out of the local optimum. The historical leader strategy, which selects
the optimal historical information as the leader for the position update, was found to improve the
convergence accuracy. Subsequently, 14 benchmark functions were used to evaluate the performance
of ISMA, comparing it with other well-known algorithms in terms of the optimization accuracy,
convergence speed, and significant differences. Subsequently, we tested the segmentation quality
of the method proposed in this paper on eight grayscale images and compared it with other image
segmentation criteria and well-known algorithms. The experimental metrics include the average
fitness (mean), standard deviation (std), peak signal to noise ratio (PSNR), structure similarity
index (SSIM), and feature similarity index (FSIM), which we utilized to evaluate the quality of the
segmentation. The experimental results demonstrated that the improved slime mould algorithm is
superior to the other compared algorithms, and multi-level thresholding image segmentation based
on the improved slime mould algorithm and symmetric cross-entropy can be effectively applied to
the task of multi-level threshold image segmentation.

Keywords: slime mould algorithm; multi-level thresholding image segmentation; symmetric cross-
entropy; meta-heuristics

1. Introduction

Image segmentation is a key part of image processing [1–3], which aims to extract the
target region of interest from the image. Image segmentation is widely used in various
fields, such as medical image processing [4,5], agricultural image processing [6,7], and
remote sensing image analysis [8,9], because of its simplicity and effectiveness. At present,
the commonly used image processing methods are threshold segmentation [10], region
segmentation [11,12], and clustering segmentation [13,14]. Among them, the threshold
segmentation method is a popular research direction in the field of image segmentation.
For complex images, multiple thresholds are selected to segment the image into multiple
effective targets.
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Multi-threshold segmentation identifies a set of threshold values in the image to be
segmented according to a certain criterion and segments the image into multiple parts.
Common threshold selection methods for multi-threshold segmentation criteria include
Otsu’s method (by maximizing the between-class variance), Kapur’s entropy method (by
maximizing the entropy of the classes), fuzzy entropy, minimum cross-entropy, etc. [15–17].
However, the multi-threshold segmentation of images expands the search space with the
increase in the number of thresholds, the computational complexity increases exponentially,
and the computational efficiency is low.

In recent years, meta-heuristic algorithms (MAs) have been widely used for data
processing and practical problems such as multi-peaked, high-dimensional, and nonlinear
complex computations. In the face of uncertainty or a large range of solution spaces, MAs
use their stochastic search capability to obtain the optimal solution without traversing
the solution space, which can greatly reduce the computational effort and the optimiza-
tion search time, with examples such as the seagull optimization algorithm (SOA) [18],
grey wolf optimizer (GWO) [19], sparrow search algorithm (SSA) [20], moth-flame opti-
mization (MFO) [21], pelican optimization algorithm [22], etc. Due to the superiority of
MAs, researchers have applied the optimization algorithms to multilevel threshold image
segmentation tasks [23]. Lang et al. [24] used differential evolution (DE) as a local search
technique to improve the situation whereby WOA falls into local optimization in the later
iterations and combined WOA-DE with Kapur’s entropy to obtain an effective image
segmentation method. Yu et al. [25] optimized the grey wolf optimizer by modifying the
weights of the first three wolves to make full use of the knowledge of the first three wolves
and achieved good results in the image segmentation task. Zhao et al. [26] improved the
ant colony optimization (ACO) algorithm by the randomized alternate strategy and chaotic
enhancement strategy and performed image segmentation experiments at low and high
threshold levels, respectively, and the experimental results were satisfactory. Houssein
et al. [27] proposed an image-thresholding method based on the black widow optimization
algorithm to extract the optimal threshold values for the selected images using Otsu’s and
Kapur’s entropy methods, respectively. Chen et al. [28] used a multi-strategy optimized
shuffled frog leaping algorithm (SFLA) combined with Kapur’s entropy method for the
multi-threshold image segmentation of common breast cancers, which outperformed the
other competitors in terms of the solution efficiency and time complexity. MAs show a
good segmentation performance in the field of multi-threshold image segmentation. The
slime mould algorithm (SMA) [29] is a newly proposed meta-heuristic swarm intelligence
algorithm with the advantages of a high merit-seeking ability and few parameters. How-
ever, in the late iterations of the algorithm, SMA, like other intelligent algorithms, is prone
to fall into the local optimal solution. Örnek et al. [30] proposed an enhanced slime mould
algorithm (ESMA) with a better ability to avoid local optimization by updating the posi-
tion of the sticky bacterium using sine and cosine trigonometric functions. Hu et al. [31]
proposed a dispersed foraging SMA (DFSMA) with a dispersed foraging strategy, which
outperformed the other optimizers in terms of the convergence speed and accuracy.

In this paper, we propose an improved slime mould algorithm, called ISMA, for the
multilevel thresholding image segmentation task. First, elite opposition-based learning
(EOBL) was used to improve the quality and diversity of the initial population and accel-
erate the convergence speed. The adaptive probability threshold was used to adjust the
selection probability of the slime mould so as to enhance the ability of the algorithm to jump
out of the local optimum. The historical leader strategy, which selects the optimal historical
information as the leader for the position update, was found to improve the convergence
accuracy. Moreover, the optimization ability and solution accuracy of ISMA were verified
through single-peak and multi-peak benchmark test functions. ISMA was combined with
symmetric cross-entropy multi-threshold segmentation to solve the problems of the compli-
cated calculation and low computational efficiency of multi-threshold image segmentation
and realize multi-threshold image segmentation. We selected eight grayscale images as
the reference images and performed a comparison of the different segmentation criteria
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and different MAs. The experimental results demonstrated that multi-level thresholding
image segmentation based on ISMA and symmetric cross-entropy outperforms the other
methods in terms of the PSNR, SSIM, and FSIM and showed significant improvements in
the convergence speed and segmentation accuracy.

The main contributions of this paper can be summarized as follows:
We optimized SMA through multiple strategies and propose an improved SMA, called

ISMA;
We evaluated the performance of ISMA through single-peak and multi-peak bench-

mark test functions;
We combined ISMA with symmetric cross-entropy for threshold segmentation and

compared it with Otsu’s and Kapur’s entropy methods and minimum cross-entropy;
We compared the performance of ISMA with other MAs and evaluated the image

segmentation quality through PSNR, SSIM, and FSIM.
The rest of the paper is organized as follows. Section 2 introduces the slime mould

algorithm. Section 3 introduces the improvement strategy for the slime mould algorithm,
elite opposition-based learning, the adaptive probability threshold, and the historical leader.
Section 4 discusses ISMA performance tests. Section 5 introduces the threshold segmenta-
tion technology combining ISMA and symmetric cross-entropy. Section 6 describes image
segmentation tests and analyzes the experimental results. Finally, Section 7 summarizes
this paper and provides the future research directions.

2. Slime Mould Algorithm

The slime mould algorithm (SMA) establishes a mathematical model based on the
foraging behavior of physarum polycephalum, which adjusts its position by oscillating
reactions to search for the optimal food position.

The slime mould approach the food according to the odor in the air, and some individ-
uals separate in order to search for higher-quality food in other domains after identifying
the food source, as shown in the following equation:

→
X(t + 1) =


rand · (UB− LB) + LB, rand < z

→
Xb(t) +

→
vb ·

(→
W ·

→
XA(t)−

→
XB(t)

)
, r < p

→
vc ·

→
X(t), r ≥ p

(1)

where
→
vb ∈ [− a, a] obeys a uniform distribution and simulates the degree of learning of

the slime individuals from other individuals in the population;
→
vc simulates the degree of

information retention of the slime individuals themselves, which decreases linearly from 1

to 0; t denotes the current iteration;
→
Xb represents the position of the individual with the

highest current food concentration, which is the global optimal solution;
→
X represents the

position of the slime mould;
→

XA and
→
XB denote the random individuals;

→
W represents the

weight of the slime mould; UB and LB are the upper and lower bounds of the search space;
rand and r denote the random value in [0, 1]; and z is the weight of the separated part of
the individual, which is 0.03.

The p,
→
vb, and

→
W can be calculated as follows:

p = tanh|S(i)− DF| (2)

a = arctanh(−( t
max_t

) + 1) (3)

→
W(Smell Index(i)) =

{
1 + r · log( bF−S(i)

bF−wF + 1), condition
1− r · log( bF−S(i)

bF−wF + 1), others
(4)

Smell Index = sort(S) (5)
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where i ∈ 1, 2, . . . , n, S(i) denotes the fitness value of the slime mould; DF denotes the
optimal fitness value; the condition is the rank first-half fitness of the search agent of S(i);
r denotes the random value in [0, 1]; max_t denotes the maximum iteration; bF and wF
denote the best fitness and the worst fitness currently obtained, respectively; and SmellIndex
denotes the slime mould individuals sorted by fitness.

The
→
W,
→
vb,
→
vc in the slime mould algorithm are used to simulate the oscillatory response

of the slime mould so that the slime mould can approach in order to grasp quality food

faster;
→
vb oscillates randomly between [−a, a], gradually approaching zero; and

→
vc oscillates

between [−1, 1] and eventually tends toward zero.

3. The Proposed Method
3.1. Elite Opposition-Based Learning

The population initialization of the SMA randomly generates the population positions,
which causes the population to have large randomness and uncertainty and affects the
final convergence speed and accuracy. Opposition-based learning introduces the reverse
solution, which effectively increases the diversity and quality of the algorithm population.
However, the reverse solution generated by the reverse learning may render it more
difficult to search for the optimal value than the current search space. Elite opposition-
based learning takes advantage of elite individuals carrying more effective information
compared with ordinary individuals so as to improve the diversity and population quality
of the mucilage population and enhance the global search performance and convergence
accuracy of the algorithm. In this paper, we apply EOBL to the initialization of SMA,
take advantage of the feature according to which elite individuals contain more valid
information with which to construct inverse populations, and select the better individuals
from the current population and the inverse population as the initial solution so as to
improve the quality and diversity of the initial populations.

