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Abstract: Wheat (Triticum aestivum L.) is a key food crop, accounting for approximately 765 million
tons produced worldwide. The present study evaluated 16 wheat genotypes using 19 morphological
and phenological traits, 16 molecular markers (Inter Simple Sequence Repeats and Start Codon
Targeted; ISSR and SCoT) and rbcL and matK plastid gene barcoding. The 16 wheat genotypes showed
significant genetic variation using the markers assayed. Cell plot of phenological parameters revealed
significant differences among the 16-day-old seedlings of wheat genotypes at Z1.1 growth stage.
Collectively, W2 genotype had the lowest shoot length (SL), length of first internodes (LFI) and
leaf area (LA) values, while W8 genotype had the highest diameter of first internode (DFI) and LA
values. Furthermore, W7 genotype had the maximum plant biomass (PB) and leaf width (LW) values.
Geometric models grouped wheat kernels into “rounded” and “nearly elongated”. Estimates of
heritability (H2) for these morphological characters ranged from 4.93 to 100%. The highest H2 values
were recorded for root number (RN) (100%) followed by SL (88.72%), LFI (88.30%), LA (87.76%)
and Feret diameter (86.68%), while the lowest H2 value was recorded for DFI (4.93%). Furthermore,
highly significant genotypic and phenotypic correlations were also observed among those traits.
Reproducible fingerprinting profiles and high levels of polymorphism (PPB%) of SCoT (95.46%) and
ISSR (82.41%) were recorded, indicating that they are effective tools for detecting genetic variation
levels among wheat genotypes. The informativeness of markers were measured through estimation
of polymorphic information content (PIC), resolving power (RP) and marker index (MI). The RP
and PPB% of SCoT were significantly higher compared to those of ISSR. Comparatively, the two
molecular markers were effective for studying genetic diversity among wheat genotypes, but SCoT
markers were more informative. Moreover, based on the two chloroplast DNA regions (rbcL and
matK), MatK was found to be more reliable for differentiating among T. aestivum genotypes. Taken
together, using all the studied attributes, a clear taxonomic relationship can be used to identify T.
aestivum species and improve their pragmatic production and development.

Keywords: wheat; genetic variation; phenological traits; ISSR and SCoT markers; DNA barcodes

1. Introduction

Bread wheat (T. aestivum L.) is among the most important food crops worldwide, used
to make bread and straw for animal nutrition [1,2]. Varieties of T. aestivum ssp. aestivum,
which are known for having naked kernels and producing the majority of commercial
bread sold worldwide, are advantageous for milling in the bread and pasta industries in
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addition to the baking sector [3]. For fifty years, bread wheat was the most productive
crop, and its production increased as a result of plant breeders’ efforts [4]. T. aestivum L.
(2n = 6x = 42; genomes AABBDD) is a hexaploid species having A, B, and D ancestral
genomes. The majority of bread wheat genes exist in the genome as triplicated homologous
genes originated from the ancestor species. [5]. Despite having 21 pairs of chromosomes
(3 homologous sets of 7 chromosomes in each of the A, B, and D sub-genomes), it genetically
behaves as a diploid because homologous pairing is prevented by Ph genes [6]. It is also
commonly referred to as “bread” or “soft” wheat and makes up approximately 95% of the
wheat that is produced [5].

Wheat has a lengthy history of breeding that dates back centuries, as evidenced by the
fact that it was discovered in the tombs of the pharaohs as well as in ancient civilizations
and mentioned in the holy books [2,7]. Not just in Egypt but all throughout the world,
wheat is the grain that is most crucial for ensuring food security. The largest wheat importer
in the world, Egypt imports 12.5 million tons of wheat annually, which accounts for roughly
one-fourth of all the food calories consumed there. Egypt’s wheat production in 2019–2020
was predicted to be 8.9 million tons, with 1.4 million hectares of wheat being planted
there [8]. Egypt is expected to produce 23.8 million tons of cereal on average in 2021.
The 2021 wheat production is anticipated to be 9 million tons, similar to last year and the
five-year average [9].

A single genotype can be changed into one with desirable qualitative and quantitative
traits using either a direct selection approach based on phenotypic values or target trait
performance, or an indirect selection methodology, which can take several years. Indirect
selection of target traits via linked molecular markers, which are unaffected by environ-
mental variations and whose high frequency number and structural diversity allow for
the sequencing, detection, and mapping of the targeted genes, is a recent development
in biotechnology that aids in the solution [10]. As a consequence, this ground-breaking
combination of modern molecular marker technology and conventional plant breeding
procedures opens up new avenues for smart breeding [11].

Size, form, color, surface, growth habits, and other agronomic traits can all be vi-
sually distinguished using morphological markers. Morphological markers have been
employed successfully in the breeding programs of many crops, including wheat, maize,
rice, soybean, and tomato, for a very long time. They are still applicable for genetic and
breeding applications. These markers’ primary disadvantages include their dominance
in nature, sensitivity to plant development phases, pleiotropy, epistasis, and strong sen-
sitivity to environmental changes [12]. Wheat’s morphological characteristics are readily
measured with high accuracy, good quality, and comparatively high heritability for plant
communities, which enhances screener effectiveness [13]. Prior work utilizing quantitative
morphological variables to evaluate the morphological and phenological characteristics
of wheat genotypes indicated significant morphological variability across the Triticum
genotypes under study [14–20].

Geometric models for quantitative determination in seed images and shape descrip-
tion have been studied by scholars in recent years [3,21]. A seed cannot be cardioid, ovoid,
and elliptical at the same time from a geometric perspective, and geometric shapes vary
depending on the taxonomic group. In the instance of wheat, breeding that produces forms
with higher yields may have an effect on the kernel shape. Furthermore, the quantification
of seed shape could be an excellent element for validating the outcomes of automated
inspection technologies as well as pinpointing the molecular causes of shape discrepan-
cies [3].

Plant breeding initiatives must have genetic diversity in order to be effective and
expand the gene pool. Heritability is occasionally used by breeding programmers to
assess how successfully desired traits are handed down from parents to their offspring [22].
Estimation of heritability provides details on the level of genetic control over the expression
of specific features and the accuracy of phenotypic predictions in determining breeding
value [23]. The knowledge of correlations between important traits can make it easier to
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understand results and provide a foundation for the creation of breeding plans that are
more effective. While genotypic correlation is the innate link between features, phenotypic
correlation is the documented association between two values or traits. To produce results
for range conditions, a plant breeder must understand the relationships between various
yield ingredients [16].

Molecular markers enhance plant breeding, boost output, and accelerate time [24]. Ef-
fective DNA markers, such as SCoT and ISSR, are utilized to explore plant biodiversity [25].
Among the molecular markers, ISSRs were efficient for determining wheat germplasm
intercorrelation [26,27]. Due to the great effectiveness of ISSR markers, just two primers
were required to differentiate several of the wheat cultivars under study [28]. Addition-
ally, SCoT polymorphisms are derived from the small, conserved area of plant genes that
surrounds the ATG translation start codon [25]. The creation of core collections and the
preservation of germplasm depend heavily on genetic markers. Utilizing molecular marker
technologies to assess genetic variability, identify genotypes, and create DNA fingerprints,
several researchers have identified the species of Triticum [18,19,29–31]. To make it easier to
choose genotypes with higher diversity and improved performance, it is crucial to evaluate
the germplasm’s genetic diversity.

The DNA barcode [32] is a genetic tract of short DNA sequences used in the identifica-
tion of polymorphic plant species or as a genetic recognition approach that can be accurately
identified by similar physical traits and chemical compositions [33]. Plastid sequences have
traditionally been preferred to nuclear sequences in molecular plant taxonomy owing to
their lower intra-molecular recombination [34]. Apart from traditional PCR-based markers,
a short DNA sequence obtained from existing recognition sequences of the chloroplast
genome can be utilized to classify plant genera and/or species in relation to orthologous
databases [35]. RbcL, matK, psbA-trnH, and ITS barcodes are among the genes that have
been studied for the identification and documentation of plant diversity. The chloroplast
genome’s rbcL and matK gene loci have long been thought to be the standard for plant
barcodes [32].

As a result, wheat breeders work hard to gain proper knowledge of the extent and
genetic basis of variability throughout crucial characteristics in wheat genotypes. As a
result, the current research aimed to assess the genetic variation in 16 Egyptian hexaploid
wheat genotypes using morphological, phenological, molecular, and two gene barcoding
attributes. This will also assist in the collection of data on the amount and nature of genetic
variation that dominates yield expression, as well as the analysis of the related qualities in
these wheat genotypes..

2. Materials and Methods
2.1. Plant Materials

The present research included 16 hexaploid wheat cultivars of T. aestivum L. The
genotypes’ seeds were provided by Agricultural Research Center in Egypt, and their local
names and pedigrees were reported in Table 1. The 16 cultivars were grown and the
seedlings were collected for morphological analysis. Additionally, small young leaves were
kept at −20 ◦C for molecular and barcoding analyses.

2.2. Experimental Design: Morphometric and Phenotypic Markers

The experiments were conducted in field condition following a randomized complete
block design (RCBD) in three replications. The sowing was performed mechanically, using
15–20 grains per pot, depending on the genotype characteristics. A total of 45 16-day-old
seedlings (three replications of each with 15 plants; 3 × 15) were taken at Z1.1 stage for
each cultivar. According to Zadoks’ (Z) classifications of growth stages [36], there was one
stage (one leaf (L1) on the main shoot and the second leaf (L2) appeared). Scan images from
different genotypes were utilized to get quantitative measurements of the morphological
traits. For shoot phenotypic traits: plant biomass (PB); shoot length (SL); length of first
internodes (LFI); diameter of first internode (DFI) were measured. For leaf phenotypic traits:
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leaf area (LA) and leaf width (LW), and for root phenotypic traits: root number (RN), root
maximum length (RL), root width (RW) and tip angle of root (TA) were calculated. For seed
phenotypic traits: single seed weight (SW); seed area (SA); seed perimeter (SP); length of
seed major axis (L); length of seed minor axis (W); aspect ratio (AR) (equals the ratio L/W);
circulatory (circ.); roundness (round) and Feret diameter (Feret) were measured. Least
Significant Difference (LSD) at 5% and analysis of variance were employed to compare
the genotypes.

