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Abstract: Ovarian cancer has the highest mortality rate among gynecologic malignancies, owing to
its misdiagnosis or late diagnosis. Identification of its genetic determinants could improve disease
outcomes. Conventional Protein Kinase C-γ (PKCγ) dysregulation is reported in several cancers.
Similarly, its variant rs1331262028 is also reported to have an association with hepatocellular carci-
noma. Therefore, the aim of the present study was to analyze the variant rs1331262028 association
with ovarian cancer and to determine its impact on PKCγ’s protein interactions. Association of
variation was determined through genotyping PCR (cohort size:100). Protein–protein docking and
molecular dynamic simulation were carried out to study the variant impact of PKCγ interactions.
The study outcome indicated the positive association of variant rs1331262028 with ovarian cancer
and its clinicopathological features. Molecular dynamics simulation depicted the potential influence
of variation on PKCγmolecular signaling. Hence, this study provided the foundations for assessing
variant rs1331262028 as a potential prognostic marker for ovarian cancer. Through further validation,
it can be applied at the clinical level.

Keywords: protein kinase c-gamma (PKCγ); ovarian cancer; protein-protein docking; molecular
dynamics simulation

1. Introduction

In women diagnosed with gynecological cancers, ovarian cancer is the primary cause
of death. Worldwide, it is the fifth most common cause of death in women. The current
screening tests have a low predictive value, and the majority of cases are discovered at an
advanced stage, resulting in poor disease outcomes [1–3]. According to WHO statistics
for 2020, around 313,959 cases of ovarian cancer were detected worldwide with a total
of 207,252 deaths, which makes up about 3.4% of total cancer cases reported. The 5-
year prevalence rate of ovarian cancer was also high with about 823,315 cases reported
worldwide. In Pakistan, around 90,000 cases of ovarian cancer were reported in 2020 [4].
Risk factors for ovarian cancer include smoking, menopause, hormone replacement therapy
(HRT), endometriosis, and BRCA1 and 2 mutations [5].
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PKCγ belongs to the large family of PKC serine/threonine-specific protein kinases
which are involved in various cellular and signal transduction pathways [6,7]. Calcium-
dependent PKCγ is encoded by the PRKCG gene located on chromosome 19 at position
19q13.2-q13.4 [8]. Along with PKCα and PKCβ, PKCγ is a conventional PKC (cPKC)
isoform involved in cancer progression. PKCα was found to promote colon cancer [9]
and breast and ovarian cancer [10], and PKCβwas implicated in the progression of breast
cancer [11], colon cancer [12], prostate cancer [13], and glioblastoma [14]. PKCγwas shown
to play roles in colon cancer [15], osteosarcoma [16], and glioblastoma [17].

Known as a single nucleotide polymorphism (SNP), the substitution of one nucleotide
for another is the most basic form of DNA variation among individuals. SNPs in the gene’s
coding region often have a deleterious effect that can lead to cancer development [18–20].
Missense SNPs can cause cancer as they affect the protein’s capacity to bind its substrate
or inhibitors as well as its subcellular location [21]. There are many SNPs identified
in the genes BRCA1, BRCA2, AURKA, CYP19A1, SRD5A2, RB1, CDK6, CDK12, RAD51,
XRCC2, NM1, CCND1 and TP53 that are associated with ovarian cancer [22–24]. Ge-
netic polymorphisms in PKCγ affect the protein structure and function, thus potentially
contributing to progression toward cancer [25]. Several SNPs in different PKC isoforms
(rs454006, rs2242245, and rs8103851 of PRKCG, rs11079651 in PRKCA, and rs34367566
in PRKCB) have been reported to be linked with various types of cancer [16,26]. Recent
reports showed that missense variants in a PKCγ family member, PKC-epsilon (PKCε),
are associated with altered protein structure and function as determined using different
databases [27]. Similarly, a study recently indicated the PRKCG variant rs1331232028 associ-
ation with HCV-induced hepatocellular carcinoma [28]. The deleteriousness of the variant
rs1331232028 was predicted through multiple consensus tools that along with variant
rs1331232028 also predicted the deleteriousness of variant rs923331350 [28].

Therefore, in this study, the non-synonymous SNPs (nsSNPs) rs923331350 and
rs1331232028 in PRKCG that result in amino acid replacement in the zinc ion binding
domain (A24S) and ATP binding domain of the protein (K359R) were selected and geno-
typed in patient and control groups to investigate the possible association with ovarian
cancer in the Pakistani population. This study will build a foundation for delineating PKCγ
as a prognostic marker in ovarian cancer that will facilitate in designing a non-invasive
diagnostic method for ovarian cancer.