Assuming that elite individuals Xi,j = (x i,1, xi,2, · · · , xi,d)(i = 1, 2, · · · , N; j = 1, 2, · · · , d),
the inverse solution Xi,j = xi,1, xi,2, · · · , xi,d is defined as follows:

Xi,j = K ∗ (αj + β j)− Xi,j (6)

where the dynamic coefficient K ∈ (0, 1), Xi,j ∈
[
αj, β j

]
, αj= min(Xi, j), β j= max(Xi, j), αj,

βj denotes the dynamic boundary. The dynamic boundary overcomes the disadvantage
of the difficulty in preserving the search experience at the fixed boundary, so that the
elite inverse solution can be located in a narrow search space, which is conducive to the
convergence of the algorithm. If the dynamic boundary operation causes Xi, j to cross the
boundary and become an infeasible solution, it will be reset using the random generation
method in the following way:

Xi,j = rand(αj, β j) (7)

3.2. The Adaptive Probability Threshold

The SMA balances the different movements of the slime mould surrounding the food
and grasping food by the adaptive parameter p. During the iteration, when the current
individual fitness differs significantly from the optimal fitness, p is 1, and the slime mould
individual updates its position using the movement of surrounding the food. However,
when the value range of the test function is small, it will probably update the position by the
movement method of grasping food, and it will be impossible to choose a predatory strategy
that is suitable for the current slime mould population, causing a slow convergence and low
accuracy. Therefore, this paper introduces a new adaptive probability threshold to cause
the slime mould to select the appropriate predation strategy for the current population,
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thus improving the convergence speed. The adaptive probability threshold mathematical
model is described as shown in Equation (8):

p = tanh(
10·|bF− S(i)|
|bF− wF|+ε

) (8)

where ε is the minimum constant preventing the denominator from being zero.

3.3. The Historical Leader

During the search process of SMA, the update of the ith slime mould concentration
at the t+1 iteration mainly depends on the best global slime mould concentration at the
current iteration number t, resulting in an insufficient global search, rendering it easy to
fall into the local extreme value region, and, sometimes, causing the low convergence
accuracy of the algorithm. In this paper, the first- and second-best positions of the previous
generation and the global optimal position are introduced as leaders in the slime mould
position update formula, and the magnitude and direction of the slime mould surrounding
the food are controlled according to the optimal historical information and current state, a
method which effectively avoids the problem of the basic algorithm’s tendency to easily
fall into the local extreme value region and improves the algorithm’s search accuracy. The
ISMA location update formula is as follows:

→
X(t + 1) =


rand · (UB− LB) + LB, rand < z

→
XC(t) +

→
vb ·

(→
W ·

→
XD(t)−

→
XE(t)

)
, r < p

→
vc ·

→
X(t), r ≥ p

(9)

where
→
XC is the current global optimal position, and

→
XD and

→
XE are the first- and second-

best positions of the previous generation, respectively.

3.4. Pseudo-Code of ISMA

The pseudo-code of ISMA is shown in Algorithm 1.

Algorithm 1 Pseudo-code of ISMA

Initialize the parameters popsize, Max_iteraition
Initialize the positions of the slime mould
While (t ≤Max_iteraition)

Calculate the fitness of all the slime mould
Update bestFitness, Xb
Calculate the W by Equation (4)
For each search portion,

Update p by Equation (8)
Update positions by Equation (9)
End For

t = t + 1
End While
Return bestFitness, Xb

4. ISMA Performance Evaluation Experiments and Analysis

The experiments were conducted on a computer with Intel(R) Core(TM) i7-10870H
CPU @ 2.20 GHz, 8 GB of RAM, the Windows10 operating system, and MATLAB 2020a
compiler software.

In order to test the optimization ability and solution accuracy of ISMA, 14 benchmark
functions [32] were selected to test the algorithm’s performance. The information of the
benchmark test functions is shown in Table 1 which are divided into single-peak functions
(F1–F7) and multi-peak functions (F8–F14). D, UM, and MM denote the function dimension,
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single-peak function, and multi-peak function, respectively. The function visualization is
shown in Figure 1. These functions are defined in Table 1. It can be seen that the single-
peak function has only one global optimal solution, which can verify the search ability of
the algorithm. The multi-peak function has many local optimal solutions and only one
global optimal solution, which can verify the escape ability of the local optimal solution of
the algorithm.

Table 1. Definitions of the 14 benchmark functions.

No Name Range D fmin Type

F1 Sphere [−100, 100] 30 0 UM
F2 Schwefel 2.22 [−10, 10] 30 0 UM
F3 Schwefel 1.2 [−100, 100] 30 0 UM
F4 Schwefel 2.21 [−100, 100] 30 0 UM
F5 Rosenbrock [−30, 30] 30 0 UM
F6 Step [−100, 100] 30 0 UM
F7 Quartic [−1.28, 1.28] 30 0 UM
F8 Schwefel [−500, 500] 30 −12,569.487 MM
F9 Rastrigin [−5.12, 5.12] 30 0 MM
F10 Ackley [−32, 32] 30 0 MM
F11 Griewank [−600, 600] 30 0 MM
F12 Penalized [−50, 50] 30 0 MM
F13 Penalized 2 [−50, 50] 30 0 MM
F14 Foxholes [−65.536, 65.536] 2 0.998004 MM
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To verify the performance of the proposed ISMA, it was compared with seven other
algorithms, including SMA, SOA, MFO, POA, GWO, ESMA, and DFSMA. Table 2 illustrates



Entropy 2023, 25, 178 7 of 29

the parameter settings of each algorithm. For all the algorithms in the comparison, the
population size n = 50 and the maximum number of iterations max_t = 500. Due to the
fact that the search strategy of the MAs is random, it was run 30 times independently on
all the benchmark functions, respectively, and the evaluation criteria were the average
fitness (mean), standard deviation (std), and computation time. The experimental results
are provided in Tables 3–5, where the best values are marked in bold.

Table 2. Parameter settings for each algorithm.

Algorithm Parameters

ISMA Z = 0.03
SMA Z = 0.03
SOA FC = 2, u = 1, v = 1
MFO b = 1, ε = 0.001, g ∈ [0, 30], C ∈ [0, 100]
GWO a ∈ [2, 0]
POA I = 2, R = 0.2

ESMA Z = 0.03
DFSMA Z = 0.03

Table 3. Mean statistical results of the algorithms based on 14 benchmark functions.

Function ISMA SMA SOA MFO POA GWO ESMA DFSMA

F1 0.000 1.500 × 10−323 8.496 × 10−12 1.341 × 103 1.525 × 10−103 1.619 × 10−28 5.106 × 10−297 2.320 × 10−292

F2 0.000 6.348 × 10−147 1.590 × 10−8 3.685 × 10 6.001 × 10−52 9.760 × 10−17 3.758 × 10−168 9.280 × 10−153

F3 0.000 1.446 × 10−313 1.258 × 10−4 2.109 × 104 3.735 × 10−100 7.918 × 10−6 2.970 × 10−296 5.900 × 10−323

F4 0.000 1.007 × 10−148 1.758 × 10−2 6.794 × 10 2.443 × 10−51 6.649 × 10−7 4.231 × 10−141 1.983 × 10−160

F5 2.550 1.207 × 101 2.822 × 10 2.688 × 106 2.810 × 10 2.682 × 10 5.415 3.262
F6 4.239 × 10−4 7.500 × 10−3 3.306 1.680 × 103 2.829 7.552 × 10−1 5.803 × 10−3 5.431 × 10−3

F7 1.211 × 10−4 1.805 × 10−4 2.631 × 10−3 5.766 2.363 × 10−4 1.657 × 10−3 1.950 × 10−4 1.685 × 10−4

F8 −1.257 × 104 −1.257 × 104 −4.861 × 103 9.933 × 102 −7.642 × 103 −5.930 × 103 −1.256 × 104 −1.256 × 104

F9 0.000 0.000 1.297 1.714 × 102 0.000 4.815 0.000 0.000
F10 8.882 × 10−16 8.882 × 10−16 1.996 × 10 1.448 × 10 3.257 × 10−15 9.456 × 10−14 8.882 × 10−16 8.882 × 10−16

F11 0.000 0.000 2.989 × 10−2 1.591 × 10 0.000 4.596 × 10−3 0.000 0.000
F12 3.098 × 10−4 5.500 × 10−3 3.439 × 10−1 8.534 × 106 1.926 × 10−1 5.065 × 10−2 5.237 × 10−3 4.620 × 10−3

F13 1.700 × 10−3 1.240 × 10−2 2.057 2.381 × 102 2.589 5.603 × 10−1 6.689 × 10−3 6.933 × 10−3

F14 9.980 × 10−1 1.013 2.150 1.823 1.823 4.655 9.981 × 10−1 9.981 × 10−1

Table 4. Std statistical results of the algorithms based on 14 benchmark functions.

