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Abstract: The hepatitis E virus (HEV) is a long-ignored virus that has spread globally with time. It
ranked 6th among the top risk-ranking viruses with high zoonotic spillover potential; thus, consider-
ing its viral threats is a pressing priority. The molecular pathophysiology of HEV infection or the
underlying cause is limited. Therefore, we incorporated an unbiased, systematic methodology to
get insights into the biological heterogeneity associated with the HEV. Our study fetched 93 and
2016 differentially expressed genes (DEGs) from chronic HEV (CHEV) infection in kidney-transplant
patients, followed by hub module selection from a weighted gene co-expression network (WGCN).
Most of the hub genes identified in this study were associated with interferon (IFN) signaling path-
ways. Amongst the genes induced by IFNs, the 2′-5′-oligoadenylate synthase 3 (OAS3) protein was
upregulated. Protein-protein interaction (PPI) modular, functional enrichment, and feed-forward
loop (FFL) analyses led to the identification of two key miRNAs, i.e., miR-222-3p and miR-125b-5p,
which showed a strong association with the OAS3 gene and TRAF-type zinc finger domain containing
1 (TRAFD1) transcription factor (TF) based on essential centrality measures. Further experimental
studies are required to substantiate the significance of these FFL-associated genes and miRNAs
with their respective functions in CHEV. To our knowledge, it is the first time that miR-222-3p has
been described as a reference miRNA for use in CHEV sample analyses. In conclusion, our study
has enlightened a few budding targets of HEV, which might help us understand the cellular and
molecular pathways dysregulated in HEV through various factors. Thus, providing a novel insight
into its pathophysiology and progression dynamics.

Keywords: hepatitis E virus; WGCNA; FFL; protein-protein docking; PPI

1. Introduction

Animal-sourced viruses have posed a severe threat to public health globally, as seen by
the recent appearance and spread of zoonotic viruses such as the Ebola virus and the Severe
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The Hepatitis E virus (HEV)
ranks among the top 10 risk-ranking viruses with a high potential for zoonotic spillover.
Therefore, considering its viral risks is a growing concern [1]. The current status of HEV
corresponds to 1/8th of the global population. Among them are the recent and ongoing
infections of 15–110 million individuals due to increased prevalence in developed coun-
tries [2]. HEV comprises around 7.2 kb quasi-enveloped, positive sense, single-stranded
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RNA genome comprising three significant open reading frames (ORFs) and the fourth in
genotype 1 [3]. It commonly causes acute hepatitis with chronicity in pregnant women,
organ transplant patients, and immunocompromised patients [2]. HEV is involved in extra-
hepatic manifestations and zoonotic transmission among different hepatitis viruses [4,5].
Still, the molecular pathophysiology of HEV infection or the underlying cause is limited,
and no effective cure or hepatitis E vaccine is available globally [6].

A virus can successfully infect a host by breaching numerous levels of its defense
mechanism and effectively using host factors for its replication [7]. Lately, microRNAs
(miRNAs), one of the host factors, have come into the spotlight due to their significant
role in regulating viral infections at the post-transcriptional level. They are small RNAs
(non-coding) that are primarily engaged in suppressing gene expression of either cellular or
viral RNAs amid infection [8]. Few studies have acknowledged the function of miRNAs in
stimulating gene expression in non-viral diseases [9]. The miRNAs exhibit pleiotropy, which
indicates that they have several messenger RNA (mRNA) targets and vice versa. Multiple
miRNAs’ target sites are sometimes co-localized at a single gene, synergistically repressing
the mRNA [10,11]. Different studies report that the functions of several miRNAs are cell- or
organ-specific. Through various target sequences, a particular kind of miRNA can influence
multiple interacting cellular pathways and thus play a crucial part in developing diseased
conditions.

In contrast to miRNA, which regulates genes post-transcriptionally, transcription
factors (TFs) are the ones that regulate the genes at the transcriptional level [12]. In addition,
miRNAs and TFs not only regulate the genes but also regulate each other. Intricately
intertwined miRNA and TF interactions result in feed-forward loops (FFLs) or feedback
loops (FBLs), in which a TF modulates a miRNA, or a miRNA negatively regulates a TF,
and the two of them co-regulate a common target. Three types of FFLs can be categorized
according to their master regulators: TF-FFL, miRNA-FFL, and composite FFL [13].

