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Abstract: Mitochondria are responsible for controlling cell death during the early stages of radiation
exposure, but their perturbations are associated with late effects of radiation-related carcinogenesis.
Therefore, it is important to protect mitochondria to mitigate the harmful effects of radiation through-
out life. The glutathione peroxidase (GPx) enzyme is essential for the maintenance of mitochondrial-
derived reactive oxygen species (ROS) levels. However, radiation inactivates the GPx, resulting in
metabolic oxidative stress and prolonged cell injury in irradiated normal human fibroblasts. Here,
we used the GPx activator N-acetyl-5-methoxy-tryptamine (melatonin) and a mitochondria-targeted
mimic of GPx MitoEbselen-2 to stimulate the GPx. A commercial GPx activity assay kit was used
to measure the GPx activity. ROS levels were determined by using some ROS indicators. Protein
expression associated with the response of mitochondria to radiation was assessed using immunos-
taining. Concurrent pre-administration or post-administration of melatonin or MitoEbselen-2 with
radiation maintained GPx activity and ROS levels and suppressed mitochondrial radiation responses
associated with cellular damage and radiation-related carcinogenesis. In conclusion, melatonin and
MitoEbselen-2 prevented radiation-induced mitochondrial injury and metabolic oxidative stress by
targeting mitochondria. These drugs have the potential to protect against acute radiation injury
and late effects of carcinogenesis in a variety of radiation scenarios assuming pre-administration or
post-administration.
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1. Introduction

Humans exposed to high levels of radiation lose function of tissues and organs due to
cell death, and clinical symptoms, such as hematopoietic subsyndrome and gastrointestinal
subsyndrome, manifest as acute radiation syndrome with an incubation period of several
weeks or less [1]. Radiation protection is critical for improving care for radiation victims in
a radiation emergency. In addition to acute radiation effects, late radiation effects include
carcinogenesis that manifests decades later [2]. Various radiation-protective agents, such
as antioxidants, nutrients, and phytochemicals, have been identified for use in a variety
of radiation scenarios [3]. In humans, potassium iodide has been shown to block internal
thyroid exposure to I-131 radioiodine [4]. Patt et al. reported that administering cysteine to
animals prior to irradiation increased survival after total body irradiation (TBI) by scaveng-
ing free radicals and neutralizing the effect of radiation [5]. Granulocyte colony-stimulating
factor (G-CSF) administration promotes the proliferation and differentiation of bone mar-
row progenitor cell populations and significantly increases mouse survival after TBI [6].
Traditional radioprotective agent research has primarily focused on pre-administration for
radiation workers or cancer patients who are likely to be exposed to radiation [7]. On the
other hand, radiation accidents are unintended or unexpected exposures; therefore, the
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development of radiation-protective agents with the effect of promoting recovery from
radiation damage after exposure is an urgent issue. Despite advances in basic research,
radiation-protective agents have yet to be clinically tested due to serious side effects [3].
Because there are still difficult problems to solve for translating agents from animal testing
to practical implementation, more research is needed to understand the mechanisms of
protective action for radiation-protective agents.

Mitochondria regulate cell death by releasing cytochrome C, which acts as a sensor
of cell damage [8]. Mitochondria also play a role in radiation-induced oxidative stress
responses in both acute radiation injury and late-onset carcinogenic effects [9,10]. We have
previously reported that radiation activates ataxia-telangiectasia mutated (ATM)-mediated
mitochondrial respiration, which is required for energy supply to respond to nuclear
DNA damage [11,12]. Stimulating mitochondrial respiration increases the generation of
delayed reactive oxygen species (ROS), which in turn mediates oxidative stress as an
indirect effect of radiation [12]. Thus, mitochondria generate ROS and are vulnerable to
ROS-mediated oxidative stress. Mutations in mitochondrial DNA have been found in a
variety of human cancers [13,14]. We further reported that mitochondrial ROS activate
transforming growth factor-β (TGF-β) signaling, resulting in tumor microenvironment
formation in radiation-related carcinogenesis [15]. Thus, mitochondrial oxidative stress
is associated with carcinogenesis. Aside from nuclei, mitochondria are believed to be an
important radiation target for radiation protection.