Function ISMA SMA SOA MFO POA GWO ESMA DFSMA

F1 0.000 0.000 1.787 × 10−11 4.340 × 103 7.328 × 10−103 2.412 × 10−27 0.000 0.000
F2 0.000 3.477 × 10−146 1.791 × 10−8 2.778 × 10 2.117 × 10−51 5.044 × 10−17 1.776 × 10−156 5.082 × 10−152

F3 0.000 0.000 5.100 × 10−4 9.875 × 103 1.932 × 10−99 1.388 × 10−5 0.000 0.000
F4 0.000 5.518 × 10−148 7.711 × 10−2 6.246 1.187 × 10−50 5.612 × 10−7 2.317 × 10−140 1.086 × 10−159

F5 5.023 1.354 × 1001 2.883 × 10 2.004 × 102 8.098 × 10−1 2.711 × 10 9.366 7.662
F6 7.757 × 10−4 3.100 × 10−3 4.505 × 10−1 3.795 × 103 6.616 × 10−1 3.078 × 10−1 3.336 × 10−3 2.451 × 10−3

F7 1.110 × 10−4 1.431 × 10−4 2.043 × 10−3 1.143 × 101 1.797 × 10−04 8.672 × 10−4 1.527 × 10−4 1.715 × 10−4

F8 3.087 × 10−1 1.575 × 101 4.834 × 102 3.985 × 103 7.531 × 1002 8.413 × 102 4.327 × 10−1 3.812 × 10−1

F9 0.000 0.000 2.348 4.479 × 101 0.000 7.065 0.000 0.000
F10 0.000 0.000 1.540 × 10−3 6.998 1.703 × 10−15 1.410 × 10−14 0.000 0.000
F11 0.000 0.000 5.084 × 10−2 3.407 × 101 0.000 9.000 × 10−3 0.000 0.000
F12 6.516 × 10−4 5.000 × 10−3 1.016 × 10−1 2.492 × 102 7.090 × 10−02 1.918 × 10−2 7.366 × 10−3 6.237 × 10−3

F13 2.100 × 10−3 1.230 × 10−2 1.449 × 10−1 8.193 × 102 4.345 × 10−1 2.567 × 10−1 8.739 × 10−3 8.789 × 10−3

F14 3.593 × 10−13 6.655 × 10−2 1.891 1.399 1.399 4.146 5.955 × 10−13 4.627 × 10−13

As can be seen from the table analysis, the statistical results of ISMA for the 14 test
functions are significantly better than those of the other four comparison algorithms under
the same constraints. Among the single-peak functions, for F1, F2, F3, and F4, ISMA can
identify the theoretical optimal solution in all 30 experiments, while SOA, MFO, and GWO
have larger mean values, and SMA, POA, ESMA, and DFSMA have smaller mean values
and are closer to the optimum. However, the std values of ISMA are all 0. Only SMA,
ESMA, and DFSMA obtain std values of 0 for F1 and F3. For F5, F6, and F7, none of the
algorithms obtain the optimal values stably, but ISMA obtains mean values closer to the
optimal solution, with smaller std values. In the multi-peak function, for F8, F9, F11, and
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F14, ISMA achieves the theoretical optimal value with the smallest std value, ESMA and
DFSMA achieve the mean values close to the std value, and SMA is slightly larger than
ESMA and DFSMA. For F10, F12, and F13, none of the algorithms achieve the optimal
solution stably, but ISMA achieves a better performance. The analysis of the experimental
results shows that ISMA outperforms the other comparison algorithms in relation to the 14
benchmark functions tested.

Table 5. Computation time(s) statistical results of the algorithms based on 14 benchmark functions.

Function ISMA SMA SOA MFO POA GWO ESMA DFSMA

F1 3.292 × 10−1 3.207 × 10−1 3.090 × 10−1 2.812 × 10−1 1.963 × 10−1 5.205 × 10−1 3.533 × 10−1 3.450 × 10−1

F2 3.442 × 10−2 3.424 × 10−1 3.541 × 10−1 3.331 × 10−1 2.219 × 10−1 5.747 × 10−1 3.755 × 10−1 3.739 × 10−1

F3 4.387 × 10−1 4.348 × 10−1 4.248 × 10−1 3.998 × 10−1 4.523 × 10−1 6.052 × 10−1 4.765 × 10−1 4.739 × 10−1

F4 3.334 × 10−1 3.262 × 10−1 2.783 × 10−1 2.425 × 10−1 1.583 × 10−1 4.419 × 10−1 3.593 × 10−1 3.354 × 10−1

F5 3.522 × 10−1 3.433 × 10−1 2.885 × 10−1 2.510 × 10−1 1.822 × 10−1 4.630 × 10−1 3.854 × 10−1 3.702 × 10−1

F6 3.388 × 10−1 3.290 × 10−1 2.886 × 10−1 2.597 × 10−1 1.862 × 10−1 4.395 × 10−1 3.685 × 10−1 3.539 × 10−1

F7 3.892 × 10−1 3.812 × 10−1 3.171 × 10−1 2.853 × 10−1 2.595 × 10−1 4.876 × 10−1 4.282 × 10−1 1.071 × 10−1

F8 3.535 × 10−1 3.383 × 10−1 3.408 × 10−1 2.884 × 10−1 2.670 × 10−1 4.838 × 10−1 3.938 × 10−1 3.638 × 10−1

F9 3.325 × 10−1 3.233 × 10−1 2.813 × 10−1 2.532 × 10−1 2.013 × 10−1 4.588 × 10−1 3.721 × 10−1 3.422 × 10−1

F10 3.396 × 10−1 3.255 × 10−1 2.830 × 10−1 2.560 × 10−1 1.781 × 10−1 4.495 × 10−1 3.654 × 10−1 3.598 × 10−1

F11 3.571 × 10−1 3.347 × 10−1 3.008 × 10−1 2.652 × 10−1 2.005 × 10−1 4.640 × 10−1 3.933 × 10−1 3.654 × 105

F12 5.140 × 10−1 4.973 × 10−1 4.824 × 10−1 4.385 × 10−1 5.666 × 10−1 6.634 × 10−1 5.535 × 10−1 5.449 × 10−1

F13 5.017 × 10−1 4.978 × 10−1 4.806 × 10−1 4.500 × 10−1 5.501 × 10−1 6.495 × 10−1 5.727 × 10−1 5.220 × 10−1

F14 5.090 × 10−1 5.042 × 10−1 4.681 × 10−1 4.547 × 10−1 8.880 × 10−1 4.741 × 10−1 5.748 × 10−1 5.382 × 10−1

The average CPU times of the different algorithms in the 14 benchmark functions
are shown in Table 5. As can be seen from the table, ISMA takes a relatively longer time
to compute; however, ISMA can still outperform some algorithms with less time spent,
such as ESMA and DFSMA. In general, ISMA still has a great advantage over the other
algorithms.

To reflect the dynamic convergence characteristics of ISMA, the convergence curves of
seven optimization algorithms under 14 benchmark functions are shown in the Figure 2.
For F1, F2, F3, F4, F8, F9, F10, and F11, ISMA is obviously superior to the other algorithms
in terms of the convergence speed and optimization accuracy, and the search performance
in the early iteration and the exploitation performance at the end of the iteration are also
superior to those of the other algorithms. This shows that EOBL causes ISMA to ensure
the exploitation ability and the search ability without losing the population diversity and
search stability. For F5, F6, F7, F8, F12, F13, and F14, with the increase in the iterations,
various algorithms stalled to different degrees and fell into local optimum. However, due
to the introduction of the adaptive threshold, ISMA could effectively jump out of local
optimum and obtain a better search accuracy.

In summary, whether single-peak or multi-peak functions are applied, ISMA shows
a better overall search performance and a better solution accuracy and stability than the
seven representative comparison algorithms, with a superior solution performance. It was
shown that ISMA can explore the search space sufficiently and efficiently and ensure the
global search capability and local exploration capability. ISMA solves the problem of the
susceptibility of the SMA algorithm to fall into the local extreme value region, with an
unstable optimization performance and low precision, when solving complex functions.
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5. Multi-Threshold Segmentation
5.1. Symmetric Cross-Entropy Threshold Segmentation

In 1968, Kullback proposed cross-entropy for the measurement of the difference in
information between two probability distributions [33]. Let P = {p1, p2, . . . , pn} and
Q = {q1, q2, . . . , qn} be two probability distributions defined based on the same set of
values. The cross-entropy between P and Q can be calculated as follows:

D(P, Q) =
N

∑
i=1

pi log
pi
qi

(10)
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Multi-level threshold segmentation identifies a set of thresholds in the image to be
segmented according to a certain criterion and segments the image into multiple parts.
The minimum cross-entropy algorithm determines the threshold value by minimizing the
cross-entropy between the original image and the threshold image [34].

In this paper, we use symmetric cross-entropy to determine the threshold values.
Symmetric cross-entropy takes into account both gray-level and neighborhood average
gray-level information and provides better results for the segmentation of real images [35].
Let the original image be I and h(i), i = 1, 2, . . . , L be the corresponding histogram, with L
being the number of grey levels. Assuming that t thresholds need to be selected, the object
function of symmetric cross-entropy can be defined as:

H(t) = H0 + H1+, . . . + Ht (11)

where:

H0 =
t

∑
i=0

hi(i ln
i

u0(t)
+ u0(t) ln

u0(t)
i

)

H1 =
t

∑
i=1

hi(i ln
i

u1(t)
+ u1(t) ln

u1(t)
i

)

Ht =
L−1

∑
i=t+1

hi(i ln
i

ut(t)
+ ut(t) ln

ut(t)
i

)

Above, H0, H1, . . . , Hn denote the entropies of distinct classes.
In order to obtain the optimal threshold values, the fitness function in Equation (12) is

minimized:
t(1, . . . , n)∗ = argmin

0≤t≤L−1
{H0 + H1+, . . . + Ht} (12)

5.2. Multi-Level Threshold Segmentation Based on ISMA and Symmetric Cross-Entropy

In order to improve the accuracy and computational speed of the multi-threshold
segmentation technique, multi-level threshold segmentation based on ISMA and symmet-
ric cross-entropy is proposed. The method determines the optimal threshold value by
minimizing the objective function given in Equation (12). The steps are as follows:

(a) Read the image to be segmented (grayscale image).
(b) Find the grayscale histogram of the image.
(c) Initialize the parameters of ISMA, the size of the population of slime mould (n), the

maximum number of iterations (max_t), the initial values of the upper bound (LB)
and lower bound (UB), and the number of desired partition thresholds (d).