We incorporated an unbiased, systematic methodology to get insights into the bio-
logical heterogeneity associated with the HEV. Utilizing microarrays allows researchers to
swiftly investigate the expression of numerous genes in a reaction. In addition, it allows
one to choose the dataset based on their research design. Certain limitations persist in
comprehensively exploring the entire biological system for any disorder. Weighted gene
co-expression network analysis (WGCNA) is a powerful and effective algorithm attempting
to dig valuable information from gene expression profiles by building gene modules and
trying to justify the significance of gene modules from a biological point of view [14–17].
FFLs can engineer recurrent network motifs to enhance the robustness of gene regulation
in mammalian genomes [18]. A three-node FFL can be extended to form a four-node or
five-node FFL by adding further interaction links. Three-node miRNA FFL comprises a
TF, a miRNA, and a common gene target, with miRNAs dominating or driving the whole
network [13]. Previous studies have shown that miRNAs may be therapeutic in treating
viruses such as Herpes Simplex Virus (HSV), Dengue, Human Immunodeficiency Virus-1
(HIV-1), Hepatitis C virus (HCV), and influenza [19,20]. As they meet all the requirements,
including specificity, sensitivity, and accessibility, thus miRNAs can also become excellent
biomarkers [21]. Therefore, identifying miRNA networks will take us one step closer to the
advancement in diagnostic and therapeutic purposes related to HEV.

HEV-associated mRNA expression datasets corresponding to two groups, mainly
whole blood (WB) and monocytes (Mo), were extracted from National Center for Biotech-
nology Information (NCBI)-Gene Expression Omnibus (GEO). Differentially expressed
genes (DEGs) were identified in both groups, followed by the establishment of a weighted
gene co-Expression network (WGCN). Hub module selection was conducted after DEGs
were individually passed as input to WGCNA. Thirteen overlapping hub genes were
shortlisted by functional enrichment and protein-protein interaction (PPI) analysis. Further
analysis of these genes using three-node miRNA FFL revealed the key TF, miRNA, and
gene that are associated with the development of HEV. Our study has enlightened a few
budding targets of HEV, which could serve as an effective tool against the zoonotic HEV.
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2. Materials and Methods
2.1. HEV mRNA Expression Profile Extraction and Differential Expression Analysis (DEA)

We accessed the NCBI-GEO [22] (https://www.ncbi.nlm.nih.gov/geo/, accessed
on 1 August 2022) utilizing “HEV” and “Hepatitis E Virus” as appropriate keywords
for HEV-associated mRNA expression profile retrieval. The search results were further
trimmed down in accordance with the following inclusion criteria: (1) the dataset(s) must
be “expression profiling by array” type along with HEV infection being present in “Homo
Sapiens” as host; (2) the dataset must include raw and processed microarray data; (3) the
dataset must have control and infected sample types; (4) the submission date of the dataset
must be within last ten years (i.e., 2012 to 2022); (5) the dataset must contain greater
than 25 samples. We excluded studies devoid of case reports, review articles, abstracts,
non-human samples, and cell-line-based experimental study designs. The series matrix
expression file of the selected dataset was retrieved from GEO, followed by quality checks.
ARSyNseq function (with unknown batch settings) was available within NOISeq to acquire
batch-corrected expression values. Mapping of probe IDs to their corresponding HUGO
Gene Nomenclature Committee (HGNC) symbols was handled via GEO2R. Averaging
expression values for those gene(s) mapping to several probe IDs was conducted to avoid
redundancy. p-values and log2(fold change) values of all genes across two sample groups
were computed utilizing limma [23]. The genes corresponding to a p-value < 0.05 and
|log2(fold change)| > 0.1 were considered as differentially expressed across two sample
groups. HGNC multi-symbol checker (https://www.genenames.org/tools/multi-symbol-
checker/, accessed on 5 August 2022) was queried thereafter to obtain DEGs with officially
approved HGNC symbols.

2.2. HEV-Specific WGCN Construction and Hub Module Selection

WGCN formation and module(s) selection are discussed in detail in [24]. Module
eigengene (ME) and MEdissimilarity (MEdiss) were calculated. ME dendrogram was ex-
amined based on Pearson correlation to merge module(s) with comparable high expression
profiles. Standard intramodular connectivity (k.in) and module membership (MM) were
computed for every module. The module(s) with a significantly higher correlation between
k.in and MM were regarded as the hub module(s).

2.3. PPI Network Construction and Modular Analysis

The hub module DEGs of both Mo and WB groups were collectively given as input
to Search Tool for the Retrieval of Interacting Genes (STRING, https://string-db.org/,
accessed on 21 August 2022) v11.5 web-based tool [25] in order to establish a PPI network
corresponding to highest confidence (i.e., interaction score > 0.9) and subsequently visual-
ized utilizing Cytoscape v3.91 [26]. The parameters used for PPI hub module selection are
discussed in detail in [27].