Table 1. Name, pedigree, selection history and year of release of the wheat genotypes and lines
analyzed in the present study.

Code Name Pedigree Selection History Year of
Release

W1 SIDS 1 HD 2172/Pavon “S”//1158.57/Maya 74 “S” S 46-4SD-2SD-1SD-
0SD-0EGY 1994

W2 SIDS 12
BUC//7C/ALD/5/MAYA74/ON//1160.147/

3/BB/GLL/4/CHAT”S”/6/MAYA/VUL//
CMH74A.630/4*SX

SD7096-4SD-1SD-
1SD-0SD-0EGY 2009

W3 SIDS 14 BOW “S”/VEE”S”//BOW”S”/TSI/3/BANI
SEWEF 1

SD293-1SD-2SD-4SD-
0SD-0EGY -

W4 SHANDWEEL 1 SITE/MO/4/NAC/TH.AC//3*PVN/3/
MIRLO/BUC

CMSS93B00567S-72Y-
010M-010Y-010M-3Y-
0M-0HTY-0SH-0EGY

2011

W5 SAKHA 94 OPATA/RAYON//KAUZ
CMBW90Y3180-

0TOPM-3Y-010M-
010M-010Y-10M-015Y-

0Y-0AP-0S-0EGY
2004

W6 SAKHA 95 PASTOR//SITE/MO/3/CHEN/AEGILOPS
SQUARROSA (TAUS)//BCN/4/WBLL1.

CMA01Y00158S-
040POY-040M-

030ZTM-040SY-26M-
0Y-0SY-0S-0EGY

-

W7 GIZA 171 SAKHA 93/GEMMIZA 9 S.6-1GZ-4GZ-1GZ-
2GZ-0EGY 2013

W8 GIZA 168 MRL/BUC//SERI CM93046-8M-0Y-0M-
2Y-0B-0SH-0EGY 1999

W9 GEMMIZA 7 CMH 74A.630/5X//SERI 82/3/AGENT GM 4611-2GM-3GM-
1GM-0GM-0EGY 2000

W10 GEMMIZA 9 ALD “S”/HUAC//CMH 74A. 630/5X GM 4583-5GM-1GM-
0GM-0EGY 2000

W11 GEMMIZA 10 MAYA 74 “S”/ON//1160-147/3/BB/GLL/
4/CHAT”S”/5/CROW “S”

CGM5820-3GM-1GM-
2GM-0GM-0EGY 2004

W12 GEMMIZA 11 BOW”S”/KVZ”S”//7C/SER182/3/
GIZA168/SAKHA61

GM7892-2GM-1GM-
2GM-1GM-0GM-

0EGY
2011

W13 GEMMIZA 12 OTUS/3/SARA/THB//VEE
CMSS97Y00227S-5Y-
010M-010Y-010M-2Y-
1M-0Y-0GM-0EGY

2013

W14 MISR 1 OASIS/SKAUZ//4*BCN/3/2*PASTOR
CMSS00Y01881T-
050M-030Y-030M-
030WGY-33M-0Y-

0EGY
2014

W15 MISR 2 SKAUZ/BAV92
CMSS96M03611S-1M-

010SY-010M-010SY-
8M-0Y-0EGY

2014

W16 MISR 3 ATTILA*2/PBW65*2/KACHU
CMSS06Y00582T-
099TOPM-099Y-

099ZTM-099Y-099M-
10WGY-0B-0EGY

2019
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2.3. DNA-Based Molecular Genetic Diversity Analyses: SCoT and ISSR Markers

Young leaves of T. aestivum were utilized to extract DNA using the DNeasy plant
mini kit. Later, until it was used for PCR amplification, the extracted DNA was stored
at −20 ◦C. According to Collard and Mackill [25], 10 unique ISSR primers and 6 SCoT
primers were utilized, as shown in Table 2. PCR amplifications were performed, according
to Williams et al. [37], in a total volume of 30 µL, using 2 µL of each primer, 1 U of Taq
polymerase, 2.5 mM of each deoxynucleotide, 25 mM MgCl2 and 25 ng of template DNA.
The automated thermal cycle (Model Techno 512) used to perform the DNA amplifications
consisted of 45 cycles, each lasting for 1 min at 94 ◦C, 1 min at 57 ◦C, and 2 min at 72 ◦C.
After that, the reaction was kept at 72 ◦C for 10 min.

Table 2. List of primers and their sequences for molecular markers (ISSR and SCoT) and plastid rbcL
and matK genes.

Primer Code Sequence (5′-3′) Size (bp)

ISSR marker

ISSR-807 (AG)8 T 172–1156

ISSR-810 (GA)8 T 159–2949

ISSR-835 (Ag)8 YC 96–4039

ISSR-841 (GA)8 YC 102–420

ISSR-857 (AC)8 YG 84–244

ISSR-825 (AC)7 T 327–2562

ISSR-814 (CT)7 CAT 215–496

ISSR-826 (AC)8 C 223–1808

ISSR-827 (AC)8 G 255–1408

ISSR-840 (gA)8 TT 123–1164

SCoT marker

SCoT 1 CAACAATGGCTACCACCC 513–3099

SCoT 2 ACCATGGCTACCACCGGC 296–3658

SCoT 3 CAACAATGGCTACCACGC 183–2079

SCoT 4 CAACAATGGCTACCACCG 177–3009

SCoT 5 ACGACATGGCGACCACGC 142–669

SCoT 6 CCATGGCTACCACCGCAG 331–2274

Plastid rbcL and matK genes

rbcL
F: 5′-ATGTCACCACAAACAGAGACTAAAGC-3′

600
R: 5′-TCGCATGTACCTGCAGTAGC-3′

matK
F: 5′-CGATCTATTCATTCAATATTTC-3′

900
R: 5′-TCTAGCACACGAAAGTCGAAGT-3′

F: Forward primer and R: Reverse primer.

Utilizing a 1.5% agarose gel, ethidium bromide (5 g/mL), 1X TAE buffer, and 100 bp
to 3 kb ladder markers, the amplified PCR products were separated electrophoretically.
A tiny submarine gel unit (BioRad, Hercules, CA, USA) ran at 80 volts for approximately
30 min. The magnified bands were seen and captured in photos using a gel documentation
technique under UV light (InGenius 3, Syngene, Frederick, MD, USA). Each amplification
was repeated three times to ensure consistency of results.

Only strong, clear, distinct and repeatable SCoT and ISSR amplified bands were
recorded and converted to binary data. The percentage of polymorphism was calculated.
Heterozygosity index (H) was used to evaluate the usefulness of ISSR and SCoT markers
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in identifying different T. aestivum genotypes. H = 1 − Σ pi
2 [38] (pi is the allele frequency

for the i-th allele) and the polymorphic information content (PIC = 1 − Σ pi
2 − Σ Σ pi

2

pj
2 [39], pi and pj are the population frequency of the i-th and j-th alleles) were calculated.

Data analysis also included the calculation of the effective multiplex ratio, E = n β [40];
β = np/(np + nnp), where np and p denote the nonpolymorphic and polymorphic fractions
of the markers, so np and nnp denote their respective counting numbers. Average expected
heterozygosity was calculated, H.av = Σ Hn/np [40], where Hn is the heterozygosity of
the polymorphic fraction of markers, and the summation is over all of the polymorphic
loci np. Marker index was also estimated, MI = E H.av [40]. Additionally, discriminating
power was determined, D = 1-C [41], where the confusion probability is C = Σ ci = Σ pi
Npi-1, where C is equal to the sum of all ci for all of the patterns generated by the primer.
Resolving power was estimated, Rp = Σ Ib [42], where Ib or band informativeness is defined
on a scale of 0–1 and is estimated as Ib = 1 − (2 × |0.5 − p|), where p is the portion of the
observed band-containing samples.

2.4. DNA Barcoding Analysis: Plastid rbcL and matK Genes

The reaction mixture for the PCR amplification of the two rbcL and matK genes con-
tained 50 µL of ultra-pure water, 1 µL of Taq DNA polymerase, 0.2 mM dNTPs, 40 ng
DNA, 15 mM MgCl2, 20 pcoml of each primer, and 20 pcoml of each primer. After a first
denaturation cycle lasting 5 min at 94 ◦C, PCR amplification was conducted for 40 cycles.
Each cycle consisted of a denaturation phase lasting for 30 s at 94 ◦C, an annealing step
lasting for 30 s at 50 ◦C, and an elongation step lasting for 1 min at 72 ◦C. In the last cycle,
the primer extension phase was prolonged to 7 min at 72 ◦C. Table 2 contained a list of
the primers applied to the matK and rbcL genes for barcoding. The amplification products
were electrophoretically separated in a 1.5% agarose gel comprising ethidium bromide
(0.5 g/mL) in 1X TBE buffer at 95 volts. The molecular size reference used was a 100 bp
DNA ladder. PCR products were seen and photographed.

All PCR products were purified using an EZ-10 spin column. Three volumes of
binding buffer 1 were added into the PCR reaction mixture before the mixed solution was
moved into an EZ-10 column and allowed to stand for 2 min at room temperature. After
that, 750 L of wash solution were added into the column followed by centrifugation. After
repeating the process to remove any remaining wash solution, the centrifuge was spun at
10,000 rpm for another minute. The column was put into a clean 1.5 mL microfuge tube,
together with 50 L of elution buffer, and incubated there for 2 min before the pure DNA
was kept at −20 ◦C.