Glutathione (GSH) is an antioxidant that maintains intracellular redox homeostasis.
Mitochondrial GSH is an important molecule in mitochondrial oxidative stress control.
GSH detoxifies ROS by converting them to GSH disulfide (GSSG) and H2O via the enzyme
activity of GSH peroxidase (GPx) [16–18]. NADPH-dependent GSH reductase then converts
GSSG back to GSH. We recently reported that radiation has been shown to inactivate
GPx, which increases ROS levels and causes ROS-mediated oxidative stress in human
fibroblasts [19]. Vitamin C and the flavonoid epicatechin found in tea leaves have the
potential to protect mitochondria from radiation [20]. In this paper, we challenge the
development of a new radioprotective agent that targets mitochondria. We focused on GPx-
related agents, such as melatonin (N-acetyl-5-methoxy-tryptamine) and MitoEsbselen-2, to
develop radiation protective agents with fewer side effects. Melatonin is present in almost
all organisms to regulate the antioxidant system and circadian rhythms [21–24]. Melatonin
is used clinically for sleep disorders of circadian etiology and neurological degenerative
diseases [25–27]. Melatonin has been shown to stimulate GPx and act as a free radical
scavenger [28,29]. MitoEbselen-2, a mitochondrial-targeted glutathione peroxidase mimic,
is a radiation mitigator [30].

2. Materials and Methods
2.1. Cell Culture, Drugs, and Irradiation

TIG-3 and MRC-5 normal human diploid lung fibroblasts were obtained from the
Health Science Research Resources Bank and Riken Cell Bank, respectively, and cultured
in α minimum essential medium (Nacalai Tesque, Kyoto, Japan) containing 10% heat-
inactivated fetal calf serum. The cells were treated with 0.1 µM melatonin (FUJIFILM
Wako Pure Chemical Co., Osaka, Japan) or 20 µM MitoEbselen-2 (MedKoo Biosciences,
Inc., Chapel Hill, NC, USA) 2 h before (pre-radiation treatment) or 2 h after (post-radiation
treatment) ionizing radiation (IR). A 150-kVp X-ray generator (Model MBR-1505R2, Hitachi-
Medico Co., Hitachi, Tokyo, Japan) equipped with 0.5 mm Cu and 0.1 mm Al filters was
used for irradiation.

2.2. GPx Assay

Cell extracts were taken 1 day after irradiation. A GPx Activity Assay Kit (Biovision
Inc., Mountain View, CA, USA) was used to measure the GPx activity in the indicated
samples. The activities of GPx were determined by evaluating the reduction of nicotinamide
adenine dinucleotide phosphate (NADP+) to nicotinamide adenine dinucleotide phosphate



Genes 2023, 14, 45 3 of 11

(NADPH) in the cell lysates following the instruction from the manufacturer’s protocols.
NADPH was determined by measuring spectrophotometric absorbance at 340 nm. Protein
content in the enzymatic extracts was determined by the Bradford protein assay. The
activity was expressed as µmol NADPH/min per mg protein.

2.3. ROS Detection

The redox-sensitive 2′,7′-dichlorofluorescin diacetate (DCFDA; Sigma Genosys, The
Woodlands, TX, USA) at 5 µM for 30 min was used to measure intracellular ROS levels. The
DCFDA does not differentiate between different types of ROS [31]. Mitochondria-delivered
ROS was measured with 2.5 µM MitoSOX-red for 10 min (Thermo Fisher Scientific, Inc.,
Waltham, MA, USA). OxiORANGE dye at 1 µM for 20 min (Goryo Chemical Inc., Sapporo,
Japan) detects hydroxyl radicals (•OH). A FACScan automated flow cytometer (Becton,
Dickinson and Company, Franklin Lakes, NJ, USA) was used to quantify stained cells. Data
were normalized to non-irradiated controls.

2.4. Cell Counting

TIG-3 and MRC-5 cells (1.0 × 105 cells) were seeded into 25 cm2 flasks (Thermo Fisher
Scientific). The cells were incubated overnight, X-rayed the next day, and then further
incubated for 3 days. Cells were trypsinized and total number of cells was determined by
using a hemocytometer and an optical microscope.

2.5. Immunofluorescence

The staining protocol has previously been described [32]. The cells were fixed with
4% paraformaldehyde 1 day after IR. Antibodies were listed as follows: phosphorylated
AMP-activated protein kinase (AMPK, PA5-37821, Invitrogen, Carlsbad, CA, USA), γ-
H2A histone family member X (γ-H2AX, 05-636, Millipore, Billerica, MA, USA), Nuclear
factor erythroid 2-related factor 2 (Nrf2) (ab31163, Abcam, Cambridge, MA, USA), Parkin
(14060-1-AP, Proteintech, Wuhan, China), α-smooth muscle actin (α-SMA) (A2547, Sigma),
translocase of outer membrane 20 (TOM20, 612278, BD, Biosciences, San Jose, CA, USA),
secondary antibodies conjugated to Alexa Fluor 488 (A11034, Molecular Probes, Eugene,
OR, USA) or Alexa Fluor 647 (A21236, Molecular Probes). The images were acquired
and analyzed using a Keyence BZ-X700 fluorescence microscope and Hybrid Cell Count
Software (BZ-II Analyzer, Keyence Corporation, Oosaka, Japan). More than 50 cells were
manually counted for each data point.