2. Materials and Methods
2.1. Collection and Processing of Samples

Institutional Review Board approval (IRB no = 10-2021-01/01, provided as
Supplementary Table S6) was acquired from the parent department ASAB of the National
University of Sciences and Technology (NUST) before the start of the current investigation.
Before collecting the blood samples, the patients gave their written and verbal consent
(given as Supplementary Table S4). Blood samples from a total of 49 patients diagnosed
with ovarian cancer were collected from CMH hospital, Rawalpindi. Blood samples from
51 healthy people were also collected. Approximately 3–5 mL of blood was extracted using
sterile syringes into 5 mL ethylene diamine tetra acetic acid (EDTA) tubes.

The inclusion and exclusion criteria were set for the study. The current study only
included patients who had been clinically diagnosed with localized and/or metastatic
ovarian cancer and were currently receiving chemotherapy or radiotherapy treatment.
Patients whose tumors were cleared and who just visited the hospital for follow-up were
excluded from the study. Furthermore, patients who had another metabolic, cardiac, or
neurological disease were also excluded from the study.

2.2. Genomic DNA Extraction and Genotype Analysis

DNA was isolated from entire blood samples of research participants using an organic
(phenol–chloroform) extraction procedure [29]. Primer 1 [30], a bioinformatics tool, was
used to create the primers for SNP analysis. Two outside primers and two interior primers
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were constructed for the gene in such a way that they must amplify the specific area in the
gene bearing the targeted variant. UCSC in silico PCR [31] was also used to validate the
primers. Tetra-ARMS PCR was used to genotype the nsSNPs rs923331350 and rs1331232028
in Veriti™ 96-Well Thermal Cycler of Applied Biosystems™. Solis BioDyne FIREPol®

Master Mix with 7.5 mM MgCl2 was used to make a reaction mixture of 25 µL for each
sample. The primer sequences and conditions for PCR reaction are given in Table 1. Agarose
gel electrophoresis was used to examine the amplified product. The gel used was 2% w/v
for the PCR product and visualized under a UV transilluminator.

Table 1. Sequences of primers and PCR conditions used for genotyping of PKCγ variants rs923331350
and rs1331232028.

Variant rs IDs Primer Sequences Denaturation Annealing Extension

rs923331350
G/T

Forward inner primer (G allele):
GTTTTGCAGAAAGGAGG

95 ◦C 51 ◦C 72 ◦C

Reverse inner primer (T allele):
ACCTTCTGCCTCAGAGA

Forward outer primer (5′-3′):
CTCGGAATTTCCCTGT

Reverse outer primer (5′-3′):
AGTCGGGACTACAGCC

rs1331232028
G/A

Forward inner primer (G allele):
TTCCTCATGGTTCTAGGCAG

95 ◦C 57 ◦C 72 ◦C

Reverse inner primer (A allele):
ACCTTCCCAAAACTGCATT

Forward outer primer (5′-3′):
GGTAGGAGGGTGGCCA

Reverse outer primer (5′-3′):
CCGTCCCCTCAAGGAG

2.3. In-Situ Mutagenesis

The 3D structure of PKCγ is predicted through I-TASSER [32]. In situ mutagenesis
was carried out by replacing the wild type of amino acid in the original PKCγ structure
predicted by I-TASSER with the variant amino acid. PyMol, a molecular visualization
system, was used to introduce the A24S (rs923331350) and K359R (rs1331232028) amino
acid variation [33].

2.4. Statistical Examination

GraphPad Prism software 9 [34] was used to perform statistical analysis on the geno-
typing data obtained. On both the ovarian cancer patients and control samples, the Chi-
square test was used. The analysis of odds ratios and relative risk was also carried out
with their corresponding confidence intervals defined. A p-value of less than 0.005 was
considered statistically significant. The effect of SNPs on protein structure and function
was also checked by seeing how the SNP affect the mRNA structure through RNAfold Web
Server [35].

2.5. Molecular Docking of PKCγ with Connexin43

To determine the impact of amino acid variants in PKCγ on its interactions with target
proteins, molecular docking was performed. The 3D structure of Connexin43 was predicted
from I-TASSER [32] and was used for molecular docking simulations. Molecular docking
of PKCG with one of its binding partners, Connexin 43 or GJA1, was performed using
HADDOCK 2.4 [36] to assess the molecular effect of missense SNP on protein–protein
interactions of PKCγ. This protein against PKCγwas chosen following a thorough analysis
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of the literature and the use of protein–protein interaction databases such as STRING [37].
The HADDOCK structures were visualized using Ligplot+ [38].