Purified PCR products were sequenced using the Big Dye TM Terminator v3.1 Cycle
Sequencing Kit in accordance with the manufacturer’s instructions on an automated se-
quencer, the ABI PRISM 3730XL Analyzer (Microgen Company, Moscow, Russia). DNA bar-
coding of sequences for the rbcL and matK genes was achieved using bioinformatical analysis.

2.5. Statistical Analysis

For phenological and morphological markers, the mean and standard error of de-
scriptive statistics were computed for phenological and morphological indicators of wheat
genotypes. Before statistical analysis, the normality using Shapiro–Wilk at 0.05 level of
all the phenotypic data was tested, and if necessary, the data were transformed. SPSS
ver.22.0 was used to construct a one-way ANOVA. The JMP® ver.16 cell plot was utilized
for the graphical depiction (SAS Institute Inc., Cary, NC, USA, 2020–2021). Using the
PLABSTAT program [43], the statistical analysis of phenotypic data was done in order to
estimate variance and covariance, with genotypes being treated as fixed effects and the
three replications being treated as random effects. By dividing genotypic variance (σ2G)
by phenotypic variance (σ2p) and using the HERTI command of the PLABSAT software,
heritability (H2) estimates were generated for each trait. The Genetic Coefficient of Vari-
ation (GCV) was also estimated. All tests had a 5% threshold of significance. Utilizing
covariance analysis and the GENOT command of the PLABSTAT software, the phenotypic
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and genotypic correlation coefficient for each trait was calculated. JMP® ver.16 was used to
create a constellation plot of hierarchical clustering using Ward’s approach to distribute
16 Egyptian wheat cultivars based on phenological and morphological characteristics.

For molecular marker analysis, the online marker efficiency calculator, or iMEC (https:
//irscope.shinyapps.io/iMEC/, accessed on 15 August 2022) was used to determine the
ISSR and SCoT polymorphism indices [44]. The genetic diversity and similarity matrix of
16 Egyptian wheat genotypes was expressed by hierarchical co-clustering using Ward’s
approach and heatmap based on combined marker analysis (ISSR and SCoT) polymorphism
using JMP® ver.16.

In order to summarize the data and better understand the findings, Principal Com-
ponent Analysis (PCA) was performed to investigate the contribution of the combination
of molecular markers (ISSR and SCoT) as well as individual morphological and molecu-
lar features to overall variability. The Guttman–Keiser criterion was used to decide how
many components were taken for additional examination. Components with an Eigen
value greater than 1 were kept for further examination. Genotypes were grouped using
a clustergram based on how closely they shared the features that were put to the test, as
well as how closely these traits correlated. By using the Ward method of clustering, the
similarity matrix was created. JMP® ver.16 was used to conduct the two analyses.

The sequences generated by each rbcL and matK marker were aligned in DNA barcod-
ing analysis using multiple sequence alignment (multalin) http://multalin.toulouse.inra.
fr/multalin/, accessed on 15 August 2022). A homology search of rbcL and matK sequences
was analyzed using the BLAST program (http://www.ncbi.nlm.nih.gov/BLAST, accessed
on 15 August 2022). The resolution of each locus was determined by the Maximum Like-
lihood (ML) and the Neighbor Joining (NJ) trees built using the UPGMA algorithm by
MEGAX software. The bootstrap methods with 1000 replications were used to test the
reliability branching in the ML and NJ analyses. Tamura-3 parameter was calculated for
loci [45]. Using DnaSP 6.10.01, the total alignment length (bp), the total number of matrix
cells, the percentage of missing data, the number of parsimony informative sites (PIC),
the number of variable sites, and the average G+C contents in each region were used to
describe the genetic variability of each marker.

3. Results and Discussion
3.1. Phenological Markers
3.1.1. Phenological, Morphological and Geometric Traits Characterization

The interplay of phenotyping and genotyping, as well as their interactions with each
other and the environment, affect wheat (T. aestivum L.) crop performance. For example, in
order to achieve maximal seed count and size (potential yield), wheat must maintain and
improve biomass and flowering during ideal seasonal conditions [46]. Quantitative traits
are complicated because of the involvement of multiple genes and their interrelations with
one another and the environment. Plant architecture and phenology are two quantitative
characteristics that contribute significantly to wheat adaptation [47].

The results of morphological traits showed tremendous variations among Z1.1 stage
of 16-day-old wheat genotypes (Figure 1 and Table 3). These variations are essential
for developing new cultivars with distinct morphological and phenological traits. This
study tested 19 quantitative wheat traits; the plant biomass (PB) of all genotypes was
between 0.07 and 0.20 g with a mean value of 0.12 g. For shoot phenotypic parameters,
the shoot length (SL) of the W16 genotype was the longest (18.26 cm) while the shortest
(7.90 cm) was noted in the W2 genotype with an average value of 14.73 cm. Length
of first internodes (LFI) values were between 1.12 and 5.16 cm with a mean value of
3.15 cm. Diameter of first internode (DFI) values varied from 0.15 to 0.23 cm with an
average value of 0.18 cm as recorded (Table 3). In accordance with Lukovi et al. [17],
the KG-1/6 genotype (78.5 cm) had the lowest average stem height of 14 winter wheat
(T. aestivum ssp. vulgare L.) genotypes at three locations across Serbia at the yield stage,
while the KG-162/7 genotype had the highest (102.3 cm). Pobeda genotype had the

https://irscope.shinyapps.io/iMEC/
https://irscope.shinyapps.io/iMEC/
http://multalin.toulouse.inra.fr/multalin/
http://multalin.toulouse.inra.fr/multalin/
http://www.ncbi.nlm.nih.gov/BLAST
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largest internode diameter (4.0 mm), while (KG-191/5-13) genotype had the smallest
diameter (3.5 mm). The average length of the first internode was 3.5 cm (KG-1/6) to 5.1 cm
(KG-191/5-13).
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Figure 1. Cell plot of 19 morphometric traits of shoot, leaf, root and seed of 16 studied Egyptian T.
aestivum genotypes. Data represents means of three replicates; PB = plant biomass (g); SL = shoot
length (cm); LFI = length of first internodes (cm); DFI = diameter of first internode (cm); LA = leaf
area (cm2); LW = leaf width (cm) RN = root number; RL = root maximum length (cm); RW = root
width (cm); TA = tip angle of root (◦); SW = single seed weight; SA = seed area; SP = seed perimeter;
L = length of seed major axis; W = length of seed minor axis; AR = aspect ratio; Circ. = circulatory;
Round = roundness; Feret = Feret diameter.

In this investigation, the leaf area (LA) and width (LW) were essential traits and these
traits were in the ranges of 1.13–4.48 cm2 and 0.24–0.42 cm, respectively. The widest leaf
area was from the W8 genotype and the smallest was from the W2 genotype, respectively
(Table 3). Collectively, the W2 genotype had the lowest SL, LFI and LA values, while the
W8 genotype had the highest DFI and LA values, and W7 genotype had the maximum PB
and LW values.

Wheat selection and breeding programs have largely ignored the impact of root traits
on aboveground traits and yield [48]. Recognizing the morphology of the root system
in bread wheat is essential for identifying root traits in order to produce genotypes with
enhanced resource uptake and tolerance to harsh conditions [49]. Some studies have
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examined the phenology and morphology of large collections of wheat germplasm [50].
Root phenes are root system morphological traits that comprise root numbers, length,
angles, and different root diameter categories [51].

Table 3. Descriptive statistics of 16 days seedling, shoot leaf and root morphometric traits and seed
geometric traits of the 16 T. aestivum genotypes studied.

Morphometric and
Geometric Traits Average Max. Min.

Seedling parameters

PB 0.12 0.20 0.07

Shoot parameters

SL 14.73 18.26 7.90

LFI 3.15 5.16 1.12

DFI 0.18 0.23 0.15

Leaf Parameters

LA 2.92 4.48 1.13

LW 0.32 0.42 0.24

Root parameters

RN 4.19 6.00 3.00

RL 8.60 11.09 6.83

RW 7.03 10.23 5.07

TA 35.89 48.63 27.34

Seed parameters

SW 0.05 0.06 0.03

SA 0.34 0.45 0.29

SP 2.45 2.81 2.27

L 0.89 1.04 0.82

W 0.49 0.61 0.43

AR 1.84 2.03 1.55

Circ. 0.72 0.75 0.69

Round 0.55 0.66 0.49

Feret 0.90 1.04 0.84
PB = plant biomass (g); SL = shoot length (cm); LFI = length of first internodes (cm); DFI = diameter of first
internode (cm); LA = leaf area (cm2); LW = leaf width (cm); RN = root number; RL = root maximum length
(cm); RW = root width (cm); TA = tip angle of root (◦); SW = single seed weight (g); SA = seed area (cm2);
SP = seed perimeter; L = length of seed major axis (cm); W = length of seed minor axis (cm); AR = aspect
ratio; Circ. = circulatory; Round = roundness; Feret = Feret diameter (cm); Average = Mean; Min. = Minimum;
Max. = Maximum.

In the current study, root maximum length (RL), root width (RW), and tip angle of
root (TA) indicated significant variations across all wheat genotypes, as shown (Figure 1
and Table 3). W2 genotype had the highest RN (6.00), while W1, W10, W14, and W16
genotypes were recorded as (3.00). The average RL of all genotypes was 8.60 cm, whereas
the highest was in W10 (11.09 cm) and the lowest was found in W9 (6.83 cm); similar to
Chen et al. [49], who discovered that the total RL at the Z2.1 stage, 35 days after wheat
plant transplanting varied from 670 to 3538 cm, with an average of 1937 cm. Among the
184 genotypes, 79 genotypes had RL values between 1000–2000 cm per plant, 6 genotypes
had RL values less than 1000 cm per plant, and 5 genotypes had RL greater than 3000 cm.
Other studies of Waines and Ehdaie [52] and Fang et al. [53] have confirmed modern wheat
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varieties with smaller root systems than older ones as an unintended result of breeding for
improved grain yield.