2.6. Statistical Analysis

The data represent the mean ± standard deviation and were obtained from at least
three independent samples. Following one-way ANOVA, Dunnett’s tests were used to
detect significant differences between the means of three or more independent groups.
Student’s t-tests were used to compare two groups.

3. Results
3.1. Maintaining GPx Activity following Radiation Exposure by Pre-Radiation or Post-Radiation
Treatment with Melatonin or MitoEbselen-2

GPx enzymes play an important role in scavenging ROS with GSH [17,18]. However,
we previously reported that radiation inactivates GPx activity in a dose-dependent manner,
causing ROS control to be disrupted in TIG-3 and MRC-5 cells [19]. The irradiated cells
were treated with GPx activator melatonin or a GPx mimic MitoEbselen-2 to reduce the
effect of radiation on GPx activity. The effects of these drugs were evaluated by measur-
ing GPx activity in the indicated samples (Figure 1). Melatonin treatment either before
or after radiation prevented radiation-induced inactivation of GPx activity in both cells
(Figure 1A,B). Similarly, radiation had no effect on GPx activity when cells were pre-treated
and post-treated with MitoEbselen-2 (Figure 1A,B).
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Figure 1. Effect of melatonin or MitoEbselen-2 on the GPx activity: the cells were treated with
melatonin or MitoEbselen-2 before (pre-radiation treatment, (A)) or after (post-radiation treatment,
(B)) IR. The GPx activity at 1 day after irradiation in indicated samples. Asterisk indicates a significant
difference in the GPx activity of IR+ melatonin group and IR+ MitoEbselen-2 group compared with
that of IR groups at same Gy level.

3.2. Scavenging ROS by GSH-Related Drugs

The effect of melatonin and MitoEbselen-2 on intracellular redox state was examined
by measuring ROS levels in TIG-3 and MRC-5 cells using some ROS indicators. The DCFDA
probe indicates the oxidative stress conditions. Radiation induced perturbation in redox
control, as evidenced by increased DCFDA staining in TIG-3 and MRC-5 cells (Figure 2A).
However, pre-radiation and post-radiation melatonin or MitoEbselen-2 treatment sup-
pressed the increase in DCFDA staining in both irradiated cells (Figure 2A). The activation
of mitochondrial oxidative phosphorylation in response to DNA damage causes radiation-
induced delayed ROS generation [11]. We previously reported that GSH-mediated redox
homeostasis maintains mitochondrial ROS levels below 2 Gy, whereas high ROS levels
remained at 24 h after exposure to high doses (>5 Gy; Figure 2B) [19,33]. Melatonin or
MitoEbselen-2 pre-radiation and post-radiation treatment had no effect on mitochondrial
ROS generation after radiation (Figure 2B). Hydroxyl radicals (•OH) cause the most severe
cell damage of any ROS [34]. •OH and hypochlorous acid (HClO) can be detected selec-
tively in live cells using the dye (Goryo Chemical; [35]). Radiation causes an increase in
•OH levels, whereas melatonin or MitoEbselen-2 inhibited the induction of an increase in
•OH level after irradiation in TIG-3 and MRC-5 cells (Figure 2C).
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Figure 2. Measurements of the intracellular redox state, mitochondrial ROS and •OH. The relative
fluorescence intensity values of the DCFDA (A), MitoSOX-red (B), and OxiORANGE (C) were
normalized to non-irradiated controls. TIG-3 and MRC-5 cells were stained 1 day after X-ray exposure.
Asterisk indicates a significant change in fluorescence intensity value of the staining in IR+ melatonin
group and IR+ MitoEbselen-2 group compared with that of IR groups at same Gy level.

3.3. Mitigating Radiation Effects on Cell Growth Suppression by Treatment with Melatonin
or MitoEbselen-2

The number of cells in TIG-3 cells was counted 3 days after irradiation to evaluate
the protective role of melatonin and MitoEbselen-2 on cell growth (Figure 3A). When cells
were exposed to radiation doses >2.5 Gy, their growth was inhibited in a dose-dependent
manner. In contrast, melatonin-treated cells showed growth inhibition at >5 Gy, but
MitoEbselen-2-treated cells showed no growth retardation. Thus, combining radiation with
melatonin or MitoEbselen2 reduced the effect of radiation on cell growth. Similar results
were obtained in MRC-5 cells (Supplementary Figure S1). Radiation-induced DNA double
strand breaks were examined by using a marker γ-H2AX. γ-H2AX foci were found 24 h
after 10-Gy irradiation (Figure 3B). In contrast, pre-radiation and post-radiation melatonin
or MitoEbselen-2 treatment did not significantly increase γ-H2AX fluorescence levels
(Figure 3C). We further examined the Nrf2-mediated antioxidant response. Radiation alone
activated Nrf2, as evidenced by nuclear accumulation of Nrf2 in TIG-3 cells (Figure 3B).
Radiation with pre-radiation and post-radiation melatonin or MitoEbselen-2 treatment did
not induce such Nrf2 radiation responses (Figure 3D).
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Figure 3. Cell growth, γ-H2AX foci formation, and nuclear accumulation of Nrf2 staining (A) The
number of cells at 3 days after irradiation in indicated samples. Asterisk displays a significant
difference in IR+ melatonin group and IR+ MitoEbselen-2 group compared with that of IR groups
at same Gy level. (B) γ-H2AX foci (red) and nuclear accumulation of Nrf2 (green) were shown in
irradiated TIG-3 cells. Scale bar = 50 µm. Fluorescence intensity of γ-H2AX (C) and Nrf2 (D) is
shown in the graph. Asterisk displays a significant change in fluorescence intensity values of the
staining compared with that of non-irradiated control cells.