2.6. Interaction Dynamics Analysis

After the docking performed through HADDOCK, the dynamics of molecular interac-
tions between PKCγ variants with Connexin43 were investigated using GROMACS [39]
and the OPLS-AA force field [40], which was used to simulate wild-type and variant
PKCγ/Connexin43 complexes. A cubic box was formed around each complex for sol-
vation by incorporating SPC216 water molecules, which was followed by neutralization
by incorporating Na+/Cl− ions. MD simulations were initially energy minimized for
50,000 steps, which was followed by NVT and NPT equilibration for 100 ps. MD complex
trajectories were started with the same random seed. MD simulations of wild-type and
variant complexes were carried out for a 10 ns production run. GROMACS 2016 in-built
programs (gmx_trjconv) were used to create dynamic trajectories. The bond length analysis
among amino acids of the protein–protein interaction was completed using VMD [41]. A
variety of complex structural analyses was also carried out. The gmx_rms command was
used to calculate the root mean square deviation (RMSD for protein backbone), the gmx_
rmsf command was used to calculate the root mean square fluctuations (RMSF for protein,
side chains), the gmx_ gyrate command was used to calculate the radius of gyration (Rg
for protein, backbone), and the gmx_ sasa and gmx_ hbond commands were used for
surface area (SASA) number of hydrogen bonds analysis. The scatter line plot was used to
represent all of the MD analysis.

2.7. Pathway Construction for PKCγ’ and Connexin43 Interaction

The interactive pathway is built to examine the effect of wild and mutant proteins
on PKCγ’s interaction with Connexin 43. The interactive pathway is built to examine the
effect of wild and mutant proteins on PKCG’s interaction with Connexin 43. The interactive
pathway of PKCγ and Connexin 43 was created after reviewing the literature and various
databases such as KEGG [42] and STRING [37].

3. Results
3.1. Clinico-Pathological Characteristics of Ovarian Cancer Patients

Characteristic information on the ovarian cancer patients included in our analysis was
collected to take into consideration important aspects such as age, cancer stage, metastasis
state, and treatment stage. The clinicopathological characteristics of the ovarian cancer
patients are shown in Table 2 and Supplementary Table S3.

Table 2. Clinico-Pathological Characteristics of Patients.

Clinico-Pathological Characteristics of Patients Ovarian Cancer (N) (%)

Age ≥50 23 (48)

<50 26 (52)

Stage I–II 17 (36)

III-IV 32 (64)

Metastasis
Metastatic 19 (38)

Non-metastatic 30 (62)

Treatment
Radiations 0 (0)

Chemotherapy 49 (100)

Radiations + Chemotherapy 1 (0)
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3.2. Association of A24S (rs923331350) and K359R (rs1331232028) SNPs of PRKCG with
Ovarian Cancer

The DNA extracted from ovarian cancer (n = 49) and control (n = 51) samples was
genotyped for the presence of missense variants rs923331350 G/T and rs1331232028 G/A
in the PRKCG gene; these SNPs result in the substitution of Alanine (A) to Serine (S) at
residue 24 and Lysine (K) to Arginine (R) at position 359, respectively. Tetra ARMS-PCR
was used for the genotyping. This method employs four primers to amplify the targeted
gene sequence, resulting in an outer control band and an inner genotype band. Table 3
shows the band sizes for both nucleotide variants.

Table 3. Product Size for Genotype Bands.

Variants Internal Band
(Reference Allele)

Internal Band
(Variant Allele) Control Band

rs923331350
G/T

G-Allele T-Allele Outer

224 197 387

rs1331232028
G/A

G-Allele A-Allele Outer

224 291 476

The frequency distribution for genotypes of both PKCγ genetic variants rs923331350
and rs1331232028 for control and ovarian cancer samples was calculated. It was found that
for variant rs923331350, only the heterozygous AG allele was found in both control and
patient samples, suggesting that the results are null in wet lab experimentation. No further
analysis of A24S SNP was carried out. The results of genotyping data of A24S are shown in
Supplementary Table S2.

For variant rs1331232028, genotype AA was found to be statistically significant with
an odds ratio of 2.508 and relative risk of 1.535, along with a p value of 0.0515, and it was
associated with increased risk of ovarian cancer, whereas genotype GG was also statistically
significant, but instead of increased risk, it was displaying a protective effect against ovarian
cancer, as shown in Table 4.

Table 4. Genotypic distribution of K359R (rs1331232028) SNP in ovarian cancer.

Genotype
Patient
(n = 49)

Control
(n = 51) Odds Ratio 95% CI—Odds

Ratio
Relative

Risk
95% CI—Relative

Risk
p Value

(%) (%)

AA
20 11

2.508 1.059 to 5.989 1.535 1.027 to 2.230 0.051540.82% 21.57%

AG
15 14

1.166 0.4799 to 2.882 1.080 0.6801 to 1.609 0.826530.61% 27.45%

GG
14 26

0.3846 0.1631 to 0.9052 0.6000 0.3646 to 0.9337 0.026128.57% 50.98%

A
28 18

2.444 1.076 to 5.396 1.565 1.048 to 2.377 0.044257.14% 35.29%

G
21 33

0.4091 0.1853 to 0.9291 0.6389 0.4207 to 0.9538 0.044242.86% 64.71%

The statistical analysis revealed that the frequency of the A-allele in variant rs1331232028
was significantly higher in the ovarian cancer group compared to the control group. How-
ever, the G-allele showed the opposite pattern and was found to be significant and statisti-
cally higher in the control group compared to the ovarian cancer group (Table 4).
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3.3. Association of K359R (rs1331232028) SNP of PRKCG with Metastatic State and Stage of
Ovarian Cancer

The genotypic distribution of K359R SNP with different clinical features of ovarian
cancer was investigated to further evaluate the association of K359R SNP with ovarian
cancer (Table 5). The wild-type allele AA is associated with metastatic cancer with an
odds ratio of 0.41 and relative risk of 0.52 (p = 0.0017), while genotypes AG and GG show
no association with metastatic ovarian cancer. There is no associated allele found with
non-metastatic ovarian cancer.