Root length and number, emergence and tip angles, rooting depth and width, convex
hull area, and root mass center are all architectural characteristics [54]. The architectural
characteristics of seedling roots also significantly affect the phasic development. Remark-
ably, a larger root system is linked with delayed maturation and, consequently, extended
grain filling, most likely due to improved nutrient and water uptake for photosynthesis [55].
In this investigation, the average RW of all genotypes was 7.03 cm, whereas the highest
was in W3 genotype (10.23 cm) and the lowest was found in W15 genotype (5.07 cm).
TA average of all genotypes was 35.89◦, the largest angle was in W11 genotype (48.63◦),
and the smallest acute angle (27.34◦) was recorded in W3 genotype (Figure 1 and Table 3).
Furthermore, in the W3 genotype, a smaller tip angle of seminal roots was associated with
a wider root system (RW). Our findings were consistent with those of Xie et al. [56], who
studied 226 recombinant inbred lines (RIL) of 13-day-old seedlings obtained from a cross
between T. aestivum ‘Forno’ (wide and small root system) and Triticum spelta ‘Oberkulmer’
(narrow and large root system).

Tetra-and hexaploid species have larger grains. Morphological variations of wheat
kernels from various genotypes were recorded [57]. In this study, modern shape analysis
methods depart from the coordinate of the points in the outlines of a figure based on
descriptive parameters for seed phenotypic and geometric traits (i.e., single seed weight
(SW); seed area (SA); seed perimeter (SP); length of seed major axis (L); aspect ratio (AR);
length of seed minor axis (W); circulatory (Circ.); roundness (Round); Feret diameter
(Feret). On average, SW of all genotypes was 0.05g and W2, W3, W4, W6, W7, W9, W10,
W11, W12 and W16 genotypes shared the same seed weight (0.05 g). The average of SA
and SP values were 0.34 cm2 and 2.45, respectively (Table 3). The genotypes W7 and
W13 had maximum SA and SP values whereas the minimum values were obtained in
W11 and W15 genotypes, as represented (Figure 1 and Table 3). In addition, the average
Feret diameter of all wheat genotypes was 0.90 cm, whereas the highest was in W7 geno-
type (1.04 cm) and the lowest was found in W8 and W15 genotypes (0.84 cm) as scored
(Table 3).

Recent developments of comparing the shapes of two-dimensional figures rely on
artificial visions and incorporate the point coordinate in a figure’s profile. Using these
virtues, the application of algorithms series allows for the calculation of several traits
for each figure, including: its shorter and longer diameters, centroid, perimeter, area
and circularity index [3,58,59]. Kernels of W13 genotype had a lower AR (1.55) than
the other genotypes, while kernels of W12 genotype had a higher AR (2.03). How-
ever, the kernel of W13 genotype had higher Circ. and Round values and in the case
of W12 genotype had lower Circ. and Round values (kernels are more elongated). Dif-
ferent models for quantifying seed shape were proposed based on variations in round-
ness and circularity, as well as a visual examination of kernel shape. According to
the outcomes of the two models, wheat kernels are divided into two groups based on
their shape: “rounded” kernels and “nearly elongated” kernels, as shown (Figure 2
and Table 3).

In the present study, an AR = 1.8 ellipse was designed to fit the shape of the W2, W10,
W15, and W16 genotypes (more rounded), and an AR = 2.03 ellipse was designed to fit
the shape of the W12 and W14 genotypes (more near elongated). Our findings agreed
with those of Martín-Gómez et al. [3], who concluded that kernels of modern varieties
(hexaploid common wheat) with an ellipse of AR = 1.8 were made to integrate the shape of
T. aestivum ssp. aestivum Zebra (TaaZ).
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3.1.2. Availability and Hereditability of the Wheat Genotypes

Heritability, a measure of phenotypic variation, plays a key role in crop breeding [60].
A crop population’s phenotypic and genotypic variances (PCV and GCV) are critical for
successful plant breeding. They are critical parameters for determining the impact of
the environment on the genotype’s performance [61]. The examination of mean sum of
squares values revealed that genotype variance was significant for all 19 morphometric
and phenological traits, indicating that genetic variation existed among the 16 T. aestivum
genotypes, as shown in Table 4. Mean squares of TA along with other determinants were
the highest among different genotypes. The character (TA) had the highest genotypic and
replication coefficient of variation (GCV and RCV) (20.017 and 8.2029%), respectively. Our
findings were in agreement with that of Lukina et al. [62]. Furthermore, Hossain et al. [63]
discovered that the PCV of all traits was greater than the GCV and that their values were
closer to each other among 25 genotypes of spring wheat cultivar. Analogous findings were
recorded by Varsha et al. It was found by [16] that the biological yield per plot had the
highest GCV value (18.09%), while the GCV and PCV showed the desired values for the
remaining traits, such as the plant height of 98 wheat genotypes, which were comparatively
lower than (10).

High heritability demonstrated that classification for these characters would be ef-
ficient, as it would be less influenced by environmental effects [64]. The simpler are the
selection procedures, the higher are the heritability estimates [65]. In this investigation,
heritability (H2) ranged from 4.93% to 100%. The highest H2 values were recorded for RN
(100%), then came SL (88.72%), LFI (88.30%), LA (87.76%), and Feret (86.68%), while the
lowest was recorded in DFI (4.93%) (Table 4). The traits TA, SL, RN, and LA showed high
GCV and heritability. Sharma and Garg [66] reported similar results in wheat (T. aestivum L.)
crosses grown in variable natural and salinity conditions. Hossain et al. [63] also discovered
that the estimated heritability for various physiological and yield contributing traits of
25 spring wheat cultivar genotypes varied from 29.41% to 97.44%.
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Table 4. Estimation of genotypic coefficient variance, heritability analysis of morphometric traits of
the 16 T. aestivum genotypes studied.

TRAITS R
MS (2)

G
MS (15)

RXG
MS (30) RCV% GCV% RXG

CV (%) H2% LSD (5%) F VALUE
OF G

PB 0.0015 0.0032 0.0011 0.0001 0.007 0.0003 65.33 0.06 2.88 **

SL 3.1912 24.0514 2.7140 0.0298 7.1125 0.6785 88.72 2.75 8.86 **
LFI 0.0889 2.2307 0.2609 0.0057 0.6566 0.0652 88.30 0.85 8.55 **
DFI 0.002 0.0014 0.0014 0.0000 0.0000 0.0003 4.93 0.06 1.05

LA 0.0777 2.7584 0.3378 0.0063 0.8069 0.0844 87.76 0.97 8.17 **
LW 0.0125 0.0079 0.0058 0.0004 0.007 0.0014 26.91 0.13 1.37

RN 0.000 2.4875 0.000 0.0000 0.8292 0.0000 100.00 0.00 0.00
RL 2.8541 4.8841 1.6033 0.0782 1.0936 0.4008 67.17 2.11 3.05 **
RW 1.2819 6.6247 4.2020 0.0867 0.8076 1.0505 36.57 3.42 1.58
TA 164.8038 93.6098 33.5567 8.2029 20.0177 8.3892 64.15 9.66 2.79 **

SW 0.000 0.0002 0.0001 0.0000 0.0001 0.000 74.02 0.00 0.00
SA 0.0006 0.0060 0.0010 0.0000 0.0017 0.0002 83.77 0.05 6.16 **
SP 0.0024 0.0638 0.0089 0.0002 0.0183 0.0022 86.07 0.16 7.18 **
L 0.0000 0.0082 0.0013 0.0000 0.0023 0.0003 84.78 0.06 6.57 **
W 0.0010 0.0052 0.0013 0.0000 0.0013 0.0003 74.08 0.06 3.86 **

AR 0.0099 0.0434 0.0178 0.0005 0.0086 0.0044 59.11 0.22 2.45 *
CIRC. 0.0001 0.0005 0.0002 0.0000 0.0001 0.0001 58.82 0.02 2.43 *

ROUND 0.0010 0.0047 0.0021 0.0001 0.0009 0.0005 56.11 0.08 2.28 *
FERET 0.0001 0.0083 0.0011 0.0000 0.0024 0.0003 86.68 0.06 7.51 **

R = Replications; G = Genotypes; RXG = Replication with genotypes; Parenthesis indicate degree of freedom;
MS = Mean square; RCV% = Replication Coefficient of Variance; GCV% = Genotypic Coefficient of Variance;
H2 (%) = heritability, LSD (5%) = Least significant differences, F value of = F value of genotypes, *, ** significant at
the 0.05 and 0.01 level of the probability, respectively

3.1.3. Phenotypic and Genotypic Correlation Coefficients

Genotypic correlation values are used for further analysis because correlations must
be made in light of their genetic behavior. Trait genetic relationships can result from
the pleotropic effects of a gene, chromogema, the linkage of two genes and regimental
affiliation, or environmental influences [67]. In this investigation, the genotypic (rg) and
phenotypic (rp) correlations were estimated to determine the relationships between various
quantitative characters at the phenotypic level (Table 5). The results showed that the (rp)
was smaller than (rg) correlation among all phenotypic traits. These correlation results
confirmed the cell plot phenological data of different studied genotypes. Among the
shoot phenotypic scores, LFI had the maximum correlation with SL, LA, LW, RN, SA,
SP, L, W, Circ., Round and Feret, in which LFI was significantly positive correlated with
SL (phenotypic correlation (rp) = 0.73 **, p < 0.01, (genotypic correlation (rg) = 0.78+) as
shown in W2 genotype. Among the leaf phenotypic scores, LA was significantly positive
correlated with SL and LFI (rp) = 0.80 ** and 0.66 **, p < 0.01 and (rg) = 0.84+ and 0.75++,
respectively, as shown in W2 genotype. In addition, LA was significantly positive correlated
with LW (rp) = 0.75 **, p < 0.01 and (rg) = 1.51+. Among root phenotypic scores, RN was
significantly negative correlated with SL and LA (rp) = −0.67 **, p < 0.01 and −0.45 and
(rg) = −0.72++ and −0.48 ++, respectively. Along with, RL was negatively correlated with
RN (rp) = −0.61 *, p < 0.05 and (rg) = −0.74+ as recorded in W10 genotype (Table 5).
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Table 5. Genotypic (rg) (lower diagonal) and phenotypic (rp) (above diagonal) correlation matrix among all morphological traits of the 16 T. aestivum genotypes
studied.