(d) Find the optimal fitness value using symmetric cross-entropy as the ISMA objective
function.

(e) If ISMA reaches the maximum number of iterations max_t, the optimization is com-
pleted, and the slime mould location information regarding the best fitness is returned,
which is the best segmentation threshold. Otherwise, skip to step (d).

(f) Perform grayscale image segmentation with the best threshold and obtain the seg-
mented image.

6. Threshold Segmentation Experiment Results and Analysis
6.1. Threshold Segmentation Experiment for the Segmentation Criteria

To verify the effectiveness of symmetric cross-entropy threshold segmentation, Lena,
Cameraman, Butterfly, Lake, Barbara, Columbia, Milkdrop, and Man, the classic threshold
segmentation images, were selected as the test images to test the segmentation effect of
this paper’s algorithm, and the four segmentation criteria based on Otsu, Kapur’s entropy,
minimum cross-entropy, and symmetric cross-entropy were compared. Here, the eight
benchmark images are grayscale. These images and their histograms are presented in
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Figure 3. The experimental parameters of the algorithm are set as follows: the population
size n = 50, the maximum number of iterations max_t = 100, the upper and lower bounds
of the individuals are taken as [0, 255], and the dimension (d) is taken as 2, 3, 4, and 5,
corresponding to 2, 3, 4, and 5 thresholding, respectively. Figure 3 shows the grayscale
histograms of the eight selected images, and it can be seen that they have different histogram
distributions and can represent different types of complex, multi-target images.
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In order to objectively evaluate the stability of the segmentation algorithm and the
effect of multi-threshold image segmentation, each image was run 30 times independently,
and the peak signal to noise ratio (PSNR), structural similarity (SSIM), and feature similarity
(FSIM) were selected as the evaluation criteria. PSNR was used to evaluate the image
degradation, according to which the larger the value is, the smaller the image degradation
and the better the image segmentation effect will be. SSIM evaluates the similarity between
images based on the image brightness, contrast, and structure information. The SSIM
value range is [0, 1], and the larger the value is, the more similar the image after threshold
segmentation will be to the original image, and the better the image segmentation effect
will be. FSIM uses image gradient features and phase consistency features for image quality
evaluation, and the larger the value is, the better the image segmentation quality will be.

PSNR is computed by the following equation:

PSNR = 20 log10
255

RMSE
(13)
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RMSE =

√√√√√ M
∑

i=1

N
∑

j=1
(x(i, j)− y(i, j)2)

M× N
(14)

where x and y denote the original and segmented images, respectively. M and N are the
sizes of the images.

SSIM is computed by the following equation:

SSIM(x, y) =
(2µxµy + C1)(2σxσy + C2)

(µx2 + µy2 + C1)(σx2 + σy2 + C2)
(15)

where µx and µy indicate the mean intensities of the original and segmented images,
respectively. σx and σy are the standard deviations of original and segmented images. C1
and C2 are two constants equal to 0.065.

FSIM is computed by the following equation:

FSIM =

∑
ω∈Ω

SPC(ω)SG(ω)PCm(ω)

∑
ω∈Ω

PCm(ω)
(16)

SPC(ω) =
2PC1(ω)PC2(ω) + C3

PC1
2(ω) + PC22(ω) + C3

(17)

SG(ω) =
2G1(ω)G2(ω) + C4

G1
2(ω) + G22(ω) + C4

(18)

where Ω indicates the entire domain of the image. C3 and C4 are constants which are equal
to 0.85 and 160, respectively. G indicates the gradient magnitude of an image, and PC
denotes the phase congruence.

ISMA was combined with Otsu, minimum cross-entropy, Kapur’s entropy, and sym-
metric cross-entropy, respectively, and the experimental results are shown in Table 6. It
can be seen from the results in Table 6 that a significant difference in the image quality is
obtained according to the different image segmentation criteria. The quality of the images
is gradually enhanced with the increase of the number of thresholds in the segmentation
results, and the PSNR, SSIM, and FSIM values are gradually increased, and the image
segmentation performance is gradually enhanced. Among the values, the PSNR, SSIM,
and FSIM obtained from the images segmented by Kapur’s entropy thresholding at the
low threshold (d = 2, 3) are the lowest, and the PSNR, SSIM, and FSIM values obtained
from the images segmented by symmetric cross-entropy, Otsu, and minimum cross-entropy
thresholding have little difference, which proves the feasibility of symmetric cross-entropy
image segmentation. At the high threshold (d = 4, 5), the symmetric cross-entropy method
outperforms Otsu, minimum cross-entropy, and Kapur’s entropy segmentation methods in
terms of the PSNR, SSIM, and FSIM, proving that the results of the multi-threshold image
segmentation based on symmetric cross-entropy have less distortion and retain the feature
information of the original image in a more complete manner.

Table 7 denotes the best threshold values obtained according to the different segmen-
tation criteria. It can be seen from the results in Table 7 that the optimal threshold obtained
by symmetric cross-entropy differs less from that obtained by minimum cross-entropy and
more from those obtained by Otsu and Kapur’s entropy at the low thresholds (2, 3). At the
high thresholds (4, 5), the optimal thresholds obtained by the different image segmentation
criteria are significantly different, resulting in different image qualities.
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Table 6. The PSNR, SSIM, and FSIM values obtained by segmentation criterion.

Images d
Symmetric

Cross-Entropy
Minimum

Cross-Entropy Otsu Kapur’s Entropy

PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM

Lena

2 13.2058 0.4969 0.6978 12.2497 0.4949 0.6976 12.0066 0.4723 0.6897 7.7212 0.1290 0.5866

3 15.7899 0.5628 0.7660 15.6702 0.5607 0.7654 15.6612 0.5362 0.7542 13.3143 0.5223 0.6812

4 16.5512 0.5776 0.8029 16.2183 0.5632 0.7956 16.2183 0.5580 0.7954 15.4882 0.5661 0.6985

5 17.0899 0.6802 0.8305 16.7296 0.6115 0.8305 16.9276 0.5814 0.8289 17.0600 0.5998 0.7196

Cameraman

2 12.0475 0.5555 0.7662 11.5227 0.5562 0.7554 11.5288 0.5551 0.7549 11.3573 0.4941 0.6504

3 12.8391 0.5982 0.8097 11.5551 0.5980 0.8074 11.5670 0.5739 0.7910 12.4609 0.5567 0.6530

4 16.1448 0.6089 0.8344 12.7883 0.6089 0.8344 12.7883 0.5984 0.8192 12.9698 0.5646 0.6742

5 16.6072 0.6384 0.8584 14.8859 0.6276 0.8447 15.7175 0.6175 0.8576 16.4663 0.5876 0.6746

Butterfly

2 13.2788 0.5266 0.7363 13.1412 0.5266 0.7330 13.1412 0.4730 0.7363 11.7625 0.3130 0.7101

3 15.5515 0.5759 0.7914 14.9690 0.5759 0.7338 14.9690 0.5603 0.7738 14.0402 0.4095 0.7524

4 16.4086 0.6147 0.8153 15.9752 0.6147 0.8079 16.0354 0.6183 0.8153 16.0276 0.6435 0.7821

5 16.6381 0.6474 0.8281 16.0354 0.6327 0.8143 16.1095 0.7103 0.8182 16.5343 0.6478 0.8136

Lake

2 13.1104 0.5017 0.7314 12.9005 0.5002 0.7313 12.9179 0.4781 0.7313 13.3854 0.4398 0.6234

3 16.1352 0.5589 0.7908 14.0479 0.5589 0.7835 14.0479 0.5180 0.7835 16.2402 0.5150 0.6565

4 18.0386 0.6572 0.8391 18.0386 0.6071 0.8257 17.3537 0.5589 0.8257 15.8882 0.5346 0.6918

5 18.6824 0.6948 0.8623 18.4376 0.6542 0.8412 18.2994 0.6071 0.8360 15.8486 0.6575 0.7275

Barbara

2 14.7227 0.4756 0.7278 12.6622 0.4756 0.7278 13.1800 0.4631 0.7261 14.7227 0.4663 0.6874

3 16.3754 0.5432 0.7943 16.3754 0.5432 0.7942 15.6470 0.5347 0.7943 15.8715 0.4933 0.7339

4 16.9175 0.6023 0.8304 16.8855 0.6023 0.8301 16.6012 0.5770 0.8104 15.9885 0.5687 0.8294

5 17.9234 0.6553 0.8512 17.0108 0.6545 0.8500 17.1495 0.6064 0.8289 17.9234 0.5913 0.8441

Columbia

2 13.8785 0.3900 0.7056 11.2266 0.3900 0.6707 12.7799 0.3157 0.6707 13.8758 0.2524 0.7020

3 15.3874 0.5372 0.7812 13.0064 0.5372 0.7338 13.0064 0.4605 0.7618 15.3316 0.3551 0.7812

4 16.2809 0.6030 0.8030 14.7853 0.5993 0.7827 15.2117 0.6014 0.8000 15.9069 0.3952 0.8030

5 16.7908 0.6269 0.8200 15.2117 0.6250 0.8086 15.9069 0.6250 0.8042 16.0853 0.3905 0.8042

Milkdrop

2 15.8750 0.6458 0.7313 12.9792 0.5851 0.7242 15.8750 0.5552 0.7266 13.3613 0.5906 0.7075

3 18.4471 0.6644 0.7845 15.4290 0.6063 0.7511 17.4501 0.5968 0.7544 18.4471 0.5956 0.7371

4 19.3641 0.6849 0.8207 17.2172 0.6739 0.7627 18.3448 0.6285 0.7985 19.2545 0.6035 0.7525

5 19.7948 0.6880 0.8309 19.2545 0.6849 0.8303 19.3641 0.6621 0.8262 19.3641 0.6727 0.7544

Man

2 14.6403 0.4300 0.6925 11.0410 0.3867 0.6845 12.2389 0.3681 0.6845 14.6403 0.4033 0.6144

3 16.4136 0.4763 0.7664 13.7597 0.4708 0.7657 14.1385 0.4634 0.7636 16.4136 0.4313 0.6393

4 17.3328 0.5114 0.8147 13.9758 0.5114 0.7959 16.5070 0.5053 0.7959 16.5070 0.4696 0.6393

5 17.7032 0.5753 0.8453 16.1596 0.5570 0.8362 17.3328 0.5517 0.8362 17.7032 0.4696 0.6545
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Table 7. The best thresholds obtained by segmentation criterion.