Table 5. Association of K359R (rs1331232028) SNP with Metastatic State and Stage of Ovarian
Cancer Patients.

Genotyping Distribution of rs1331232028 SNPs’ Clinical Features

Metastatic State Cancer’s Stage

Genotype

Metastatic Non-Metastatic Stage I-II Stage III-IV

OR RR p
Value

OR RR p
Value

OR RR p
Value

OR RR p
Value(95%

CI)
(95%
CI)

(95%
CI)

(95%
CI)

(95%
CI)

(95%
CI)

(95%
CI)

(95%
CI)

AA
0.41 0.52

0.0017
1.32 1.18

0.59
5.19 3.19

0.0065
1.58 1.30

0.44(0.13–
1.20)

(0.22–
1.14)

(0.43–
3.55)

(0.60–
2.09)

(1.53–
16.89)

(1.42–
7.12)

(0.61–
4.08)

(0.71–
2.17)

AG
0.66 0.73

0.76
1.530 1.297

0.45
0.81 0.85

>0.99
1.38 1.21

0.62(0.21–
2.28)

(0.27–
1.72)

(0.55–
4.04)

(0.71–
2.23)

(0.25–
2.99)

(0.31–
2.07)

(0.51–
3.57

(0.67–
2.06)

GG
6.23 3.503

0.12
0.5567 0.6885

0.25
0.20 0.28

0.02
0.43 0.59

0.11(2.01–
19.43)

(1.62–
7.63)

(0.21–
1.46)

(0.37–
1.22

(0.05–
0.78)

(0.09–
0.81)

(0.18–
1.13

(0.31–
1.05)

When considering the genotype distribution in different stages of ovarian cancer, the
wild-type allele AA demonstrates an odds ratio value of 5.19 and relative risk of 3.19 in
association with stages I–II of ovarian cancer (p = 0.0065), while the mutant allele GG with
less than 1 value of the odds ratio of 0.20 and relative risk of 0.28 shows a protective role
against ovarian cancer stages I–II (p = 0.02). None of the alleles showed an association in
stages III–IV of ovarian cancer.

3.4. Influence of (SNP rsIDs rs923331350 and rs1331232028) on the PRKCG mRNA
Secondary Structure

In silico analysis was performed to predict the mRNA secondary structure for wild-
type and variant alleles of PKC. The Minimum Free Energy (MFE) values for both wild-type
and mutant variants were analyzed. The secondary structure of mRNA for rs923331350
G/U and rs1331232028 A/G showed dramatic changes in the structures when compared to
wild type, demonstrating the significant effect of a variant allele on the overall structure of
mRNA (Figure 1A,B). For the variant rs923331350, the MFE value for the reference allele G
and variant allele T was −7.4 Kcal/mol. In the case of rs1331232028, the wild-type allele
A showed an increase in MFE value (−1.40 kcal/mol) as compared to the variant allele
G with an MFE value of −3.80 Kcal/mol. In the case of variant rs923331350, both the
wild-type and mutant alleles have the same stability due to the same MFE value, whereas
in variant rs1331232028, the wild-type allele is less stable than the mutant allele due to its
increased MFE value. The wild-type allele A in variant rs1331232028 is associated with
ovarian cancer risk (Figure 1C,D), which might be due to the result of decreased mRNA
structure stability.
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Figure 1. MFE value of mRNA secondary structures: (A) rs923331350 wild-type G allele;
(B) rs923331350 variant U allele; (C) rs1331232028 wild-type A allele; (D) rs1331232028 variant
G allele. Wild-type and altered alleles are highlighted with green circle.

3.5. Influence of PRKCG SNPs on PKCγ–Connexin 43 Interaction

Among the clusters obtained after performing HADDOCK docking analysis, the top
cluster was selected, and within that cluster, the structure with a low z-score was selected and
the results were visualized using LigPlot+. The docking parameters of wild-type and mutant
proteins upon which the top cluster are selected for analysis (Supplementary Table S2). The
docking parameters include different factors such as Van der Waals energy, electrostatic
energy, desolvation energy, restraint violation energy, and buried surface area.

