Skip to main content
. 2023 Jan 11;11(2):222. doi: 10.3390/healthcare11020222

Table 4.

Hierarchical multiple regression analysis for variables predicting wellbeing and happiness.

Variable Well-Being Happiness
b β t R2 b β t R2
Model 1 0.035 0.087 ***
Age 0.067 0.063 1.139 −0.466 −0.181 −3.352 ***
Sex −0.860 −0.065 −1.228 −0.143 −0.098 −1.893
Lives with relatives 1.815 0.138 2.435 ** 5.447 0.170 3.085 ***
Education 0.078 0.009 0.160 0.331 0.016 0.285
Income 1.148 0.082 1.395 −1.156 −0.034 −0.593
Model 2 0.171 *** 0.260 ***
Age 0.161 0.153 2.793 ** −0.221 −0.086 −1.663
Sex −0.509 −0.039 −0.760 −1.800 −0.056 −1.167
Lives with relatives 1.273 0.097 1.732 2.689 0.084 1.590
Education −0.763 −0.088 −1.573 −1.183 −0.056 −1.059
Income 1.154 0.082 1.488 −0.947 −0.028 −0.530
Health 0.125 0.191 3.395 *** 0.218 0.137 2.568 **
Social integration 0.190 0.120 2.083 * 1.007 0.260 4.790 ***
Activity level 0.467 0.065 1.146 * 3.803 0.216 4.056 ***
Leisure activities 0.228 0.143 2.159 0.269 0.069 1.107
Functional skills 0.005 0.002 0.041 −0.220 −0.044 −0.776
Environmental quality 0.623 0.137 2.712 ** 0.752 0.068 1.424
Model Summary Well-Being Happiness
R R2 F R R2 F
Model 1 0.186 a 0.035 2.473 * 0.295 b 0.087 6.568 ***
Model 2 0.414 a 0.171 6.359 *** 0.510 b 0.260 10.845 ***

Notes. a Dependent variable: Well-Being. b Dependent variable: Happiness. * p < 0.05; ** p < 0.01; *** p < 0.001.