2.4. Pathway and Gene Ontology (GO) Term Enrichment Analyses for Hub Gene Selection

All the PPI hub module genes were given as input to the Enrichr web server [28] (https:
//maayanlab.cloud/Enrichr/, accessed on 25 August 2022), and the top 10 significantly
(p-value < 0.05) enriched pathways and GO terms were collected from BioPlanet, GO-
Biological Process (BP), GO-Molecular Function (MF), and GO-Cellular Compartment (CC)
libraries. The genes overlapping between pathway, GO-BP, GO-MF, and GO-CC genesets
were regarded as our hub genes.

2.5. HEV-Specific Three-Node miRNA FFL Construction and Analysis

ChEA v3.0 database [29] was queried in order to fetch significant [corresponding
to score (p-value) < 0.05] human TFs regulating our hub mRNAs. miRNAs repressing
our hub mRNAs and TFs (compiled from ChEA) were retrieved from miRWalk v3.0 [30]
(miRNAs with score > 0.95 and binding only on 3′ UTR region only), StarBase v2.0 [31],
and miRTargetLink v2.0 [32] (strongly validated miRNAs) databases to form miRNA-TF

https://www.ncbi.nlm.nih.gov/geo/
https://www.genenames.org/tools/multi-symbol-checker/
https://www.genenames.org/tools/multi-symbol-checker/
https://string-db.org/
https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
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and miRNA-mRNA pairs. A union of miRNAs from all these databases was taken in order
to encompass a wide spectrum of miRNAs. These miRNAs were validated via literature,
and only HEV-associated miRNAs were retained for further analysis. To establish a closed
three-node miRNA FFL, all three interaction pairs (i.e., TF-mRNA, miRNA-mRNA, and
miRNA-TF) were altered in such a manner that the FFL is composed of only overlapping
miRNAs, TFs, and mRNAs. The miRNA FFL was thereafter visualized using Cytoscape.

2.6. Identification of Secondary Structures and Protein-Protein Docking Studies

The α-fold structure of human 2′-5′ oligoadenylate synthase (OAS3) protein was
extracted from Research Collaborators for Structural Bioinformatics Protein Data Bank
(RCSB PDB) database (ID: AF_AFQ9Y6K5F1; residues 1–1087) with global pLDDT (model
confidence score) of 86.82 (Figure S1) [33,34]. Only the third domain of OAS3 (referred
to as OAS3_D3), having the three aspartic acid residues Asp816, Asp818, and Asp888,
which corresponds to the catalytic triad in human OAS1, are conserved (Figure S5) [35].
Therefore, the third domain of OAS3 (residues 743–1087) was selected for protein-protein
docking studies. The NMR-determined structure of the TRAF-type zinc finger domain
containing 1TRAFD1 or FLN29 genes was downloaded from the RCSB PDB database (PDB
ID: 2D9K; residues 1–75) (Figure S5). Through the CASTp server v3.0 (http://sts.bioe.
uic.edu/castp/, accessed on 30 August 2022), binding site residues for TRAFD1 were
retrieved and used as constraints for protein docking via the HADDOCK v2.4 web server
[de Vries et al., 2010] (http://wenmr.science.uu.nl/haddock2, accessed on 2 September
2022). In addition, the best-docked complexes with the lowest intermolecular energies were
selected for further study [van Dijk and Bonvin, 2006; Dominguez et al., 2007]. Binding free
energy calculation (in kcal/mol) of the docked complex was predicted by the PRODIGY
web server [36] (https://wenmr.science.uu.nl/prodigy/, accessed on 5 September 2022).
The final docked complex was analyzed utilizing Protein Interactions Calculator (PIC) to
confirm the interactive residues within the hydrogen-bond distance (3.5 ) [37]. The structure
and docked complex with their interacting residues were visualized using PyMol [38]. The
inhibition constant (Ki) for the docked complex were estimated by utilizing the formula:

Ki = exp[(∆G)/(R ∗ T)]

where, R (universal gas constant) is 1.985× 10−3 kcal mol−1 K−1, ∆G is docking energy,
and T (temperature) is 298.15 K [39].

3. Results
3.1. HEV mRNA Expression Profile Extraction and DEA

Based on the abovementioned inclusion and exclusion criteria, we selected the HEV
mRNA expression profile with accession number GSE36539. The dataset comprised 16 WB
patient samples (i.e., eight WB control and eight WB infected) and 16 Mo patient samples
(eight Mo control and eight Mo infected). For post-batch correction, we bifurcated the
two cell types’ data, with each set comprising 16 samples. After averaging expression
values corresponding to duplicate genes, a total of 15991 and 15990 unique gene symbols
were retained for Mo and WB sample groups. Corresponding to a p-value < 0.05 and
|log2(fold change)| > 0.1, we obtained 190 and 2749 DEGs corresponding to Mo and
WB sample groups. After checking via the HGNC multi-symbol checker and filtering
by Pigengene, we were finally left with 93 and 2016 DEGs corresponding to Mo and WB
sample groups. Figure 1 shows the expression heatmap plot of the top 10 down and
upregulated DEGs in the case of Mo and WB groups. The sample annotation bars are
placed at the top of the heatmap. The most highly up and downregulated DEGs were OTOF
[log2(fold change) = 1.25] and HOXA11-AS [log2(fold change) = −1.05] in the case of Mo
while RSAD2 [log2(fold change) = 4.04] and GOLGA6C [log2(fold change) = −1.94] in
the case of WB.