Images d Symmetric
Cross-Entropy

Minimum
Cross-Entropy Otsu Kapur’s Entropy

Lena

2 82 140 82 142 92 151 163 220

3 73 120 166 74 121 167 80 126 170 59 164 220

4 71 109 140 175 70 109 139 175 74 113 145 180 57 60 164 221

5 62 88 118 147 180 62 88 117 146 180 73 109 136 160 188 58 162 180 217 236

Cameraman

2 54 137 52 137 70 144 19 193

3 31 94 144 30 84 145 57 116 154 18 21 194

4 30 77 124 157 29 76 125 157 40 93 140 170 1 17 20 193

5 28 71 112 144 172 28 71 113 145 172 36 83 122 149 173 1 16 19 21 194

Butterfly

2 76 138 76 138 85 148 114 206

3 67 108 158 67 107 159 75 120 170 97 125 207

4 62 92 128 172 62 93 128 172 66 99 135 177 57 102 126 208

5 59 82 107 137 177 57 81 104 135 176 36 83 122 149 173 57 101 126 205 235

Lake

2 74 143 75 142 86 155 73 228

3 65 107 163 64 162 107 80 141 194 62 86 228

4 60 93 145 196 60 94 145 195 68 111 158 199 9 62 86 228

5 53 77 112 155 197 55 80 116 160 199 60 91 128 166 200 10 29 72 89 228

Barbara

2 74 138 74 139 82 147 54 174

3 67 119 170 68 119 171 75 127 176 55 169 222

4 56 93 132 176 56 92 133 177 66 106 142 182 54 128 174 223

5 47 76 108 141 181 48 76 108 142 180 57 88 118 148 184 54 129 174 218 241

Columbia

2 59 110 60 109 75 130 93 177

3 50 83 130 50 83 129 61 102 152 77 147 211

4 45 71 105 148 45 71 104 148 50 79 115 159 74 102 162 218

5 39 59 81 111 151 40 60 82 113 155 48 74 103 135 171 73 101 152 190 234

Milkdrop

2 65 140 68 142 76 154 120 173

3 35 83 150 33 81 145 72 127 188 16 120 173

4 33 68 99 154 33 80 127 185 51 90 132 190 1 16 121 173

5 33 68 96 131 187 31 67 95 132 187 37 70 97 134 191 1 16 118 154 241

Man

2 75 130 76 130 87 142 54 181

3 67 109 152 66 108 152 71 114 156 55 176 224

4 60 90 122 158 60 91 122 158 68 107 141 173 50 59 176 224

5 59 85 113 143 173 59 85 113 142 173 63 94 123 151 182 1 50 58 176 225

In order to intuitively understand the effect of multi-level threshold image segmenta-
tion, the image segmentation results of the four images based on the four segmentation
criteria are shown in Figures 4–11, respectively. From the segmented images, it can be seen
that with the increase in the number of thresholds, the details of the image segmentation
results are clearer, the information is more complete, and the segmentation quality is higher.
When Kapur’s entropy is used as the ISMA objective function for image threshold seg-
mentation, some information is lost in the segmentation results, and details such as the
character outline are blurred, resulting in a poor segmentation effect. When symmetric
cross-entropy, minimum cross-entropy, and Otsu are used as the ISMA objective function,
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respectively, the facial contour and background information of the person can become
clearly segmented. When the thresholds are 2, 3, and 4, the segmentation effects of the
three objective functions are similar, and there is almost no difference. When the threshold
is 5, the image segmentation results of minimum cross-entropy and Otsu lose part of the
image information and appear distorted, while the segmentation results of symmetric
cross-entropy still obtain a clearer image and can provide a more complete target region,
which proves the superiority of symmetric cross-entropy as the objective function.

In summary, the image quality obtained by image segmentation using symmetric
cross entropy as the objective function of ISMA is better than those of the other segmen-
tation criteria, as this method can obtain clearer images and retain more original image
information.

6.2. Threshold Segmentation Experiment of MAs

To verify the performance of ISMA in multi-threshold image segmentation scenarios,
we designed experiments of comparison between ISMA and GWO, SOA, SMA, MFO, POA,
ESMA, and DFSMA. All the algorithms were run independently 30 times, and PSNR, SSIM,
and FSIM were selected as the evaluation metrics. The best values are marked in bold.

Tables 8–10 show the PSNR, SSIM, and FSIM obtained for all the images through
the algorithm, respectively. From the comparison results, we can see that the image
segmentation quality becomes better as the thresholds increase, and PSNR, SSIM, and FSIM
are all proportional to the number of thresholds.
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As can be seen from Table 8, the PSNR obtained by image segmentation at different
thresholds of ISMA achieved optimal values for all eight images, which were better than
those of the other comparison algorithms. When the threshold was low (d = 2, 3), there
was little difference in the PSNR values obtained by image segmentation using the other
comparison algorithms. At high thresholding (d = 4, 5), SOA and GWO obtained poor
PSNR values in most image segmentations, and ESMA and DFSMA obtained lower PSNR
values than SMA in most image segmentations.

As can be seen in Table 9, the SSIM values obtained by ISMA achieved optimal values
in the segmentation of all eight images, outperforming the other compared algorithms. At
low thresholds (d = 2, 3), only ISMA obtained the optimal SSIM value for Milkdrop and
Man. Each algorithm obtained the optimal SSIM value for the rest of the images, and only
SOA still obtained the poor SSIM value for Lena and Barbara. When d = 4, SMA, POA,
ESMA, and DFSMA obtained the optimal SSIM values for Cameraman, Butterfly, Barbara,
and Man, respectively.

As can be seen in Table 10, the optimal FSIM values were obtained by ISMA in all eight
image segmentation tests, which were better than those of the other comparison algorithms.
When d = 2, 3, the other algorithms did not differ much in the case of Lena, Cameraman,
Lake, and Barbara, but the FSIM values obtained for the remaining images were lower
than those obtained by ISMA. When d = 4, all the algorithms except for SOA obtained the
optimal FSIM values for Cameraman. When d = 5, the optimal FSIM values were obtained
for Lena by all the algorithms except for SOA and POA.



Entropy 2023, 25, 178 20 of 29

Table 8. The PSNR values obtained by algorithm for all images.

Images d ISMA GWO SOA SMA POA MFO ESMA DFSMA

Lena

2 13.2058 13.2058 13.2058 13.2058 12.0066 12.0066 12.0066 12.0066

3 15.7899 15.7038 15.5352 15.7810 15.5612 15.5612 15.6512 15.6512

4 16.5512 16.4458 16.4631 16.5291 16.2183 16.2183 16.2183 16.2183

5 17.0899 16.7296 16.7296 16.7457 16.6878 16.7296 16.7296 16.7296

Cameraman

2 12.0475 11.9735 11.9735 12.0475 11.5288 11.5288 11.5288 11.5288

3 12.8391 12.7378 12.6314 12.7460 11.5670 11.5670 11.5670 11.5670

4 16.1448 16.1086 12.8239 16.1432 12.7883 12.7883 12.7883 12.7883

5 16.6072 16.3075 13.2107 16.4663 15.7326 15.7175 14.7133 15.4820

Butterfly

2 13.2788 13.2280 13.1618 13.2280 13.1412 13.1412 13.1412 13.1412

3 15.5515 15.5453 15.5163 15.4508 14.9690 14.9690 14.9690 14.9690

4 16.4086 16.2999 16.2608 16.3081 16.0354 16.0354 15.9752 16.0354

5 16.6381 16.3552 16.3139 16.4275 16.1095 16.1095 16.0354 16.1095

Lake

2 13.1104 13.1104 13.0815 13.1104 12.9179 12.9179 12.9179 12.9179

3 16.1352 16.0206 15.9760 16.0328 14.0479 14.0249 14.0479 14.0479

4 18.0386 18.0386 15.1716 18.0386 18.0386 18.0386 18.0386 18.0386

5 18.6824 18.3881 18.1749 18.4822 18.3551 18.4108 18.4822 18.4822

Barbara

2 14.7227 12.6622 12.6622 12.6622 12.6622 12.6622 12.6622 12.6622

3 16.3754 16.3754 16.2787 16.3754 16.3754 16.3754 16.3754 16.3754

4 16.9175 16.8855 16.8855 16.8855 16.8855 16.8855 16.8855 16.8855

5 17.9234 17.0108 17.3833 17.0108 17.1300 17.1063 17.0108 17.0108

Columbia

2 13.8785 11.2266 11.2266 11.2266 11.2266 11.2266 11.2266 11.2266

3 15.3874 13.0064 13.0064 13.0064 13.0064 13.0644 13.0644 13.0064

4 16.2809 14.7119 14.7523 14.7119 14.7119 14.7119 14.7119 14.7119

5 16.7908 14.2645 14.2819 14.5631 14.2645 14.2645 14.5631 15.2117

Milkdrop

2 15.875 13.3168 13.4058 13.3168 13.3168 13.3168 13.3168 13.3168

3 18.4471 15.3029 15.3029 15.3029 15.3029 15.3029 15.3029 15.3029

4 19.3641 17.2142 17.2423 17.2142 17.2142 17.2142 17.2142 17.2142

5 19.7948 19.2476 19.2335 19.2476 19.2476 19.2476 19.2476 19.2476

Man

2 14.6403 11.0410 11.2319 11.0410 11.0410 11.0410 11.0410 11.0410

3 16.4136 13.6038 13.0089 13.6038 13.6038 13.6038 13.6038 13.6038

4 17.3328 14.4373 14.4710 13.9758 13.9758 13.9758 13.9758 13.9758

5 17.7032 16.0751 16.6173 16.1596 16.1596 16.1286 16.1596 16.1596
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Table 9. The SSIM values obtained by algorithm for all images.