Wild-type and both mutant proteins were docked with connexin 43 (also known
as GJA1), and their interaction with connexin 43 is shown in Figure 2A. There were 13
hydrogen bonds between wild-type protein and connexin 43. There were hydrophobic
interactions between wild-type and connexin 43, as shown in Figure 2a below. In wild-type
interaction with connexin 43, Lys503 is bonded with Val 539 of connexin 43 and ARG 513 is
bonded with SER 325 of connexin 43.

The hydrogen bonds in the mutant proteins are changed as compared to wild type.
The position of bonds is slightly changed, and the number of bonds is increased in mutants
as well. There were 13 hydrogen bonds between wild-type PRKCG and connexin 43,
whereas there were 15 hydrogen bonds between A24S mutant and connexin 43 (Figure 2B).
The hydrophobic interactions are more with mutant A24S as compared to wild type. In
mutant A24S protein, ARG 374 is bonded to ASP 666, whereas in wild-type protein, ARG
374 is bonded with ASN 473 and GLU 603. Likewise, LYN 346 is bonded with ASP 480 in
mutant A24S protein but in wild type, it is bonded with TYR 529.

The different bonding pattern is also seen in wild-type and K359R mutant protein
(Figure 2C). There were 14 hydrogen bonds in the K359R mutant protein. In the wild-
type interaction, ASN 473 is bonded with ALA 371 of connexin 43, whereas in K359R
mutant, ASN 473 is bonded with PRO 355 of connexin 43. There was previously no
salt bridge between wild type and connexin 43, but one was formed between K359R
mutant residue ARG 615 and connexin 43 residue ASP 378. The formation of a salt
bridge indicates the stronger bonding of the K359R mutant with connexin 43. Overall, the
mutant K359R–connexin 43 interaction was the more stable, allowing for the maximum
protein–protein interaction.
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3.6. Interactions Dynamic Analysis of Wild-Type and Variant PKCγ–Connexin 43 Complexes

For the detailed analysis of the protein–protein interaction among wild-type and
mutated proteins, MD analysis was conducted. Despite there being no association of
variant rs923331350 with disease, we have performed a further analysis on this variant
to gain potential insight behind its impact on the protein–protein interaction. Following
the simulation, several files containing critical data were generated for both wild-type and
mutated protein–protein interactions. The data in those files were plotted on graphs to
help understand the simulation results of the interaction among proteins and the effect
mutation has had on the protein–protein interaction. The following characteristics were
used to examine the differences between wild-type and mutant proteins: the analysis of
the root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of
gyration, number of hydrogen bonds, and solvent accessible surface area (SASA). Their
graphs are plotted in scatter plot.

RMSD analysis of the interaction of the wild-type and mutant protein with connexin
43 revealed that the altered protein deviates when compared to the wild type (Figure 3A).
The lower the RMSD value, the more stable the interaction. The RMSD value from 0 to 4 ns
was 0.6 nm for all three interactions. After 4 ns, the RMSD value of the three interactions
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started to deviate from 0.6 nm, and at the end of the simulation, i.e., 10 ns, the wild-type
interaction has a 0.8 nm value, A24S has a 0.6 nm value while K359R has a 0.5 nm value.
The wild-type protein interaction with connexin 43 has a higher RMSD value than the
mutated protein, showing that the interaction is stronger with the mutated protein. Among
the mutated proteins, the overall interaction is quite similar as shown in the peaks for
both proteins. So, the mutated protein interaction with connexin 43 was stronger and
more stable.
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Figure 3. Analysis of simulation trajectory of native (Blue) and mutant structures A24S (Orange) and
K359R (Gray) of PKCγ bound to connexin 43: (A) Root mean squared deviation (RMSD) plot for each
trajectory over each 10 nanosecond production run, wild-type proteins have a higher RMSD value
than mutant A24S and K359R. (B) The solvent-accessible surface area (SASA) analysis showing the
more exposed surface area of wild and buried surface area for both mutants. (C) Radius of gyration of
PKCγ and bound protein connexin 43 during the simulation run. Wild proteins have larger gyration
values showing loose interaction, while both mutant A24S and K359R have smaller gyration values
showing strong interaction with connexin 43. (D) H-bonds formed over the simulation run. (E) Two-
dimensional (2D) view of the distance between hydrogen bond interaction of wild PKCγ (Green) with
connexin 43 (purple) at different intervals. (F) Two-dimensional (2D) view of the distance between
hydrogen bond interaction of Variant A24S PKCγ (green) with connexin 43 (purple) at different
intervals. (G) Two-dimensional (2D) view of the distance between hydrogen bond interaction of
variant K359R PKCγ (green) with connexin 43 (purple) at different intervals.