Parameters PB SL LFI DFI LA LW RN RL RW TA SW SA SP L W AR Circ. Round Feret

PB 0 0.21 0.41 0.05 0.47 0.39 0.14 0.11 0.4 0.26 0.57 * 0.72 ** 0.75 ** 0.74 ** 0.55 * 0.04 −0.07 0.03 0.76 **
SL 0.23 0 0.73 ** 0.35 0.80 ** 0.4 −0.67 ** 0.25 0.02 0.02 −0.01 0.17 0.19 0.19 0.14 0.01 −0.02 0.03 0.19
LFI 0.50 + 0.78 + 0 0.07 0.66 ** 0.39 −0.42 0.11 −0.21 −0.02 0.21 0.53 * 0.48 0.3 0.59 * −0.37 0.35 0.44 0.44
DFI −0.22 1.36 −0.49 0 0.36 0.26 −0.02 −0.16 0.49 0.01 −0.19 −0.43 −0.4 −0.28 −0.44 0.28 −0.29 −0.26 −0.37
LA 0.56 ++ 0.84 ++ 0.75 ++ 1.74 0 0.75 ** −0.45 0.17 0.26 −0.1 −0.06 0.45 0.46 0.44 0.37 −0.05 0.04 0.1 0.47
LW 0.64 + 0.83 + 0.85 + 1.24 1.51 + 0 −0.12 −0.02 0.35 −0.37 −0.06 0.45 0.41 0.29 0.45 −0.29 0.28 0.31 0.38
RN 0.17 −0.72

++
−0.44

++ −0.1 −0.48
++ −0.24 0 −0.61 * 0.22 −0.09 0.18 0.04 0.02 −0.03 0.08 −0.08 0.07 0.11 0.01

RL 0.3 0.30 + 0.18 −0.02 0.18 0.31 −0.74 + 0 −0.03 0.41 0.13 0.14 0.18 0.26 0.02 0.21 −0.21 −0.19 0.21
RW 0.75 + −0.09 −0.48 + 3.02 0.43 + 0.45 0.37 0.05 0 −0.14 −0.04 0.03 0.1 −0.27 0.15 0.39 −0.4 −0.37 0.16
TA 0.48 + 0.05 0.06 0.31 −0.16 −0.82 + −0.11 0.55 + 0 0 0.17 −0.07 −0.03 −0.09 0.19 0.36 −0.37 −0.31 0.01
SW 0.88 ++ −0.04 0.26 −0.9 −0.13 −0.25 0.21 0.19 −0.1 0.18 0 0.45 0.45 0.38 0.41 −0.11 0.11 0.13 0.44
SA 1.07 ++ 0.24 0.62 ++ −2.09 0.55 ++ 0.76 + 0.05 0.17 0.03 −0.1 0.51 + 0 0.99 ** 0.82 ** 0.92 ** −0.35 0.33 0.4 0.95 **
SP 1.07 ++ 0.25 0.57 ++ −1.92 0.54 ++ 0.69 + 0.02 0.21 0.14 −0.05 0.50 + 0.99 ++ 0 0.90 ** 0.84 ** −0.19 0.17 0.24 0.99 **
L 1.01 ++ 0.23 0.37 + −1.3 0.48 ++ 0.51 + −0.04 0.29 0.44 + 0.11 0.40 + 0.88 ++ 0.93 ++ 0 0.53* 0.24 −0.26 −0.2 0.95 **
W 0.92 ++ 0.23 0.72 ++ −2.31 0.52 ++ 0.79 + 0.09 0.06 −0.29 −0.26 0.52 + 0.93 ++ 0.87 ++ 0.64 ++ 0 −0.69 ** 0.67 ** 0.73 ** 0.76 **
AR −0.05 −0.03 −0.47 1.65 + −0.19 −0.59 −0.11 0.22 0.76 + 0.53 + −0.22 0.31 + −0.18 −0.18 0.64 ++ 0 −1.00 ** −0.99 ** −0.05

Circ. 0 0.02 0.44 + −1.66 0.17 0.56 0.09 −0.22 −0.76 + −0.55 + 0.21 0.29 0.16 −0.21 0.62 ++ −1.00
++ 0 0.98 ** 0.03

Round 0.21 0.08 0.57 ++ −1.66 0.25 0.62 0.15 −0.23 −0.76 + −0.48 + 0.24 0.38 + 0.25 −0.12 0.69 ++ −1.00
++ 1.00 ++ 0 0.11

Feret 1.07 ++ 0.25 0.52 ++ −1.74 0.53 ++ 0.64 + 0.01 0.24 0.24 0.01 0.47 + 0.97 ++ 0.99 ++ 0.97 ++ 0.81 ++ −0.06 0.04 0.13 0

Green box: *, ** significant at the 0.05 and 0.01 level of the probability, respectively. Blue box: +, ++ coefficient of correlation is larger than one and two times the standard error,
respectively.
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All the seed geometric scores (SW, SA, SP, L, W and Feret) were highly significant
positive correlated with PB, SL, LFI and LA, while they were significantly negative cor-
related with AR. In addition, AR was significantly negatively correlated with W, Circ.
and Round (rp) = −0.69 **, −1.00 ** and −0.99 **, p < 0.01 and (rg) = −0.64++, −1.00++
and −1.00++, respectively, as recorded in W13 genotype. In contrast, W was significantly
positively correlated with Circ., Round and Feret (rp) = 0.67 **, 0.73 ** and 0.76 **, p < 0.01
and (rg) = 0.62++, 0.69++ and 0.81++, respectively, as recorded in W13 genotype. In addi-
tion, Feret was significantly positively correlated with PB, SA, SP, L and W(rp) = 0.76 **,
0.95 **, 0.99 **, 0.95 ** and 0.76 **, p < 0.01 and (rg) = 1.07++, 0.97++, 0.99++, 0.97++ and
0.81++, respectively, as recorded in W7 genotype. Circ. had the highest positively corre-
lation with Round, while both had a negative correlation with AR as shown in the W12
genotype as scored in (Table 5).

The co-efficient of variation (CV%) was low for all parameters, indicating that the
difference between each individual and another was minimal, indicating that the results
for these traits were more acceptable [68]. In this investigation, the rp was generally
lower than the rg for all 19 phenotypic traits of 16 wheat genotypes, and PB was pos-
itively correlated with all traits except DFI and AR. According to Ahmed et al. [69],
seedling length (SL) had a negative correlation with DTW and highly significant and
positive correlations with the five leaf wilting scores. SL can be used as a predictor of
drought tolerance.

Mukherjee et al. [70] investigated genotypic and phenotypic coefficients of variation
in bread wheat and revealed high coefficients of variations of spikes per plant. Likewise,
Sarkar et al. [71] concluded that spikelets per spike, plant height, and yield per plant
of 37 wheat lines had higher heritability, genetic advance, and phenotypic coefficient
of variation.

3.1.4. Hierarchical Co-Clustering Analysis Based on Morphological and
Phenological Markers

Selection of genotype groups is primarily influenced by the breeding program’s
objectives [72]. Multivariate analysis based on hierarchical co-cluster analysis and con-
stellation plot using Ward’s method was performed to identify the phenotypic diversity
of the 16 wheat genotypes due to differences in morphological and phenological traits
and grouped the genotypes into 5 distinct clusters as represented in Figure 3A,B. A co-
cluster matrix consisted of 5 rows (genotypes) and 4 column clusters (traits). Genotypes
of cluster I were W1, W4, and W6 which had similar seed geometric traits. Addition-
ally, cluster II had the largest number of genotypes (W3, W11, W12 and W16), which
had similar RL and RW values. Cluster III consisted of W7, W8 and W13 genotypes,
which had similar leaf traits (LA and LW), while genotypes of cluster IV were W2, W10
and W5, which had similar TA of root architecture and cluster V had W9, W15 and W14
genotypes which shared the same seed geometric traits (Figure 3A,B). In the same trend,
Mohi-Ud-Din et al. [72] concluded that, using Ward’s method, the genotypes of different hi-
erarchical row clusters exhibited variable alterations in the effectiveness of analyzed wheat
seedling characteristics.

3.2. Molecular Genetic Diversity Analyses: SCoT and ISSR Markers

Molecular characterization is now a valuable tool for assessing variation in plant
genetic resources. Polymorphism is also considered a useful selection tool in monitoring
alien genome introgression in wheat breeding programs. In the present study, two marker
systems (ISSR and SCoT) were used to investigate the genetic variability of wheat genotypes.
The polymorphism level and the discriminating capacity of these markers are summarized
in Table 6.
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Table 6. Number of amplified bands, number of polymorphic bands, polymorphism percentage,
mean of band frequency and marker efficiency calculations of the 16 ISSR and SCoT markers assayed
for the 16 T. aestivum genotypes studied.