http://sts.bioe.uic.edu/castp/
http://sts.bioe.uic.edu/castp/
http://wenmr.science.uu.nl/haddock2
https://wenmr.science.uu.nl/prodigy/
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Figure 1. Annotation heatmap displays the distribution (expression) of the top 10 down and upregu-
lated DEGs in the case of Mo (left panel) and WB (right panel). The cluster dendrograms signifying
the Euclidean distance-based hierarchical clustering for both rows and columns are shown along the
left and top sides of the plot. Sample type annotation bar is shown at the top of the heatmap. DEGs,
Differentially Expressed Genes; Mo, Monocytes; WB, Whole Blood.

3.2. HEV-Specific WGCN Construction and Hub Module Selection

Mo-associated (93) and WB-associated (2016) HEV DEGs were passed as input to
WGCNA. The WGCN was generated at β = 15 (corresponding to R2 = 0.89) and β = 9
(corresponding to R2 = 0.8) for Mo and WB sample groups, respectively. The clustering
tree (hierarchical) and dynamic tree cut algorithm resulted in sixteen (i.e., black, blue,
brown, cyan, green, green-yellow, grey, magenta, pink, midnight-blue, purple, red, salmon,
tan, turquoise, yellow) and two (blue, turquoise) color-coded modules corresponding
to WB and Mo sample groups. The merging of modules with highly co-expressed gene
patterns was possible only in the WB group (due to a large number of genes) by cutting
the dendrogram at the height of 0.25. After merging, the initial sixteen modules of the
WB group were amalgamated into nine color-coded modules (i.e., black, blue, cyan, green-
yellow, grey, purple, red, salmon, and turquoise). The Mo group’s two modules were
retained due to no possible merging between modules. Since the grey module consists
of unassigned genes, we discarded it for further analysis. Figures S2 and S3 show plots
for β in consideration with scale-free topology (SFT) criteria for Mo and WB sample
groups. The clustering tree (hierarchical) of WB-DEGs based on dissTOM and ME with
original (16) and merged (9) color modules is shown in Figure 2A. Figure 3A shows the
clustering tree (hierarchical) of Mo-DEGs based on dissTOM with the original two modules.
Figures 2B and 3B show a multidimensional scaling (MDS) plot of all modules in three
scaling dimensions in WB and Mo. WGCN depicting TOM among WB and Mo modules is
shown in Figures 2C and 3C. Based on the most significant correlation between MM and
k.in (Tables S1 and S2), the turquoise module was chosen as our hub module in the case of
both Mo and WB. Figures 2D and 3D show the heatmap plot of turquoise module genes
along with their corresponding ME levels in the case of WB and Mo. A total of 51 and 457
DEGs were present in the hub turquoise module within Mo and WB.
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Figure 2. (A) Hierarchical clustering dendrogram of 2016 WB-DEGs clustered based on dissTOM
together with original (16) and merged (9) module colors. The sizes of the original modules were
as follows: black (108), blue (300), brown (207), cyan (42), green (151), green-yellow (63), grey (6),
magenta (85), midnight-blue (39), pink (94), purple (65), red (126), salmon (43), tan (51), turquoise
(455), yellow (181). In addition, the sizes of merged modules were as follows: black (392), blue (739),
cyan (127), green-yellow (63), grey (6), purple (65), red (126), salmon (43), turquoise (455). (B) 3D
MDS plot where each colored point denotes a gene belonging to the module of its equivalent color
in the case of the WB group. (C) Representation of WGCN as a TOM plot for WB-DEGs. Genes
within columns and their corresponding rows were hierarchically clustered by cluster dendrograms
(displayed along the top and left side of the plot). Progressively darker and lighter red colors within
the matrix indicate higher and lower topological overlap among genes. Dark-colored blocks along
the diagonal signify the modules. (D) Expression heatmap of turquoise module genes where the
rows and columns correspond to genes and samples. The red and green color bands within the
heatmap imply higher and lower expression levels across turquoise module genes. In addition,
the corresponding ME expression levels (along the y-axis) across all samples (along the x-axis) are
displayed at the bottom panel of the module heatmap in the form of a barplot. WGCN, Weighted
Gene Co-expression Network; TOM, Topological Overlap Matrix.
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Figure 3. (A) Hierarchical clustering dendrogram of 93 Mo-DEGs clustered based on dissTOM and
two color-coded modules obtained using Dynamic Tree Cut. The sizes of the module were as follows:
blue (42) and turquoise (51). (B) 3D MDS plot where each colored point denotes a gene belonging to
the module of its equivalent color in the case of the Mo group. (C) Representation of WGCN as a
TOM plot for Mo-DEGs. Genes within columns and their corresponding rows were hierarchically
clustered by cluster dendrograms (displayed along the top and left side of the plot). Progressively
darker and lighter red colors within the matrix indicate higher and lower topological overlap among
genes. Dark-colored blocks along the diagonal signify the modules. (D) Expression heatmap of
turquoise module genes where the rows and columns correspond to genes and samples. The red and
green color bands within the heatmap imply higher and lower expression levels across turquoise
module genes. In addition, the corresponding ME expression levels (along the y-axis) across all
samples (along the x-axis) are displayed at the bottom panel of the module heatmap in the form of a
barplot.