At the start of the simulation, the wild-type interaction had a 600 nm2 SASA value,
while both mutants have a 580 nm2 SASA value. The SASA value for wild-type interaction
increases and reaches 630 nm2 at 6 ns, and after that, the value decreases to 590 nm2 at
10 ns. The A24S interaction SASA value started to decrease (560 nm2) after 1 ns, and at
the end of the simulation, the value did not change much (i.e., 580 nm2). In the case of
K359R interaction, the SASA value increased after 1 ns going to 610 nm2; after that, the
value decreased until 7 ns at, which point the value increased again to 610 nm2. After
that interval, the SASA value of K359R interactions decreased, ending at 580 nm2. Both
mutant protein interactions have lower SASA values than the wild-type interaction at
the beginning of the stimulation, and the trend remains the same toward the end of the
stimulation. The data indicate that wild-type PKCγ is loosely bound with connexin 43,
whereas the mutant A24S and K359R proteins bind rigidly with connexin 43 throughout
the stimulation (Figure 3B).

The radius of gyration, abbreviated as Rg, was calculated for wild-type and modified
protein interactions (Figure 3C). The wild-type protein interaction with connexin 43 started
at 4.3 nm, and throughout the simulation, it reaches 4.25 nm and 4.4 nm, ending at 4.38 nm.
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The wild-type protein interaction has a larger overall gyration radius than the A24S and
K359R mutants, which shows its loose interaction with connexin 43. The radius of the A24S
mutant interaction gyration value decreases after 10 ns of stimulation, starting from above
4.1 nm and ending at 4.0 nm. The K359R mutated interaction after rise and fall during the
10 ns stimulation gives an almost similar gyration value. Both proteins have more stable
interaction with connexin 43.

Hydrogen bonds play a critical role in the molecular interactions and structures of
proteins. The number of hydrogen bonds that are formed in protein structures during
simulations were determined to analyze the effect of the variants on protein interactions.
During the period of 0–2 ns, the number of hydrogen bonds decreased from 700 to 600,
but after that, the interval number of hydrogen bonds remained stable throughout the
simulations. It can be seen in Figure 3D that the number of hydrogen bonds in mutant
complexes is slightly higher compared to that in the wild-type complex, showing that
the molecular interactions that are formed between A24S and K359R are more stable as
compared to the wild type.

The bond length among different interactive amino acids of both wild-type and
mutant PKCγ with connexin 43 was examined to see whether the bond length changes
over 10 ns stimulation or not. Three pairs of such interacting residues were randomly
selected, and the pictures were taken using different intervals for bond length such as
0 ns, 5 ns and 10 ns for all three interactions, and are shown in Table 6. In the wild-type
PKCγ–connexin 43 complex, the distance between the interacting residues Gln48–Arg374
and Tyr529–Asn341 was increased from 0 to 10 ns; however, the distance between
Lys503–Val359 was decreased at the end of the 10 ns simulation, showing the interac-
tive amino acids came closer to each other (Figure 3E). Distances in A24S–connexin 43
complex interacting residues were determined. The distance in two interactive pairs
Ser639–Pro334 and Cys516–Glu352 was decreased, while the distance between one in-
teractive pair Ser664–Arg376 remains the same at the time interval of 0 ns and 10 ns,
showing (Figure 3F) that closer and more stable bonds are formed. Similarly, for the
K359R–connexin 43 complex, the distance between only one pair of interacting residues
Phe469–Arg362 has decreased, whilst the distance between the other two pairs Arg413–Ser
328 and Arg615–Arg376 increased (Figure 3G).

Table 6. Bond length among PKCγ variants and connexin 43.

Bond
Length

Wild-Type A24S Mutant K359R Mutant
Lys503-
Val359

Gln48-
Arg374

Tyr529-
Asn341

Ser639-
Pro334

Ser664-
Arg376

Cys516-
Glu352

Arg413-Ser
328

Phe469-
Arg362

Arg615-
Arg376

0 ns 26.71 Å 15.67 Å 9.77 Å 13.85 Å 10.07 Å 8.34 Å 5.66 Å 8.80 Å 8.32 Å
5 ns 23.83 Å 11.08 Å 11.41 Å 7.83 Å 10.04 Å 7.61 Å 7.45 Å 8.59 Å 10.95 Å

10 ns 24.59 Å 17.07 Å 10.66 Å 11.81 Å 10.07 Å 7.58 Å 7.64 Å 7.10 Å 10.21 Å

3.7. PKCγ and Connexin 43 Interaction Pathway

The PKCγ interacts with connexin 43 in various types of cells in the human body,
resulting in the regulation of gap junctions in cells by allowing small molecules to pass
through. The wild-type PKCγ phosphorylates the gap junction and causes it to be down-
regulated [43].