Images d ISMA GWO SOA SMA POA MFO ESMA DFSMA

Lena

2 0.4969 0.4969 0.4969 0.4969 0.4969 0.4969 0.4969 0.4969

3 0.5628 0.5628 0.5626 0.5628 0.5628 0.5628 0.5628 0.5628

4 0.5776 0.5632 0.5632 0.5632 0.5632 0.5632 0.5632 0.5632

5 0.6802 0.6115 0.6115 0.6129 0.6090 0.6115 0.6115 0.6115

Cameraman

2 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555 0.5555

3 0.5982 0.5982 0.5982 0.5982 0.5982 0.5982 0.5982 0.5982

4 0.6089 0.6089 0.6080 0.6089 0.6089 0.6089 0.6089 0.6089

5 0.6384 0.6168 0.6159 0.6357 0.6347 0.6357 0.6222 0.6357

Butterfly

2 0.5266 0.5266 0.5266 0.5266 0.5266 0.5266 0.5266 0.5266

3 0.5759 0.5759 0.5759 0.5759 0.5759 0.5759 0.5759 0.5759

4 0.6147 0.6147 0.6039 0.6147 0.6147 0.6147 0.6147 0.6147

5 0.6474 0.6308 0.6165 0.6313 0.6303 0.6303 0.6327 0.6303

Lake

2 0.5017 0.5017 0.5017 0.5017 0.5017 0.5017 0.5017 0.5017

3 0.5635 0.5589 0.5585 0.5589 0.5589 0.5635 0.5589 0.5589

4 0.6582 0.6071 0.5905 0.6071 0.6071 0.6071 0.6071 0.6071

5 0.6948 0.6582 0.5995 0.6582 0.6575 0.6631 0.6607 0.6607

Barbara

2 0.4756 0.4756 0.4756 0.4756 0.4756 0.4756 0.4756 0.4756

3 0.5432 0.5432 0.5413 0.5432 0.5432 0.5432 0.5432 0.5432

4 0.6023 0.6023 0.5735 0.6023 0.6023 0.6023 0.6023 0.6023

5 0.6553 0.6545 0.6003 0.6545 0.6553 0.6477 0.6545 0.6545

Columbia

2 0.3900 0.3900 0.3900 0.3900 0.3900 0.3900 0.3900 0.3900

3 0.5372 0.5372 0.5372 0.5372 0.5372 0.5372 0.5372 0.5372

4 0.6030 0.5993 0.5946 0.5993 0.5993 0.5993 0.5993 0.5993

5 0.6269 0.6239 0.6298 0.6195 0.6239 0.6239 0.6195 0.6250

Milkdrop

2 0.6458 0.5956 0.5956 0.5956 0.5969 0.5956 0.5956 0.5964

3 0.6644 0.6035 0.6050 0.6035 0.6035 0.6035 0.6035 0.6035

4 0.6849 0.6727 0.6712 0.6727 0.6727 0.6727 0.6727 0.6727

5 0.6880 0.6813 0.6836 0.6813 0.6813 0.6813 0.6813 0.6813

Man

2 0.4300 0.3867 0.3878 0.3867 0.3867 0.3867 0.3867 0.3867

3 0.4763 0.4708 0.4708 0.4708 0.4708 0.4708 0.4708 0.4708

4 0.5114 0.5064 0.5079 0.5114 0.5114 0.5114 0.5114 0.5114

5 0.5753 0.5530 0.5723 0.5570 0.5570 0.5639 0.5570 0.5570
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Table 10. The FSIM values obtained by algorithm for all images.

Images d ISMA GWO SOA SMA POA MFO ESMA DFSMA

Lena

2 0.6978 0.6978 0.6978 0.6978 0.6978 0.6978 0.6978 0.6978

3 0.7660 0.7660 0.7658 0.7660 0.7660 0.7660 0.7660 0.7660

4 0.8029 0.8006 0.7923 0.8015 0.7954 0.7654 0.7954 0.7954

5 0.8305 0.8305 0.8196 0.8305 0.8297 0.8305 0.8305 0.8305

Cameraman

2 0.7662 0.7628 0.7628 0.7628 0.7549 0.7549 0.7549 0.7549

3 0.8097 0.8097 0.8097 0.8097 0.8097 0.8097 0.8097 0.8097

4 0.8344 0.8344 0.8338 0.8344 0.8344 0.8344 0.8344 0.8344

5 0.8584 0.8479 0.8405 0.8580 0.8584 0.8580 0.8419 0.8577

Butterfly

2 0.7363 0.7357 0.7357 0.7363 0.7330 0.7330 0.7330 0.7330

3 0.7914 0.7900 0.7893 0.7909 0.7738 0.7738 0.7738 0.7738

4 0.8153 0.8134 0.8130 0.8139 0.8079 0.8079 0.8079 0.8079

5 0.8281 0.8260 0.8238 0.8275 0.8182 0.8182 0.8143 0.8182

Lake

2 0.7314 0.7314 0.7314 0.7314 0.7314 0.7314 0.7314 0.7314

3 0.7908 0.7889 0.7887 0.7889 0.7835 0.7818 0.7835 0.7835

4 0.8391 0.8361 0.8043 0.8361 0.8257 0.8257 0.8257 0.8257

5 0.8623 0.8617 0.8271 0.8617 0.8348 0.8329 0.8411 0.8411

Barbara

2 0.7278 0.7278 0.7278 0.7278 0.7278 0.7278 0.7278 0.7278

3 0.7943 0.7942 0.7933 0.7942 0.7942 0.7942 0.7942 0.7942

4 0.8304 0.8301 0.8304 0.8301 0.8301 0.8301 0.8301 0.8301

5 0.8512 0.8500 0.8455 0.8500 0.8511 0.8512 0.8500 0.8500

Columbia

2 0.7056 0.6707 0.6707 0.6707 0.6707 0.6707 0.6707 0.6707

3 0.7812 0.7338 0.7338 0.7338 0.7338 0.7338 0.7338 0.7338

4 0.8030 0.7824 0.7827 0.7824 0.7824 0.7824 0.7824 0.7824

5 0.8200 0.7994 0.8064 0.8022 0.7994 0.7994 0.8022 0.8068

Milkdrop

2 0.7313 0.7223 0.7223 0.7223 0.7223 0.7223 0.7223 0.7223

3 0.7845 0.7544 0.7576 0.7544 0.7544 0.7544 0.7544 0.7544

4 0.8207 0.8202 0.8192 0.8202 0.8202 0.8202 0.8202 0.8202

5 0.8309 0.8306 0.8289 0.8306 0.8306 0.8306 0.8306 0.8306

Man

2 0.6925 0.6845 0.6860 0.6845 0.6845 0.6845 0.6845 0.6845

3 0.7664 0.7636 0.7584 0.7636 0.7636 0.7636 0.7636 0.7636

4 0.8147 0.7967 0.7968 0.7959 0.7959 0.7959 0.7959 0.7959

5 0.8453 0.8349 0.8386 0.8362 0.8362 0.8369 0.8362 0.8362

To test the stability of ISMA in the image segmentation task, 30 independent runs
were performed on the images in order to obtain the optimal fitness values, and the
mean and variance of the optimal fitness values were selected as the evaluation indices.
Tables 11 and 12 shows the mean and std of fitness obtained by the algorithms for all the
images, respectively.
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Table 11. The mean of fitness obtained by the algorithms for all the images.