Molecular
Marker

MB
Polymorphic Bands

TAB PPB MBF H PIC E MI H.av D Rp
UB NUB NPB

ISSR-807 1 7 0 7 8 88 0.5 0.50 0.37 3.8 0.02 0.00 0.78 2.9

ISSR-810 2 6 0 6 8 75 0.6 0.49 0.37 4.5 0.02 0.00 0.69 3.3

ISSR-835 4 5 2 7 11 64 0.7 0.44 0.34 7.4 0.02 0.00 0.55 3.6

ISSR-841 3 3 1 4 7 57 0.5 0.49 0.37 3.9 0.02 0.00 0.70 1.7

ISSR-857 0 9 1 10 10 100 0.3 0.44 0.35 3.3 0.01 0.00 0.89 4.9

ISSR-825 1 5 0 5 6 83 0.5 0.50 0.37 3.1 0.02 0.01 0.73 2.7

ISSR-814 0 2 1 3 3 100 0.3 0.39 0.31 0.8 0.01 0.01 0.93 1.2

ISSR-826 3 7 0 7 10 70 0.8 0.35 0.29 7.7 0.02 0.00 0.40 2.4

ISSR-827 1 5 2 7 8 88 0.5 0.50 0.37 3.7 0.02 0.00 0.78 2.3

ISSR-840 0 7 1 8 8 100 0.3 0.39 0.31 2.1 0.01 0.00 0.93 4.1

Total 15 56 8 64 79 - - 4.50 3.47 40.4 0.15 0.04 7.38 29.2

Mean 1.5 5.6 0.8 6.4 7.9 82.41 0.49 0.45 0.35 4.04 0.01 0.00 0.74 2.92

SCoT 1 0 8 0 8 8 100 0.3 0.40 0.30 2.6 0.01 0.00 0.9 3.3

SCoT 2 2 9 0 9 11 82 0.6 0.50 0.40 6.3 0.02 0.00 0.7 5.1

SCoT 3 1 9 1 10 11 91 0.3 0.50 0.40 3.9 0.01 0.00 0.9 5.7

SCoT 4 0 11 2 13 13 100 0.3 0.40 0.30 3.5 0.01 0.00 0.9 6.5

SCoT 5 0 10 0 10 10 100 0.4 0.50 0.40 4.5 0.01 0.00 0.8 7.1

SCoT 6 0 7 4 11 11 100 0.2 0.40 0.30 2.8 0.01 0.00 0.9 4.9

Total 3 54 7 61 64 - - 2.70 2.10 23.6 0.07 0.02 5.1 32.7

Mean 0.5 9 1.17 10.17 10.70 95.46 0.36 0.40 0.30 3.9 0.01 0.00 0.9 5.4

Total of All 18 110 15 125 143 - - 7.2 5.5 64.0 0.21 0.06 12.5 61.9

Mean of All 1.2 7.33 1 8.33 9.53 88.94 0.43 0.4 0.3 4.0 0.01 0.00 0.8 3.9

MB, Monomorphic bands; UB, unique bands; NUB, non-unique bands; NPB, number of polymorphic bands; TAB,
total amplified bands; PPB, percentage of polymorphic bands; MBF, mean of band frequency; H, heterozygosity
index; E, effective multiplex ratio; PIC, polymorphism information content; H.av, average expected heterozygosity;
D, discriminating power; MI, marker index; Rp, resolving power.
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Figure 3. Clustering multivariate analysis using Ward’s method for distribution of 16 Egyptian T.
aestivum genotypes based on the phenological and morphological markers by using (A) hierarchical
co-clustering dendrogram and heatmap; row clusters were obtained at genotype level, whereas the
column cluster were recorded at trait or marker level; (B) Constellation plot from hierarchical cluster
analysis showing five clusters (Clusters I, II, III, IV and V represent clusters as red, violet, green,
orange and blue oval shapes).

3.2.1. ISSR Markers

Using 10 ISSR primers, out of 79 scorable amplified bands (TAB), 64 were PB (poly-
morphic) and 15 were MB (monomorphic) with an average frequency of bands (MBF) 0.49.
Their molecular size ranged from 84 to 4039 bp. The percentage of polymorphism (PPB)
ranged from 57% (ISSR-841) to 100% (ISSR-857, ISSR-814 and ISSR-840) with an average of
82.41%. Out of 56 UB (unique bands), the maximum bands (9) were recorded in ISSR-857
primer, which achieved the highest %PPB as 100% (Table 6). The %PPB value based on ISSR
markers was variable in previous reports. El-Aref et al. [73] found that the polymorphism
percentage has an average of 64.95% among wheat varieties. In addition, a high P% was
reported in wheat genotypes using ISSR markers [74,75].

Polymorphism information content (PIC) plays a key role in genetic variation anal-
ysis [76,77]. Furthermore, several parameters were calculated in this study to categorize
the informativeness of the primers under consideration as PIC, heterozygosity index (H),
average expected heterozygosity (H. av), marker index (MI), discriminating power (D),
effective multiplex ratio (E) and resolving power (Rp). In this investigation, the patterns
of ISSR-807, ISSR-825 and ISSR-827 primers recorded the highest values of 0.50 and 0.37
for H and PIC, respectively, whereas ISSR-826 primer noted the lowest values for H (0.35)
and PIC (0.29). According to Botstein et al. [39] and Ramadugu et al. [78], markers with a
PIC value of 0.25 to 0.50 provide valuable information for genetic variation studies. In the
present study, the mean PIC value for ISSR markers was 0.35, with a range of 0.29 to 0.37.
As a result, all of the primers tested in this study were found to be effective.

The PIC and Rp prepared a degree of marker system capacity, assisting in the study of
primer efficiency in the evaluation of genetic diversity [79]. In this investigation, E values
ranged from 0.8 in ISSR-814 primer to 7.7 in ISSR-826 primer. Additionally, the patterns of
ISSR-807, ISSR-810, ISSR-835, ISSR-841, ISSR-825, ISSR-826 and ISSR-827 primers revealed
the highest values (0.02) of MI. In addition, D values ranged from 0.40 in ISSR-826 primer
to 0.93 in ISSR-840 primer, whereas Rp values ranged between 1.2 in ISSR-814 primer and
4.9 in ISSR-857 primer (Table 6).
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3.2.2. SCoT Markers

Using 6 SCoT primers, however, revealed 64 amplified fragments with molecular
sizes ranging from 177 to 3658 bp and an average of 10.70 bands for each SCoT primer,
with 61 fragments being polymorphic with 54 UB and the remaining 3 fragments being
monomorphic (Table 6). The %PPB ranged from 82% (SCoT 2) to 100% (SCoT 1, SCoT 4,
SCoT 5, and SCoT 6) with a mean of 95.46%. Furthermore, the %PPB of the studied SCoT
marker in this study was greater than that of Khodaee et al. [80], who discovered that the
SCoT primers produced 162 amplified fragments. The majority of them (90.74%) were
polymorphic among Iranian Aegilops triuncialis accessions. Similarly, Shaban et al. [31] con-
firmed that the primers SCoT3, SCoT5, SCoT10, and SCoT12 revealed 100% polymorphism
and identified a significant degree of variation among wheat germplasm.

In this investigation, as for the frequency of the bands, MBF was scored as 0.49. SCoT
1, SCoT 4 and SCoT 6 primers recorded the lowest values of H (0.40) and PIC (0.30), while
primers SCoT 2, SCoT 3 and SCoT 5 showed the highest values of H (0.50) and PIC (0.40),
respectively. Our results in accordance with Nosair [30] found that the %PPB revealed
by the different primers varied from 100% for SCoT (7, 14, 24, 28, 35 & 46) primer to 90%
for SCoT11 primer. PIC values ranged from 0.40 (SCoT 24) to 0.62 (SCoT 35), with an
average value of 0.52 per primer. In this study, SCoT 1 primer had the lowest E value (2.6),
while SCoT 2 primer had the highest E and MI values (6.3 and 0.02). In contrast, SCoT 2
primer had the lowest D value (0.7), whereas the highest D value (0.9) was recorded in
SCoT 1, SCoT 3, SCoT 4 and SCoT 6 primers. In addition, Rp values ranged from 3.3 to 7.1
in SCoT 1 and SCoT 5 primers, respectively, as recorded in (Table 6). In the same trend,
Shaban et al. [31] reported that the ISSR and SCoT markers have PIC values of 0.61 and 0.62,
respectively. SCoT markers had the highest levels of Rp, MI, and polymorphism percentage.

3.2.3. ISSR and SCoT Analysis

ISSR and SCoT markers have been shown to be useful in genetic variation studies due
to their excellent reproducibility and strength for polymorphism detection [26,81]. In this
study, a total of 143 amplified bands or fragments (125 polymorphic and 18 monomorphic)
resulted from combined ISSR and SCoT primers of wheat genotypes with an average of
9.53 bands per primer. Table 6 shows that the %PPB was as high (88.94%), with 15 unique
polymorphic bands with an average of approximately 1 for each primer, 110 non-unique
polymorphic bands (NUB) with an average of 7.33, and 18 monomorphic bands (MB)
with an average of 1.2. The efficiency of both ISSR and SCoT markers is estimated in
this study using parameters, such as PIC, MI, and Rp. In fact, SCoT markers were more
effective than ISSR markers at detecting polymorphisms, detecting 95.46% versus 82.41%
polymorphisms. The average values of H, PIC, E, MI, D, and RP of ISSR primers were 0.45,
0.35, 4.04, 0.01, 0.74, and 2.92, respectively, while the average values of H, PIC, E, MI, D,
and RP of SCoT primers were 0.40, 0.30, 3.9, 0.01, 0.9, and 5.4, respectively. According to
our findings, the mean values of %PPB and Rp for SCoT primers were higher than those
for ISSR primers, demonstrating the great potential of SCoT markers in assessing genetic
diversity and determining relationships among wheat genotypes. These findings support
the findings of Nosair [30] and Shaban et al. [31], who concluded that SCoT markers were
more informative in studying genetic diversity among wheat cultivars. According to
Khodaee et al. [80], the most relevant indices for measuring marker efficiency were Rp
and MI, though the ISSR had a higher resolution than the SCoT markers among Iranian A.
triuncialis accessions, contradicting our findings.