The signaling molecule makes entry into the cell via different receptors such as G-
coupled protein receptors (GPCRs) and receptor tyrosine kinase (RTK) in the ovaries.
Histamine, chemokine, and luteinizing hormone are ligands for various GPCRs such as
the histamine 1 receptor, CXCR4 receptor, and luteinizing hormone receptor, which enter
the cell and activate phospholipase C (PLC) [44]. Similarly, PLC is activated by various
RTK receptors such as EGFR, VEGFR, FGR and IR upon agonist binding [45]. PLC binds
to phosphatidylinositol 4, 5-bisphosphate (PIP2) after activation, producing IP3 and DAG.
IP3 binds to the IP3R receptor in the endoplasmic reticulum, causing calcium production



Genes 2023, 14, 236 11 of 16

to increase. Both DAG and Ca2+ cause PKCGactivation. The phosphorylation of specific
Ser or Tyr residues in the C-terminal domain of connexin 43 has been shown to reduce
gap-junctional intercellular communication, and PKCGphosphorylates connexin 43 mostly
at Ser-368 and Ser-372 in the C-terminal domain. The phosphorylation of Ser-368 by
PKC results in a conformational change in the C-terminal domain, which reduces the
permeability of connexin 43 GJH to small organic solutes [46,47].

In the case of A24S and K359R mutant PKCG, they phosphorylate connexin 43 more
rapidly, resulting in a complete blocking of gap junctions (Figure 4). The gap junction’s
blockages cause no passage of ions, solutes and small molecules among cells, leading
toward a loss of cell–cell communication.
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4. Discussion

Ovarian cancer is characterized by late-stage onset and a poor prognosis. Women
frequently report “silent symptoms” such as stomach bloating and pain, resulting in a
delayed referral for a malignancy workup [48]. Age at diagnosis, tumor stage, histological
type, tumor grade, and the existence of residual illness after initial surgery are all known
predictors of ovarian cancer. All of these known variables (except age) can only be evaluated
after surgery [49,50]. As a result, the importance of developing early detection approaches
and novel prognostic markers is being highlighted even more. Protein kinase C (PKC)
is a prototypical class of serine/threonine kinases that signal via multiple pathways and
regulate the expression of genes involved in cell cycle progression, tumorigenesis, and
metastatic spread. Changes in the protein expression of PKC isozymes produce structural
and functional changes that have been frequently connected to the presence of specific
types of polymorphisms, resulting in the cancer-causing genetic sequence [51,52]. The
purpose of this study is to determine the predictive impact of PRKCG polymorphism in
patients with ovarian cancer.

Missense SNPs have been demonstrated to cause structural changes and boost onco-
gene function since they are situated in functional areas of genes. As a result, missense
SNPs in specific genes may increase the likelihood of acquiring cancer. Single nucleotide
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polymorphisms (SNPs) in the PKC family have also been associated with several types
of cancer [53,54]. Several studies have found a link between PKCγ and cancer at various
stages, including glioblastoma, osteoblastoma and colon cancer, among others [55].

I-TASSER predicted the PRKCG protein model, which belongs to the conventional
PKC (cPKC) class, which comprises PKCα, PKCβ1 and 2, and PKCγ. The model was
chosen based on its C-score (−2.27) and InterPro prediction. In previous studies, I-TASSER
was used to predict protein 3D models such as SARS-CoV-2, EZH2, TOX3, BRCA1, and
many others [56–58]. I-TASSER was chosen based on an automated assessment of protein
3D structure prediction in CASP9, which takes a range of criteria into account to estimate
predictor accuracy [59].

The connection between allele changes and ovarian cancer was explored after the
rs923331350 and rs1331232028 Id SNPs were chosen in silico. To achieve this goal, two sets
of primers (two outer and two inner) were constructed using Primer1 against the variants,
and DNA was extracted. Following the extraction, tetra ARMS-PCR was performed. The
statistical analysis using GraphPad revealed that when compared to homozygous GG
and heterozygous AG, the results of PCR data showed that the rs1331232028 wild-type
allele AA with the ODDs value of 2.50, relative risk of 1.53, and p value of 0.05 can be
associated with ovarian cancer. The other alleles GG and AG have odds value and relative
risk of less than 1, which makes them fall in the significant range. In contrast, the other
SNP rs923331350 shows only one allele AG occurrence in both healthy and ovarian cancer
patients, which makes the SNP null in wet lab analysis, and it cannot be associated with
ovarian cancer. The wet lab analysis of PRKCG SNP rs1331232028, like many other SNPs
in multiple genes, including ERCC1, XPC, PIK3CA, ERBB2 and ERCC2, can be linked to
ovarian cancer susceptibility [60].

The effect of mutant SNPs of PKCγ (A24S and K359R) on the protein’s structure and
function are checked by seeing the mRNA secondary structure stability. In the case of the
A24S variant, the allele change does not change the mRNA stability, whereas in the K359R
variant, the wild-type allele (A) causes less stability in the mRNA structure, which may
cause a change in the protein’s structure and function. In addition, it can be associated with
ovarian cancer progression, as genotype AA of variant K359R shows a link with ovarian
cancer prognosis in wet lab analysis.