Images d ISMA GWO SOA SMA POA MFO ESMA DFSMA

Lena

2 7.336 × 105 7.336 × 105 7.336 × 105 7.336 × 105 7.336 × 105 7.336 × 105 7.336 × 105 7.336 × 105

3 3.929 × 105 3.931 × 105 4.012 × 105 3.929 × 105 3.929 × 105 3.929 × 105 3.929 × 105 3.929 × 105

4 2.610 × 105 2.616 × 105 3.305 × 105 2.610 × 105 2.610 × 105 2.610 × 105 2.610 × 105 2.610 × 105

5 1.845 × 105 1.855 × 105 2.820 × 105 1.845 × 105 1.845 × 105 1.855 × 105 1.855 × 105 1.855 × 105

Cameraman

2 7.909 × 105 7.909 × 105 7.909 × 105 7.909 × 105 7.909 × 105 7.909 × 105 7.909 × 105 7.909 × 105

3 4.159 × 105 4.163 × 105 4.161 × 105 4.159 × 105 4.159 × 105 4.159 × 105 4.159 × 105 4.159 × 105

4 3.027 × 105 3.030 × 105 3.133 × 105 3.027 × 105 3.027 × 105 3.027 × 105 3.027 × 105 3.027 × 105

5 2.334 × 105 2.353 × 105 2.795 × 105 2.352 × 105 2.334 × 105 2.351 × 105 2.348 × 105 2.337 × 105

Butterfly

2 7.835 × 105 7.835 × 105 7.835 × 105 7.835 × 105 7.835 × 105 7.835 × 105 7.835 × 105 7.835 × 105

3 4.570 × 105 4.570 × 105 4.609 × 105 4.570 × 105 4.570 × 105 4.570 × 105 4.570 × 105 4.570 × 105

4 2.864 × 105 2.868 × 105 3.655 × 105 2.864 × 105 2.864 × 105 2.864 × 105 2.864 × 105 2.864 × 105

5 2.104 × 105 2.111 × 105 3.059 × 105 2.104 × 105 2.104 × 105 2.104 × 105 2.104 × 105 2.104 × 105

Lake

2 7.488 × 105 7.488 × 105 7.488 × 105 7.488 × 105 7.488 × 105 7.488 × 105 7.488 × 105 7.488 × 105

3 4.954 × 105 4.956 × 105 4.985 × 105 4.954 × 105 4.954 × 105 4.954 × 105 4.954 × 105 4.954 × 105

4 3.311 × 105 3.327 × 105 3.785 × 105 3.311 × 105 3.311 × 105 3.311 × 105 3.311 × 105 3.311 × 105

5 2.359 × 105 2.366 × 105 3.184 × 105 2.360 × 105 2.359 × 105 2.360 × 105 2.361 × 105 2.360 × 105

Barbara

2 8.959 × 105 8.959 × 105 8.966 × 105 8.959 × 105 8.959 × 105 8.959 × 105 8.959 × 105 8.959 × 105

3 5.551 × 105 5.552 × 105 5.578 × 105 5.551 × 105 5.551 × 105 5.551 × 105 5.551 × 105 5.551 × 105

4 3.583 × 105 3.585 × 105 3.629 × 105 3.583 × 105 3.583 × 105 3.583 × 105 3.583 × 105 3.583 × 105

5 2.482 × 105 2.493 × 105 2.597 × 105 2.482 × 105 2.482 × 105 2.482 × 105 2.483 × 105 2.483 × 105

Columbia

2 7.898 × 105 7.898 × 105 7.899 × 105 7.898 × 105 7.898 × 105 7.898 × 105 7.898 × 105 7.898 × 105

3 4.692 × 105 4.692 × 105 4.710 × 105 4.692 × 105 4.692 × 105 4.692 × 105 4.692 × 105 4.692 × 105

4 3.038 × 105 3.038 × 105 3.120 × 105 3.038 × 105 3.038 × 105 3.038 × 105 3.038 × 105 3.038 × 105

5 2.143 × 105 2.152 × 105 2.329 × 105 2.145 × 105 2.143 × 105 2.148 × 105 2.145 × 105 2.145 × 105

Milkdrop

2 1.304 × 106 1.304 × 106 1.305 × 106 1.304 × 106 1.304 × 106 1.304 × 106 1.304 × 106 1.304 × 106

3 6.956 × 105 6.956 × 105 6.968 × 105 6.956 × 105 6.956 × 105 6.956 × 105 6.956 × 105 6.956 × 105

4 4.493 × 105 4.505 × 105 4.548 × 105 4.500 × 105 4.497 × 105 4.499 × 105 4.506 × 105 4.497 × 105

5 2.561 × 105 2.577 × 105 2.708 × 105 2.566 × 105 2.566 × 105 2.566 × 105 2.566 × 105 2.566 × 105

Man

2 6.685 × 105 6.685 × 105 6.687 × 105 6.685 × 105 6.685 × 105 6.685 × 105 6.685 × 105 6.685 × 105

3 3.673 × 105 3.675 × 105 3.689 × 105 3.673 × 105 3.673 × 105 3.673 × 105 3.673 × 105 3.673 × 105

4 2.496 × 105 2.505 × 105 2.587 × 105 2.496 × 105 2.496 × 105 2.501 × 105 2.496 × 105 2.496 × 105

5 1.729 × 105 1.743 × 105 1.924 × 105 1.730 × 105 1.730 × 105 1.735 × 105 1.730 × 105 1.731 × 105
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Table 12. The std of fitness obtained by the algorithms for all images.

Images d ISMA GWO SOA SMA POA MFO × 10SMA DFSMA

Lena

2 1.227 × 10−10 6.904 × 10 2.368 × 10−10 2.368 × 10−10 2.368 × 10−10 2.368 × 10−10 2.368 × 10−10 1.227 × 10−10

3 0.000 9.720 × 102 2.949 × 104 2.960 × 10−10 2.960 × 10−10 2.960 × 10−10 0.000 0.000

4 3.068 × 10−11 1.644 × 103 4.273 × 104 1.184 × 10−10 1.184 × 10−10 1.184 × 10−10 1.184 × 10−10 1.184 × 10−10

5 3.068 × 10−11 2.522 × 103 2.942 × 104 8.880 × 10−11 8.771 × 10 9.163 × 10 3.068 × 10−11 3.068 × 10−11

Cameraman

2 1.184 × 10−10 1.184 × 10−10 1.184 × 10−10 1.184 × 10−10 1.184 × 10−10 1.184 × 10−10 1.227 × 10−10 1.227 × 10−10

3 6.136 × 10−11 2.216 × 103 2.472 × 102 1.776 × 10−10 1.776 × 10−10 1.776 × 10−10 6.136 × 10−11 6.136 × 10−11

4 0.000 9.009 × 102 1.732 × 104 2.368 × 10−10 2.368 × 10−10 2.368 × 10−10 0.000 0.000

5 1.778 × 102 2.201 × 103 2.626 × 104 1.920 × 103 1.892 × 103 1.935 × 103 1.875 × 103 1.232 × 103

Butterfly

2 1.227 × 10−10 2.230 × 102 1.323 × 102 3.552 × 10−10 3.552 × 10−10 3.552 × 10−10 1.227 × 10−10 1.227 × 10−10

3 6.136 × 10−11 2.518 × 102 1.034 × 104 1.206 × 10 1.776 × 10−10 1.400 × 10 6.136 × 10−11 6.136 × 10−11

4 6.136 × 10−11 1.030 × 103 5.854 × 104 1.184 × 10−10 1.184 × 10−10 1.184 × 10−10 6.136 × 10−11 6.136 × 10−11

5 4.658 × 10 2.343 × 103 4.496 × 104 6.780 × 10 4.936 × 10 1.159 × 102 8.012 × 10 5.252 × 10

Lake

2 0.000 1.377 × 102 9.821 3.552 × 10−10 3.552 × 10−10 3.552 × 10−10 3.552 × 10−10 0.000

3 1.227 × 10−10 1.119 × 103 9.698 × 103 1.776 × 10−10 1.776 × 10−10 1.776 × 10−10 1.227 × 10−10 1.227 × 10−10

4 0.000 5.207 × 103 4.114 × 104 2.960 × 10−10 2.960 × 10−10 2.960 × 10−10 0.000 0.000

5 1.121 × 102 2.058 × 103 4.480 × 104 1.181 × 102 4.672 × 10 1.192 × 102 9.631 × 10 1.125 × 102

Barbara

2 0.000 1.184 × 10−10 5.490 × 102 1.184 × 10−10 1.184 × 10−10 1.184 × 10−10 0.000 0.000

3 0.000 6.443 × 102 1.810 × 103 0.000 0.000 0.000 0.000 0.000

4 0.000 1.028 × 103 3.237 × 103 0.000 0.000 0.000 6.136 × 10−11 6.136 × 10−11

5 1.214 × 102 2.636 × 103 1.967 × 104 1.710 × 102 2.856 × 102 2.376 × 102 3.143 × 102 2.982 × 102

Columbia

2 1.184 × 10−10 1.184 × 10−10 2.308 × 102 1.184 × 10−10 1.184 × 10−10 1.184 × 10−10 1.227 × 10−10 1.227 × 10−10

3 0.000 1.956 × 102 9.040 × 102 2.960 × 10−10 2.960 × 10−10 2.960 × 10−10 0.000 0.000

4 0.000 2.857 × 102 3.020 × 104 2.368 × 10−10 3.086 × 10 3.086 × 10 0.000 0.000

5 4.182 × 10 2.346 × 103 3.366 × 104 4.204 × 102 4.182 × 10 6.908 × 102 4.372 × 102 4.372 × 102

Milkdrop

2 0.000 0.000 6.849 × 102 0.000 0.000 0.000 0.000 0.000

3 0.000 1.458 × 102 6.801 × 102 0.000 0.000 0.000 1.227 × 10−10 1.227 × 10−10

4 4.747 × 10 3.207 × 103 3.095 × 103 1.567 × 103 1.261 × 103 1.429 × 103 1.997 × 103 1.307 × 103

5 0.000 4.512 × 103 3.620 × 104 2.960 × 10−11 2.810 2.960 × 10−11 0.000 0.000

Man

2 1.184 × 10−10 1.184 × 10−10 3.175 × 102 1.184 × 10−10 1.184 × 10−10 1.184 × 10−10 1.227 × 10−10 1.227 × 10−10

3 0.000 4.403 × 102 2.117 × 103 6.882 7.798 7.798 7.132 6.136 × 10−11

4 6.136 × 10−11 2.104 × 103 2.069 × 104 8.880 × 10−11 8.880 × 10−11 1.128 × 103 6.136 × 10−11 6.136 × 10−11

5 0.000 3.379 × 103 2.601 × 104 4.448 × 102 1.268 × 102 1.151 × 103 3.122 × 102 4.851 × 102

It can be seen from the table that the image segmentation result of SOA was unstable
in the 30 independent operations, and the values of the mean and std were the largest. The
mean and std obtained by GWO were slightly better than those obtained by SOA, and the
image segmentation was still not stable. When d = 2, 3, 4, SMA, POA, MFO, ESMA, DFSMA,
and SMA obtained the same mean values for most of the images, but ISMA obtained a
lower std value and was able to complete the image segmentation task stably. When d = 5,
only ISMA obtained the optimal mean and std.