3.3. PPI Network Construction and Modular Analysis

A total of 506 hub genes within the turquoise module were inputted into the STRING
database, of which 477 were mapped to their corresponding proteins. Figure 4A shows
the PPI network comprising 114 nodes and 545 edges (corresponding to an interaction
score > 0.9). Molecular Complex Detection (MCODE) revealed a total of four modules, out
of which the first module had the highest score and was considered our PPI hub module.
Figure 4B shows the PPI hub module comprising 28 nodes and 374 edges. Essential
centrality measures such as node degree, betweenness, closeness, clustering coefficient,
topological coefficient, and average shortest path length of the PPI network are shown in
Figure S4.
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Figure 4. (A) PPI network comprising 114 nodes and 545 interaction edges constructed using the
STRING database corresponding to interaction score > 0.9. The red- and blue-colored nodes signify
up and downregulated proteins. (B) Top scoring PPI module comprises 28 nodes and 374 edges. PPI,
Protein-Protein Interaction.

3.4. Pathway and GO Term Enrichment Analyses for Hub Gene Selection

A total of 25, 28, 20, and 21 genes within our PPI hub module participated in the top
10 significant pathways, GO-BP, GO-MF, and GO-CC terms, as shown in Tables S3–S6. The
most significant pathway, GO-BP, GO-MF, and GO-CC terms were Interferon α/β signaling
(p-value = 1.89× 10−58), cellular response to type I interferon (p-value = 2.24× 10−73),
adenylyltransferase activity (p-value = 2.21× 10−8), mitochondrial envelope (p-value =
2.82× 10−5). A total of 13 hub genes overlapped between these top 10 significant pathways,
GO-BP, GO-MF, and GO-CC genesets, shown by a Venn plot in Figure S4. The box-and-
whisker plots showing the relative expression distribution of these HEV-hub genes are
shown in Figure S5.

3.5. HEV-Specific Three-Node miRNA FFL Analysis

Our HEV-specific-node miRNA FFL, shown in Figure 5A, comprised 16 nodes and
51 edges. TF-mRNA, miRNA-mRNA, and miRNA-TF pairs embodied 31, 14, and 6 edges
among the whole FFL. Amongst all the FFL nodes, 8, 4, and 4 belonged to mRNAs, miRNAs,
and TFs. The degree range of miRNAs, mRNAs, and TFs in the FFL varied from 3 to 7, 5 to 7,
and 8 to 10, respectively. The average degrees of TFs, mRNAs, and miRNAs were 9.25, 5.625,
and 4. The three pairs of regulatory relationships between miRNAs, mRNAs, and TFs were
summarized in Table S7. Out of all TFs, both TRAFD1 and ETV7 were equally regulated
by the highest number of miRNAs (i.e., 2). Among all the hub DEGs, OAS3 was regulated
by the highest number of miRNAs (i.e., 3). Tables S8–S10 show the top three miRNAs,
mRNAs, and TFs within FFL ranked based on degree, betweenness, closeness, eigenvector,
and radiality. Based on the observations from the table, the highest-order subnetwork motif
comprised one TF (TRAFD1), two miRNAs (miR-222-3p and miR-125b-5p), and one mRNA
(OAS3), as shown in Figure 5B.
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Figure 5. (A) HEV-specific three-node miRNA FFL comprising 16 nodes and 51 edges. (B) Highest-
order subnetwork motif comprising one TF (TRAFD1), one miRNA (miR-222-3p), and one mRNA
(OAS3). Red-colored octagonal nodes signify hub mRNAs, green-colored diamond nodes signify TFs,
and magenta-colored circular nodes signify miRNAs. HEV, Hepatitis E Virus; FFL, Feed-Forward
Loop; TF, Transcription Factor; TRAFD1, TRAF-Type Zinc Finger Domain Containing 1; OAS3,
2′-5′-Oligoadenylate Synthase 3.