The present study showed that the ISSR-857 and SCoT 4 primers were the most
informative and had the greatest potential of the primers tested. ISSR primers resulted
in 56 amplified UB, while SCoT primers resulted in 54 amplified UB. Interestingly, the
ISSR-857 primer revealed the most UB (9 bands), while the SCoT 4 primer revealed the least
UB (11 bands). The HB-10 and SCoT 1 had the highest values for all parameters studied.
Gowayed and Abd El-Moneim [27] found that the HB-10 primer revealed the highest value
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of P% of 96% and the SCoT 1 primer revealed the highest value of P% of 92.3% of some
Egyptian wheat genotypes.

The similarity coefficient among the studied wheat genotypes using combined data of
ISSR and SCoT was recorded in (Table 7). The pairwise comparisons between the tested
genotypes were utilized to estimate the genetic similarity matrix coefficients. The highest
similarity index (0.89) was found between W10 (GEMMIZA 9) and W12 (GEMMIZA 11)
genotypes, while, W4 (SHANDWEEL 1) and W6 (SAKHA 95) had the lowest similarity
index (0.54), reflecting a wider genetic diversity between them. In addition, W3 (SIDS 14),
W8 (GIZA 168), W9 (GEMMIZA 7) and W10 (GEMMIZA 9) genotypes had the highest
similarity value with W1 (SIDS 1) genotype.

Table 7. Genetic similarity of 16 T. aestivum genotypes by Jaccard’s coefficient using UPGMA algo-
rithm based on ISSR and SCoT banding patterns.

Genotypes W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16

W1 1.00

W2 0.79 1.00

W3 0.87 0.75 1.00

W4 0.73 0.69 0.74 1.00

W5 0.81 0.79 0.82 0.68 1.00

W6 0.60 0.63 0.61 0.51 0.71 1.00

W7 0.71 0.67 0.71 0.67 0.69 0.71 1.00

W8 0.88 0.85 0.86 0.78 0.88 0.63 0.73 1.00

W9 0.86 0.77 0.79 0.69 0.83 0.64 0.72 0.83 1.00

W10 0.83 0.79 0.84 0.66 0.76 0.64 0.73 0.83 0.79 1.00

W11 0.79 0.78 0.80 0.74 0.82 0.68 0.79 0.81 0.77 0.76 1.00

W12 0.80 0.73 0.80 0.63 0.77 0.73 0.79 0.81 0.73 0.89 0.78 1.00

W13 0.71 0.72 0.67 0.56 0.72 0.67 0.65 0.73 0.72 0.72 0.72 0.78 1.00

W14 0.76 0.66 0.77 0.71 0.68 0.56 0.62 0.78 0.72 0.66 0.68 0.71 0.64 1.00

W15 0.73 0.69 0.72 0.64 0.64 0.69 0.78 0.71 0.67 0.74 0.72 0.76 0.65 0.67 1.00

W16 0.73 0.74 0.76 0.63 0.80 0.77 0.75 0.77 0.74 0.75 0.78 0.79 0.79 0.68 0.69 1.00

3.2.4. Multivariate Analysis Based on ISSR and SCoT Combined Data: Hierarchical
Co-Clustering Analysis

Based on a hierarchical co-clustering dendrogram and heatmap pattern derived from
a combined analysis of SCoT and ISSR data (Figure 4A), the 16 wheat genotypes were
classified into 4 main clusters. A co-cluster matrix was consisted of 4 row (genotype) and
2 column clusters (traits or markers). The first cluster I was the largest group included
8 genotypes: W1 (SIDS 1), W3 (SIDS 14), W2 (SIDS 12), W10 (GEMMIZA 9) in a sub-cluster,
which had low intensities and weak correlation to each other through SCoT primers and
moderate correlation through ISSR primers and also, W4 (SHANDWEEL 1), W8 (GIZA 168),
W11 (GEMMIZA 10) and W13 (GEMMIZA 12) genotypes in another sub-cluster, which
positively correlated through SCoT2 and SCoT3. Cluster II contained, W5 (SAKHA 94),
W16 (MISR 3), W7 (GIZA 171) and W12 (GEMMIZA 11), which had high intensities (dark
blue) and a highly positive correlation through ISSR-810, ISSR-835, ISSR-841, ISSR-826
and SCoT 1. Additionally, genotypes of cluster III were W6 (SAKHA 95), W9 (GEMMIZA
7), W15 (MISR 2) which had high and moderate positive correlation through ISSR-807,
ISSR-810, ISSR-857, ISSR-825, ISSR-827 and all SCoT primers. Cluster IV had only W14
(MISR 1) genotype. The dendrogram derived from SCoT revealed the best clustering
pattern in this study. Our findings were in concordance with those of Etminan et al. [29].
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These studies indicate that these molecular markers are crucial criteria for evaluating wheat
genotypes genetic diversity. Similarly, Carvalho et al. [74] used ISSR markers to analyze
48 wheat cultivars and discovered that most cultivars from the same botanical variety were
grouped together. El-Aref et al. [73] discovered that the ISSR markers were successful in
distinguishing wheat varieties based on their ploidy level and location, with tetraploid
varieties and hexaploid varieties grouped together in one group.
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Figure 4. Hierarchical co-clustering dendrogram and heatmap using Ward’s method illustrating the
distribution of 16 Egyptian T. aestivum cultivars based on: (A) the polymorphism values of combined
molecular markers (10 ISSR and 6 SCoT); (B) 19 morphological and 16 molecular markers. Correlation
levels are colored dark blue for high intensities and white for low intensities. Row clusters were
obtained at genotype level, whereas the column cluster were recorded at trait or marker level.

3.3. Relationships among Morphological and Genetic Attributes
3.3.1. Hierarchical Co-Clustering Analysis

The dendrogram reflected the differences in genetic diversity within the 19 phenolog-
ical and molecular markers (ISSR and SCoT) levels and discriminated among the wheat
genotypes as represented in Figure 4B. The 16 wheat genotypes were divided into 4 main
clusters. A co-cluster matrix consisted of four row (genotype) and six column clusters (traits
or markers). Cluster I included six genotypes: W1 (SIDS 1), W10 (GEMMIZA 9), W11 (GEM-
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MIZA 10), W12 (GEMMIZA 11), in a sub-cluster 1 and also, W2 (SIDS 12) and W3 (SIDS 14)
genotypes in another sub-cluster 2. Furthermore, Cluster II had W4 (SHANDWEEL 1), W5
(SAKHA 94), W16 (MISR 3), W6 (SAKHA 95), W9 (GEMMIZA 7), W8 (GIZA 168), W15
(MISR 2) genotypes. Cluster III had W14 (MISR 1) genotype. Additionally, genotypes of
cluster IV were W7 (GIZA 171) and W13 (GEMMIZA 12). Multivariate compound similarity
analysis is commonly used to show additional data about plant breed genetic variance,
which is detailed in heatmaps [82]. Correlation analysis assists in determining impactful
traits for indirect selection of superior genotypes. Concerning the heatmap correlation,
cluster I genotypes had a strong correlation between leaf (LA and LW) and root parameters
(RN, Rl and RW). Moreover, there were moderate correlations of seed parameters (TA,
SW, SA, SP, L, W, AR, Circ., Round and Feret) among genotypes of cluster II especially in
sub-cluster 1, while the strongest correlations were found between cluster IV genotypes
(W7 and W13).

3.3.2. Principal Component Analysis (PCA)

The principal component analysis (PCA) technique was used to analyze object diver-
sity in terms of quality traits and group them according to the similarity hierarchy [83]. As
a result, correlation and principal component analyses assist breeders in genetically im-
proving traits with low heritability, such as yield, particularly in early generations, through
indirect selection for traits effective on this [84].

PCA was also performed to support the results of the hierarchical clustering analysis
(Figure 5A), which was based on their genomic constitution and 19 phenological traits.
PCA was used to analyze the average data. PCA reflects the significance of the largest
contributor to total variation along each differentiation axis. PCA revealed similar groups,
correlating the results of neighbor-joining clustering. In a PCA scatterplot, variation in the
16 wheat genotypes described by the first 2 PCs per cluster, ranged from 15.1 to22.3% of the
total variation as shown in Figure 5A. For these dendrogram co-clusters, PCA produced
mostly congruent results. The studied genotypes were also grouped into four clusters:
cluster I (blue group) included six genotypes, cluster II (orange group) had 7 genotypes,
cluster III (red group) had one only genotype which were distinct and well supported and
cluster IV (green group) had two genotypes. Furthermore, objects with similar ordinates
were more similar than those with dissimilar ordinates.

In the system of two first components, length of vector and cosine of angle were used
for discrimination of wheat genotypes were shown in Figure 5B. Circ. and round are the
longest vectors, and the small angle between these vectors proves a significant strong
positive correlation between these traits. On the other side, circ. and round traits had a
strong positive correlation with each other and a negative correlation with AR. Moreover,
vectors for PB and some seed geometric parameters (W, SA, SP, Feret, L) showed the strong
discrimination power of these parameters and might be important for the evaluation of
wheat genotypes. PB created 90 degrees with AR, the same pattern was shown also between
W and AR in which they were not likely to be correlated. These results confirmed the
cell plot, phenotypic and genotypic correlation coefficients, and heat map correlation of
phenological traits.