3.4. Effects of Melatonin and MitoEbselen-2 on Mitochondrial Radiation Response

Mitochondrial autophagy (mitophagy) maintains mitochondrial quality through degra-
dation [36]. Parkin recognizes dysfunctional mitochondria with low membrane poten-
tial [37]. Radiation with 10 Gy revealed Parkin staining in Tom20-stained mitochondria as
a green color (Figure 4A). In contrast, Parkin foci were not detected by radiation when cells
were pre-treated and post-treated with melatonin or MitoEbselen-2 (Figure 4B). Tom20 is
used to determine the change in mitochondrial amounts. The fluorescence intensity values
of Tom20 staining in TIG-3 cells increased with radiation exposure. However, pre-radiation
and post-radiation treatment with melatonin or MitoEbselen-2 had no effect on the Tom20
radioresponse (Figure 4C).
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3.5. Fibroblast Activation

We next investigated whether melatonin and MitoEbselen-2 could prevent the appear-
ance of activated fibroblasts, which were identified as cells with α-SMA-positive fibers
(Figure 5A). We previously reported that radiation induced increase in α-SMA protein
expression in human fibroblasts [38]. Immunostaining revealed that activated fibroblasts
showed altered morphology (flatter and larger) with a fiber-like staining pattern of α-
SMA as reported previously [15] (Figure 5A). Ten-Gy radiation induced α-SMA-positive
cells in TIG-3 and MRC-5 cells. Melatonin and MitoEbselen-2 pre-radiation (Figure 5B)
and post-radiation treatments (Figure 5C) inhibited the induction of α-SMA-positive cells
after radiation.
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4. Discussion

People’s anxiety about radiation has become a heavy burden both physically and
mentally in the aftermath of the Fukushima disaster, increasing health risks regardless of
exposure dose [39]. Studies on the effect of radiation on mitochondrial oxidative stress
can help us to understand the mechanism of radiation carcinogenesis. The radiation risk
knowledge gained will be used to disseminate basic radiation knowledge. The research
findings are important not only for laying the groundwork for a new radiation protection
system but also for deepening the general public’s understanding of radiation.

Mitochondria are the sites of intracellular ROS generation during the mitochondrial en-
ergy supply process [40]. The GPx is involved in the maintenance of mitochondrial-derived
ROS levels. However, radiation perturbs GSH-mediated redox control by inactivating
the GPx, causing metabolic oxidative stress and prolonged cell injury due to delayed
mitochondrial ROS generation [10,19]. We here demonstrated that pre-radiation and
post-radiation treatment with melatonin or MitoEbselen-2 preserved GPx activity after
irradiation. The effects of melatonin or MitoEbselen-2 on GPx-mediated redox control
were depicted in Figure 6. The use of DCFDA staining revealed that combining melatonin
or MitoEbselen-2 with radiation did not perturb cellular redox homeostasis in human
fibroblasts. Both drugs had no effect on the generation of mitochondrial ROS as measured
by MitoSOX-red staining, but they did suppress the increase in radiation-induced •OH
levels. The absence of γ-H2AX foci induction and nuclear Nrf2 accumulation indicated
that these drugs eliminated radiation-induced DNA damage and antioxidant responses.
Furthermore, mitochondrial damage was tracked using the Parkin antibody. Melatonin and
MitoEbselen-2 prevented radiation-induced mitochondrial injury and metabolic oxidative
stress by targeting mitochondria, according to the findings. We previously reported that
mitochondrial-derived ROS appears 3 h after irradiation, and excess ROS disrupt mitochon-
drial functions by degrading at a later stage in human fibroblasts [11]. Thus, melatonin and
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MitoEbselen-2 are effective at mitigating mitochondria-mediated oxidative stresses, even
when administered after radiation.
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believed that mitochondrial genomic instability and dysfunction play a role in radiation-
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been shown to prevent mitochondrial-mediated tumor microenvironment formation by
suppressing the appearance of activated fibroblasts after radiation.

5. Conclusions
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carcinogens. Both drugs have the potential to be a countermeasure agent against radiation’s
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