3.6. Protein-Protein Docking Analysis and Interaction Studies

The predicted binding residues obtained by CASTp v3.0 corresponding to TRAFD1
protein having solvent accessible surface area 10.735 2 and for OAS3_D3 protein, the
catalytic triad- Asp816, Asp818, and Asp888 were further analyzed for docking (Table
S11). The nine best clusters generated by docking for the OAS3_D3-TRAFD1 complex
are shown in Table S12. The clusters with a low HADDOCK score, low Z-score, and low
RMSD values were considered the best-docked complex. The model with a HADDOCK
score of −91.7 +/− 6.1 Kcal/mol, RMSD of 0.7 + /− 0.5 , and Z-score of −2.4 was selected
for OAS3_D3-TRAFD1 complex (Figure 6A). The predicted binding affinity (∆G) and
dissociation constant (Kd) of the OAS3_D3-TRAFD1 complex calculated by the PRODIGY
server resulted in values −11.0 kcal/mol and 9.1E-09 M at 25 °C, respectively. Moreover,
the inhibition constant of the OAS3_D3-TRAFD1 complex was computed to be 8.472E-09.
Analysis of docked complex (OAS3_D3-TRAFD1) using the PIC server showed the presence
of interacting residues showing hydrogen bonding interactions between the side chain of
OAS3_D3 and the main chain of TRAFD1 (Table S13a) and between side chains of OAS3_D3
and TRAFD1 (Table S13b). OAS3_D3 is shown to interact with TRAFD1 with buried surface
area of 1706.5 +/− 71.8 Å2 (Figure 6B). Fourteen amino acid residues of OAS3_D3 are
shown to form H-bonds with backbone atoms of TRAFD1 (Figure 6C). Furthermore, seven
amino acid residues OAS3_D3 form H-bonds with side chains of TRAFD1 (Figure 6D).
Interestingly, among these hydrogen bond interactions, the side chains of catalytic triad
residues Asp814, Asp818, and Asp888 of OAS3_D3 jointly interact with side chains of
Arg67 of TRAFD1, leading to the formation of salt-bridge-mediated interactions.
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Figure 6. Docked mode of OAS3_D3-TRAFD1 complex and its structural mapping of intramolecular
interfaces. (A) Cartoon representation of OAS3_D3-TRAFD1 docked complex having low energy score
determined by HADDOCK docking. OAS3_D3 is displayed in blue color, and TRAFD1 is represented
in magenta color. (B) A surface representation of OAS3_D3-TRAFD1 complex. (C) Interacting
residues between OAS3_D3 and TRAFD1 obtained through hydrogen bonding between the side
chain of OAS3_D3 and the main chain of TRAFD1 are shown in licorice representation, OAS3_D3
residues (blue) and TRAFD1 residues (in magenta). (D) Interacting residues between OAS3_D3 and
TRAFD1 obtained through hydrogen bonding between the side chain of OAS3_D3 and the side chain
of TRAFD1 are shown in licorice representation, OAS3_D3 residues (blue) and TRAFD1 residues (in
magenta). The atomic distances are shown in yellow dotted lines in angstrom (Å).