Concerning molecular markers, the most frequent vectors were SCoT 2 and SCoT 5,
which had a positive direction of discriminating traits that showed their better performance.
It also results from the graph that ISSR-835, ISSR-857 and ISSR-826 vectors were strongly
correlated variables. Thus, PCA analysis enabled the decline of 25 key traits to a few
variables, while retaining a significant portion of primary data variance. In a similar
manner, Beheshtizadeh et al. [85] reported that PCA revealed that 4 components accounted
for approximately 76% of the total variation of wheat genotypes traits. Furthermore,
Adilova et al. [86] discovered that the PCA revealed four principal components (PC) with
eigenvalues greater than one, indicating approximately 90.8% of the total variability.
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Figure 5. Principal component analysis (PCA) illustrating the genetic diversity expressed by the
grouping of 16 Egyptian T. aestivum cultivars based on the analysis of 19 morphometric traits, 10 ISSR
and 6 SCoT primers polymorphism (A) scatter plot analysis showing four clusters (Cluster I, II, III
and IV represent as blue, orange, red and green oval shapes, respectively); (B) the interrelationship
among all measured morphological and molecular marker parameters. The dots are genotypes and
the vectors (red arrows) are parameters.

3.4. DNA Barcoding: Plastid rbcL and matK loci Sequencing

The interpretation of plastid DNA sequences in many plants revealed that the plastid
genome changed only possibly a bit during evolutionary events [87,88]. In many stud-
ies, the rbcL gene has been successfully utilized in phylogenetic studies at above-species
taxonomic levels [89,90]. Most studies have emphasized the importance of using rbcL in
conjunction with other plant DNA barcodes [91]. Furthermore, the matK gene is a useful
region because it is the fastest evolving plastid gene, providing enough information to
identify phylogenies [92]. The Consortium for the Barcode of Life (CBOL) has established
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the rbcL and matK as standard plant barcodes, with high species identification and ideal
sequential efficiency for plants [87,93].

In the present study, the recorded amplicons were shorter (approximately 600 and
900 bp for rbcL and matK, respectively), allowing for effective sequencing even though
many authors deny the region as a barcode if it is longer than 1000 bp due to difficulties in
bi-directional sequencing [87]. Our findings agreed with those of Mohamed et al. [94], who
concluded that the matK gene is more flexible than the rbcL gene among Egyptian barley
(Hordeum vulgare L.) cultivars, and the documented size of the matK region’s PCR product
was 900 bp, whereas the rbcL region was 600 bp.

After successfully amplifying a portion of the rbcL gene, the amplicons were sequenced
and deposited in GenBank under accession numbers in six T. aestivum genotypes: W16
(Misr3), W3 (SIDS 14), W7 (GIZA 171), W4 (SHANDWEEL 1), W13 (GEMMIZA 12) and
W6 (SAKHA 95) are MW537004, MW536999, MW537003, MW537001, MW537002 and
MW537000. In addition, the Genebank accession number for matK region in six T. aestivum
genotypes: W16 (Misr3), W3 (SIDS 14), W7 (GIZA 171), W4 (SHANDWEEL 1), W13
(GEMMIZA 12) and W6 (SAKHA 95) are MW864566, MW864570, MW864567, MW864571,
MW864568 and MW864569, respectively. A BLAST function was used to confirm the correct
amplification of the matK and rbcL sequences, which revealed that all of the sequences were
strongly coordinated with the matK and rbcL sequences from T. aestivum. The conserved
matK and rbcL gene sequences were used to calculate and evaluate pairwise distances.
More information on the matK and rbcL DNA barcoding regions in six Egyptian T. aestivum
genotypes is provided in (Figures 6 and 7, respectively).
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The genetic variation estimates of DNA barcoding regions of matK and rbcL loci in
6 Egyptian wheat genotypes were given in Table 8. The length of the amplified rbcL gene
was approximately 728 bp and 757 bp for matK (partial gene) in all studied genotypes. The
number of variable sites was 13 and 24 with proportions of 0.018 and 0.032 for rbcL and
matK, respectively. Similarly, the matK region was characterized by the greatest number of
parsimony informative sites (PICs), 8 with its proportion 0.011 were observed. The average
GC content was 0.433 for rbcL and 0.316 for matK and AT content average was 0.567 and
0.684 for rbcL and matK, respectively. In the same context, Osman and Ramadan [95] discov-
ered that the length of the amplified matK gene in all studied samples was approximately
454 bp (partial gene). The average GC% content in all Triticum species was found to be
approximately 35.3%.

The phylogenetic tree was built using the neighbor-joining method, and evolutionary
distances were calculated using the maximum composite likelihood method. In the rbcL
gene region (Figure 8A), the six genotypes and 10 rbcL sequences, obtained from NCBI
and used as outgroups, were distributed into two clusters: the first cluster included two
sub-clusters: sub-cluster I had T. aestivum candenza (LT576864) NCBI outgroup, and the
five wheat genotypes except W6 (SAKHA 95) genotype, which grouped alone in sub-cluster
II. Cluster 2 also had two sub-clusters, one contained T. aestivum Jinnong6 (MK348601)
and the other sub-cluster had the rest of the eight NCBI outgroups. Figure 8B depicts a
phylogenetic tree of matK sequence variation using the UPGMA algorithm to distinguish
between the 6 genotypes studied and 10 matK outgroups. The tree has two major clusters:
the first included two sub clusters containing the six genotypes and one of the NCBI

http://multalin.toulouse.inra.fr/multalin/
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outgroups with the accession number T. aestivum 07-JMS-1109 (MF597643), which is close to
both W6 (SAKHA 95) and W7 (GIZA 171) genotypes. Cluster II also had two sub-clusters,
one had only one of the NCBI outgroups T. aestivum Jinnong6 (MK348601). The second
sub-cluster comprises all the rest of the eight NCBI outgroups. In the same trend, Burgess
et al. [96] found that the rbcL+ matK barcode system could identify 93.1% of taxonomic
groups sampled from native plants. On the other hand, Awad et al. [97] demonstrated that
the core-barcode genes, 6 matK and 15 rbcL, have limited discrimination capacity of the
18 different Triticum plants in Egypt. Taken together, the use of the two barcodes was ideal
for differentiating between different Triticum species in terms of overall barcode system
performance and all examined parameters. The best single candidate barcode was matK.
Because hybridization and mutation are unavoidable, the discovery of efficient barcodes
necessitates well-coordinated efforts. This is consistent with the findings of Osman and
Ramadan [95], who discovered that the matK gene sequence plays an important role in
distinguishing between closely related Triticum species. As a result, these sequences could
be used as a DNA barcode to track the evolution of Triticum species.

Table 8. Genetic variation estimates of DNA barcoding of 2 chloroplast (matK and rbcL) genes of 16 T.
aestivum genotypes.

Barcode/Genetic Variability of each Marker rbcL matK

Total alignment length (bp) 728 757

Total matrix cells 4368 4542

Missing percent 9.501 0.132

Number of variable sites 13 24

Proportion of variable sites 0.018 0.032

Number of parsimony informative sites (PIC) 0.00 8

Proportion of Parsimony informative sites 0.000 0.011

AT content 0.567 0.684

GC content 0.433 0.316

A 1112 1429

C 821 795

G 891 641

T 1129 1671
A, Adenine; C, Cytosine; G, Guanine and T, Thymine.
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Figure 8. Maximum likelihood tree analysis UPGMA of 6 selected T. aestivum genotypes: W16
(MISR 3), W3 (SIDS 14), W7 (GIZA 171), W4 (SHANDWEEL1), W13 (GEMMIZA 12) and W6 (SAKHA
95) and 10 NCBI outgroups, using MEGAX software based on (A) rbcL sequence data of and (B) matK
sequence data. Numbers indicated on the similarity percentage and the organism accession numbers
represented in parentheses.

4. Conclusions

Significant differences in morphological and phenological traits indicated a high level
of genetic variability in wheat genotypes, which could be used in future breeding programs
for wheat genotype improvement and development. Furthermore, the high polymorphism
percentage obtained by ISSR and SCoT demonstrates the power of SCoT as the best in
fingerprinting and diversity analyses. The matK gene barcode plays an important role
in distinguishing among closely related Egyptian T. aestivum genotypes. Overall, the
combination of desirable phenological parameters with molecular markers and barcodes
would be convenient for monitoring Egyptian T. aestivum genotypes. As a result, these
genotypes and traits are deserving of more attention in future breeding programs aimed at
improving wheat.
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Abbreviations

PB: plant biomass; SL, shoot length; LFI, length of first internodes; DFI, diameter of first internode;
LA, leaf area; LW, leaf width; RN, root number; RL, root maximum length; RW, root width; TA, tip
angle of root (◦); SW, single seed weight; SA, seed area; SP, seed perimeter; L, length of seed major
axis; W, length of seed minor axis; AR, aspect ratio; Circ., circulatory; Round, roundness; Feret, Feret
diameter; R, Replications; G, Genotypes; RXG, Replication with genotypes; Genotypic Coefficient of
Variance; RCV% = Replication Coefficient of Variance, GCV%; H2 (%), heritability; LSD (5%), Least
significant differences; rg, Genotypic correlation coefficients; rp, Phenotypic correlation coefficients;
NPB, Number of polymorphic bands; MB, Monomorphic bands; NUB, Non-unique bands; UB,
Unique bands; TAB, Total amplified bands; MBF, Mean of band frequency; PIC, Polymorphism
information content; PPB, Percentage of polymorphic bands; H, Heterozygosity index; E, Effective
multiplex ratio; MI, Marker index; H.av, Average expected heterozygosity; Rp, Resolving power; D,
Discriminating power; matK, maturase K; rbcL, ribulose-1, 5-bisphosphate carboxylase oxygenase;
ML, Maximum likelihood and NJ, Neighbor joining.
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