The variations in non-coding regions of the gene usually impact the expression of the
gene at transcription as well as translation level [61]. Similarly, variations in the coding
region influence the structure of the protein and ultimately its function [27]. Such structural
modifications can also lead to the altered protein–protein interaction. PRKCE variations that
are found to be associated with cancer stage and metastasis may also impact its interaction
with other signaling proteins, leading to cancer progression.

Therefore, following an in vitro analysis of the SNP effect on the protein’s interaction
capability, docking was performed utilizing HADDOCK. Connexin 43 was chosen to bind
with PKCG because it directly phosphorylates Cx43 on Ser or Tyr residues, altering single-
channel function and decreasing intercellular communication [62]. Cx43-mediated GJIC
(Gap Junctional Intercellular Communication) that is overexpressed has been found to
inhibit tumor growth by increasing cAMP transmission, implicating a role for Cx43–GJIC in
carcinogenesis. Second, connexins may help to prevent cancer by interacting with signaling
mediators via their C-terminal tails. As a result, Cx43 on the cell surface and Cx43 in the
cytoplasm were both identified as tumor suppressors [63].

Among the docking clusters obtained, the cluster with a low Z-score was selected
along with taking docking parameters into account, which include Van der Waals energy,
electrostatic energy, desolvation energy, restraints violation energy and buried surface
area. The docking results show more bonding of mutants as compared to the wild type,
suggesting that mutant proteins interact more stably with connexin 43. Wild-type PKCγ
down-regulates the gap junction by phosphorylating it, which causes selective permeability
through them [64]. The docking analysis revealed the strong binding of mutant proteins
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with connexin 43, resulting in hyperphosphorylation of the gap junction which closes it,
allowing no permeability at all.

After the docking result, MD simulations were conducted for the detailed analysis
and further validation of SNPs on PKCγ–connexin 43 interactions. The RMSD value for
wild-type interaction is high as compared to mutants, which shows the bonding is less
stable as compared to mutants. Similarly, the gyration value of mutants is more than that
of the wild type, indicating a strong interaction with connexin 43. The SASA analysis
reveals more exposed surface area for wild-type interaction as compared to mutants, which
means wild is having less interaction and thus more exposed areas. In contrast, the mutant
having a strong association with connexin 43 has more buried surface area. The wild-type
interaction has a loose interaction with connexin 43 as it has a larger gyration value, while
both mutants show strong interaction with a smaller Rg value. The H-bonds remain almost
the same in overall interaction. The bond length among the wild type throughout the
simulation was also recorded, which changes, and the bond length decreased in the middle
of the simulation. The bond length of mutants is less than of the wild-type interaction in
the middle, which further usually reduces at the end of the simulation, showing the closer
and more stable interaction of mutant PKCγ (A24S and K359R) with connexin 43. The
docking analysis showing a more stable interaction of the mutant is validated further by
simulation results. Thus, based on the MD simulation, we postulate that the mutation of
residue A24S and K359R disrupts the coordination of gap junctions.

After docking and MD simulation along with the literature available through different
databases, an interactive pathway is constructed to illustrate the effect of SNPs on cellular
processes. In normal cells, gap junctions are present that allow the cell-to-cell communi-
cation, and PKCG is one of the down-regulators of the gap junction named connexin 43.
PKC after activation through DAG and Ca+2 binds connexin 43 and phosphorylates it at
Ser and Thr residues, making it semipermeable to small molecule passage [65]. The main
connexins expressed in ovary cells are epithelium, Cx26, Cx43, and Cx32. Gap junctions are
consistently down-regulated, absent, or not present in cell–cell communication. Ovarian
carcinoma cells, like other cancers, have defects in intracellular and intercellular communi-
cation [43]. The SNPs in PKCγ A24S and K359R cause changes in binding with connexin
43 and may result in the closure of gap junctions by increasing the phosphorylation of
residues, blocking the passage of small molecules and ions.

5. Conclusions

PKCγ disease-related variations were identified in silico, and likely pathogenic SNPs
were chosen. PRKCG SNP rs923331350 showed no association with ovarian cancer progres-
sion as it shows null results in experimentation. While the A24S SNP shows null results in
the Pakistani population, it could show an association with different populations around
the world. Moreover, the sample data of our study belong to one particular area, and the
sample size was small. The other chosen PKCγ protein missense mutation rs1331234028
variant allele AA was found to be harmful and highly related to ovarian cancer. The
discovered SNP could be employed as a prognostic marker to aid in the early detection
of ovarian cancer and act as a new potential therapeutic target. The expression profile of
PKCγ following this mutation needs to be investigated, since it may open up new avenues
in the cancer therapy field. Moreover, further research should be carried out for more
validation of the results on a large sample size. The sample criteria could be expanded,
and the marker can be checked with patients having any other cancer as well. The SNPs
(A24S and K359R) of PKCγ can bind more strongly with connexin 43, which may lower its
protein concentration in the cell. The effect of mutant PKCγ on the gap junction interactive
pathway requires further validation, and more research should be carried out through
in vitro and in vivo analysis.
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