4. Discussion

We primarily accessed GEO to extract a dataset containing mRNA from WB and
Mo samples of kidney transplant patients, each from control and infected. Our analysis
identified 93 and 2016 DEGs corresponding to Mo and WB sample groups, which were then
rigorously screened using WGCNA to select hub modules containing 51 and 457 DEGs
from Mo and WB sample groups, respectively. Furthermore, the PPI network modular
analysis indicated four modules, out of which the first module was considered our PPI
hub module. Pathway and GO term enrichment analyses of the PPI hub module revealed
thirteen overlapping genes between the top 10 significant pathways, GO-BP, MF, and
CC genesets. These thirteen upregulated genes—Guanylate BindingProtein 2 (GBP2),
Interferon Regulatory Factor 1 (IRF1), Interferon Regulatory Factor 5 (IRF5), Interferon
Regulatory Factor 7 (IRF7), Interferon Regulatory Factor 9 (IRF9), Interferon Stimulating
Gene 20 (ISG20), MX Dynamin Like GTPase 1 (MX1), MX dynamin Like GTPase 2 (MX2),
2′-5′-Oligoadenylate Synthase 1 (OAS1), 2′-5′-Oligoadenylate Synthase 2 (OAS2), OAS3,
SAM Domain And HD Domain-Containing Protein 1 (SAMHD1), and Signal Transducer
And Activator Of Transcription 1 (STAT1) regarded as the hub genes were obtained. HEV-
associated miRNAs and TFs related to these hub genes were also detected. Within our
work, we utilized key transcriptional level interaction, i.e., miRNA→ gene, miRNA→
TF, and TF→ gene regulation, for constructing a miRNA-centered FFL, which portrays a
critical role in HEV pathogenesis.
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A limited number of studies have been conducted concerning miRNA regulation
during chronic HEV infection. Based on the centrality measures, we identified miR-222-3p
(member of the miR-221/222 family) and miR-125b-5p as the top-ranked miRNAs engaged
in the FFL regulation involving TRAFD1 and OAS3 in HEV. The miR-222-3p has already
been implicated in regulating downstream acute HEV in vitro [40]. A study by Elghoroury
et al. predicted the diagnostic value of miR-222 as a potential biomarker in diagnosing
liver injuries or progression, cirrhosis, and Hepatocellular Carcinoma (HCC) caused by
viral infections [41,42]. A case report conducted by Lin et al. discovered that re-infected
chronic HEV patient promotes rapid development of HCC and cirrhosis without Hepatitis
B Virus (HBV) [43]. This led to the fact that HEV re-infection might boost the progression
of HCC in patients regardless of chronic HBV infection. Thus, showing the significance
of miR-222 as a potential biomarker in the case of HEV. In addition, a recent study on the
acute and chronic HEV-infected serum showed that the miR-125b-5p plays a pivotal role
in the suppression of cell proliferation, replication, and apoptosis in HEV and can act as a
biomarker in early detection and differentiation between acute and chronic infection [44]
which in turn provide us with another potential miRNA as a candidate for biomarker.

Most of the hub genes detected in our work are associated with interferon (IFNs)
signaling pathways. Among the genes induced by IFNs, oligoadenylate synthase (OAS)
proteins have been identified as enzymes that mediate antiviral effector functions. In hu-
mans, the OAS family proteins OAS1, OAS2, and OAS3 are involved in RNase L activation
pathways for the degradation of cellular and viral RNA. Recent reports suggested that the
110-kDa OAS3 protein gets activated at lower RNA concentrations than 33-kDa OAS1 and,
on average, synthesizes longer 2′-5′-linked oligoadenylates (2-5As) to activate RNase L [35].
This is further supported by the previous studies that established the potential roles of
OAS3 p100 in mediating the antiviral activity of the dengue virus [45] and HCV [46] in an
RNase L-dependent manner. Interestingly, both Dengue virus and HCV are from the same
family, Flaviviridae, and could induce hepatitis [47].

In addition to miR-125b-5p and miR-222-3p interaction with the OAS3, our network
analysis also observed TRAFD1 (Tumor necrosis factor receptor-associated factor-type
zinc finger domain containing 1) as a critical TF implicated in the regulatory aspects of
HEV infection. TRAFD1 expression is inducible by interferon and suppresses Toll-like
receptor 4-mediated NF-κB activation by binding to tumor necrosis receptor associated
factor 6 (TRAF6) [48]. A study undertaken by Green et al. performed OAS1b-dependent
immune transcriptional profiles of West Nile Virus (WNV) infection, which resulted in the
hypothesis that TRAFD1 may contribute to innate immune protection mediated by the
OAS1b network [49]. In lung adenocarcinoma (LUAD), IFN-γ response genes, TRAFD1 is
reported to exhibit significant expression and a strong positive correlation with OAS3 [50].
As it has demonstrated relevance in non-viral diseases, it would be interesting to untangle
its effects on viral infections, especially HEV. Since HEV infection in organ-transplanted
patients can trigger the onset of immune responses, TRAFD1 can thus act as a master
regulator to control the excessive innate immune response [51].

Our first hypothesis revolves around the association of miR-125b-3p, miR-222-3p, and
OAS3. The miRNAs finalized based on the obtained results have a significant role in HEV,
as described by the previous studies. It has been shown that miR-125b-3p upregulates in the
case of chronic HEV infection, whereas miR-222 downregulates [40] by enhancing the OAS3
expression in HEV. In addition, the upregulation of OAS3 was observed and associated
with miR-125b-5p, miR-222-3p, and TRAFD1 in our study. As miR-125b-5p and OAS3 are
upregulated, we can hypothesize that miR-125b-5p positively regulates the OAS3 (having
antiviral properties). This hypothesis was supported by an earlier study demonstrating that
miRNAs can influence viral pathogenesis by either directly modifying viral gene expression
or promoting cellular antiviral responses [52]. There is a strong possibility of miR-222-3p
showing positive regulation with OAS3 as well, which is supported by the study showing
miR-222 downregulation by enhancing the target gene in HEV [40], which needs further
validation through in vitro and in vivo analysis.
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Another hypothesis revolves around the connection of TRAFD1 with OAS3. TRAFD1
shows a negative feedback regulation related to excessive immune response [48]. It thus
may be involved in the possible inhibition of upregulated OAS3 as OAS3 is an interferon
stimulating gene (ISG) associated with innate immunity. To verify the above hypothesis,
we conducted protein-protein docking where the inhibition constant (Ki) with 8.472E-09
value and dissociation constant (Kd) with −11.0 kcal/mol values showed a strong inverse
association between TRAFD1 and OAS3 protein.