The average CPU times of the different algorithms, considering all cases, are provided
in Table 13. As can be seen from the table, MFO and SOA each achieved the lowest
computation time for most of the images. SMA also achieved the optimal computation
time for a small number of images. ISMA performed second to SMA and better than the
other residual algorithms. POA performed poorly in terms of the image segmentation time.
ISMA improved the image segmentation accuracy while maintaining the runtime.
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Table 13. The computation time(s) obtained by the algorithms for all images.

Images d ISMA GWO SOA SMA POA MFO × 10SMA DFSMA

Lena

2 9.432 × 10−1 1.083 9.310 × 10−1 9.043 × 10−1 1.845 9.212 × 10−1 1.052 9.714 × 10−1

3 9.787 × 10−1 1.010 9.458 × 10−1 9.425 × 10−1 1.884 9.226 × 10−1 1.065 9.793 × 10−1

4 9.818 × 10−1 1.014 9.555 × 10−1 9.513 × 10−1 1.930 9.239 × 10−1 1.065 9.885 × 10−1

5 9.949 × 10−1 1.035 9.718 × 10−1 9.809 × 10−1 1.935 9.467 × 10−1 1.083 9.954 × 10−1

Cameraman

2 9.312 × 10−1 9.974 × 10−1 9.064 × 10−1 9.085 × 10−1 1.809 9.038 × 10−1 1.021 9.622 × 10−1

3 9.609 × 10−1 9.979 × 10−1 9.065 × 10−1 9.306 × 10−1 1.810 9.296 × 10−1 1.050 9.714 × 10−1

4 9.830 × 10−1 1.019 9.275 × 10−1 9.616 × 10−1 1.821 9.818 × 10−1 1.099 1.005

5 9.993 × 10−1 1.106 9.597 × 10−1 9.735 × 10−1 1.885 1.049 1.108 × 10 1.008

Butterfly

2 9.292 × 10−1 9.722 × 10−1 8.903 × 10−1 9.061 × 10−1 1.824 9.025 × 10−1 1.019 9.628 × 10−1

3 9.725 × 10−1 1.010 9.337 × 10−1 9.457 × 10−1 1.894 9.186 × 10−1 1.061 9.794 × 10−1

4 9.738 × 10−1 1.040 9.438 × 10−1 9.513 × 10−1 1.899 9.296 × 10−1 1.081 9.913 × 10−1

5 9.874 × 10−1 1.054 9.387 × 10−1 9.785 × 10−1 1.954 9.739 × 10−1 1.110 1.022

Lake

2 9.374 × 10−1 9.805 × 10−1 9.026 × 10−1 9.165 × 10−1 1.761 8.677 × 10−1 1.021 9.617 × 10−1

3 9.579 × 10−1 1.008 9.268 × 10−1 9.344 × 10−1 1.853 9.102 × 10−1 1.066 9.665 × 10−1

4 9.754 × 10−1 1.037 9.450 × 10−1 9.683 × 10−1 1.935 9.566 × 10−1 1.076 1.004

5 1.012 1.082 9.520 × 10−1 9.858 × 10−1 2.038969 1.116 1.095 1.012

Barbara

2 9.268 × 10−1 9.912 × 10−1 9.002 × 10−1 9.151 × 10−1 1.795 9.267 × 10−1 1.012 9.666 × 10−1

3 9.520 × 10−1 9.994 × 10−1 9.110 × 10−1 9.322 × 10−1 1.825 9.289 × 10−1 1.043 9.723 × 10−1

4 9.670 × 10−1 1.060 9.269 × 10−1 9.410 × 10−1 1.874 9.637 × 10−1 1.077 9.737 × 10−1

5 9.669 × 10−1 1.067 1.008 9.658 × 10−1 1.958 1.014 1.078 9.918 × 10−1

Columbia

2 8.669 × 10−1 9.080 × 10−1 8.273 × 10−1 8.429 × 10−1 1.695 8.309 × 10−1 9.612 × 10−1 9.019 × 10−1

3 8.855 × 10−1 9.397 × 10−1 8.683 × 10−1 8.592 × 10−1 1.724 8.453 × 10−1 9.789 × 10−1 9.080 × 10−1

4 9.148 × 10−1 9.905 × 10−1 8.813 × 10−1 8.814 × 10−1 1.784 8.741 × 10−1 1.000 9.177 × 10−1

5 9.216 × 10−1 1.004 8.819 × 10−1 9.072 × 10−1 1.791 8.966 × 10−1 1.034 9.359 × 10−1

Milkdrop

2 9.327 × 10−1 9.947 × 10−1 9.239 × 10−1 9.098 × 10−1 1.852 9.218 × 10−1 1.034 9.662 × 10−1

3 9.550 × 10−1 1.028 9.331 × 10−1 9.259 × 10−1 1.882 9.569 × 10−1 1.031 9.668 × 10−1

4 9.775 × 10−1 1.077 9.535 × 10−1 9.528 × 10−1 1.888 9.570 × 10−1 1.065 9.830 × 10−1

5 1.005 1.064 9.572 × 10−1 9.829 × 10−1 1.964 9.628 × 10−1 1.081 1.007

Man

2 9.250 × 10−1 9.722 × 10−1 8.956 × 10−1 9.013 × 10−1 1.798 8.896 × 10−1 1.003 9.502 × 10−1

3 9.755 × 10−1 1.028 9.231 × 10−1 9.396 × 10−1 1.876 9.378 × 10−1 1.052 9.905 × 10−1

4 9.901 × 10−1 1.059 9.410 × 10−1 9.682 × 10−1 1.904 9.531 × 10−1 1.086 1.002

5 9.974 × 10−1 1.163 9.548 × 10−1 9.836 × 10−1 1.942 9.572 × 10−1 1.097 1.012

To better reflect the convergence of the five algorithms, the five-threshold segmentation
convergence curves of the eight images were plotted, as shown in Figure 12. From the
figure, it can be seen that it was easy for SOA to fall into the local optimum during image
segmentation, and the obtained adaptation value was poor. GWO performed slightly
better than SOA for the eight images. For the eight images, all the algorithms except SOA
eventually converged to the optimal fitness value. However, ISMA was the first to converge
and the fastest to converge, followed by POA. This was made possible by the adaptive
probability threshold used by ISMA, which allows the sticklebacks to select a predation
strategy suitable for the current population, thus increasing the convergence speed of
the algorithm.
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Figure 12. Convergence behavior of the algorithms for all images when d = 5. Figure 12. Convergence behavior of the algorithms for all images when d = 5.

In summary, ISMA can converge to the optimal solution stably, and there are some
improvements in the convergence speed and segmentation accuracy compared with the
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other seven algorithms, and it can obtain high-quality segmented images. Therefore, this
paper proposed that multi-level thresholding image segmentation based on the improved
slime mould algorithm and symmetric cross-entropy can be effectively applied to image
multi-threshold segmentation tasks, with an excellent performance.

7. Conclusions

In this paper, we introduced an improved slime mould algorithm, ISMA, for multi-
threshold image segmentation tasks. The slime mould algorithm can easily fall into the local
optimum, as in the case of other intelligent algorithms, and cannot solve complex real-world
problems. In this work, EOBL improved the quality and diversity of the initial population to
accelerate the convergence speed. The adaptive probability threshold adjusted the selection
probability of the slime mould to enhance the ability of the algorithm to jump out of the
local optimum, and the historical leader strategy selected the optimal historical information
as the leader for the position update so as to improve the convergence accuracy.

We evaluated the optimization performance of ISMA using 14 benchmark test func-
tions. The experimental results showed that ISMA has a better overall capability in terms
of the optimization accuracy and convergence speed compared with the original SMA, as
well as the other well-known MAs. Subsequently, ISMA was applied to solve the multi-
threshold image segmentation task, and symmetric cross-entropy was used as the objective
function to obtain the optimal threshold value. Experimental evaluation metrics such as
the PSNR, SSIM, and FSIM were used to test the quality of the segmented images. The
experimental results demonstrated that: (1) the image segmentation quality is better than
that obtained by Otsu, Kapur’s entropy, and minimum cross-entropy when symmetric
cross-entropy is taken as the objective function; and (2) ISMA achieves clearer image seg-
mentation results compared with the other MAs. Finally, we conclude that multi-threshold
image segmentation based on ISMA and symmetric cross-entropy outperforms the other
selected MAs in terms of the segmentation accuracy and can better preserve the edge details
of the images.

Although ISMA has achieved excellent results in benchmark function testing and
image segmentation, it still has some shortcomings when solving image tasks. Future
work will focus on reducing the computation time without degrading the performance of
ISMA and applying multi-threshold image segmentation based on ISMA and symmetric
cross-entropy to real medical images and remote sensing image testing in order to further
demonstrate its performance.
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