Our third hypothesis connects the miR-125b-3p and miR-222-3p with TRAFD1. Here
as the miRNAs are showing a positive regulation with OAS3, there is a possibility that
miRNAs are involved in inhibiting the TRAFD1 as TRAFD1 negatively regulates OAS3.
The two miRNAs can work in combination or individually to affect OAS3 and TRAFD1.

Based on the above hypotheses, we can conclude that miR-125b-3p and miR-222-
3p positively regulate the OAS3 and negatively regulates TRAFD1 resulting in higher
expression of OAS3 against HEV. Although to prove this hypothesis, further validation is
required through in vitro studies.

5. Conclusions

This study consigns the initial report of miRNA signatures determined in WB and
Mo samples of kidney-transplanted chronic hepatitis E virus-infected patients. To our
knowledge, it is the first time that miR-222-3p has been described as a reference miRNA for
use in CHEV sample analyses. The three-node miR-222-3p/miR-125b-5p-OAS3-TRAFD1
regulatory network provides a novel insight into understanding the molecular mechanism
of chronic HEV. Further experimental studies are needed to confirm the importance of their
role in CHEV infection.
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radiality, and eigenvector; Table S9: Top 3 mRNAs ranked based on centrality measures such as
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Author Contributions: Conceptualization: S.G., P.S., R.D. and S.P.; Methodology: S.G. and P.S.;
Software: S.G., P.S. and A.T.; Formal Analysis: S.G., P.S. and A.T.; Data Curation: S.G., P.S., A.H.R.

https://www.mdpi.com/article/10.3390/genes14010042/s1
https://www.mdpi.com/article/10.3390/genes14010042/s1


Genes 2023, 14, 42 13 of 15

and A.A.; Writing—Original Draft: S.G., P.S. and A.T.; Writing—Review & Editing: S.G., P.S., A.T.,
R.D. and S.P.; Supervision: R.D. and S.P.; Project Administration: R.D. and S.P. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used in our work is available in NCBI-GEO at https:
//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36539, accessed on 1 August 2022, and can be
accessed with GSE36539.

Acknowledgments: S.G. would like to thank the ‘Innovation in Science Pursuit for Inspired Research
(INSPIRE) programme funded by the Department of Science & Technology (DST), Government
of India [Grant Number: DST/INSPIRE/03/2021/000849]. P.S. would like to thank the Indian
Council of Medical Research (ICMR) for awarding him Senior Research Fellowship [Grant Number:
BMI/11(89)/2020]. S.P. would like to thank the Central Council for Research in Unani Medicine
(CCRUM), Ministry of Ayurveda, Yoga and Naturopathy, Unani, Siddha and Homeopathy (AYUSH)
(F.NO.3-63/2019-CCRUM/Tech).

Conflicts of Interest: The authors declare that there is no conflict of interest.

References
1. Grange, Z.L.; Goldstein, T.; Johnson, C.K.; Anthony, S.; Gilardi, K.; Daszak, P.; Olival, K.J.; O’Rourke, T.; Murray, S.; Olson, S.H.;

et al. Ranking the Risk of Animal-to-Human Spillover for Newly Discovered Viruses. Proc. Natl. Acad. Sci. USA 2021, 118,
e2002324118. [CrossRef] [PubMed]

2. Li, P.; Liu, J.; Li, Y.; Su, J.; Ma, Z.; Bramer, W.M.; Cao, W.; de Man, R.A.; Peppelenbosch, M.P.; Pan, Q. The Global Epidemiology of
Hepatitis E Virus Infection: A Systematic Review and Meta-Analysis. Liver Int. Off. J. Int. Assoc. Study Liver 2020, 40, 1516–1528.
[CrossRef] [PubMed]

3. Yadav, K.K.; Boley, P.A.; Fritts, Z.; Kenney, S.P. Ectopic Expression of Genotype 1 Hepatitis E Virus ORF4 Increases Genotype 3
HEV Viral Replication in Cell Culture. Viruses 2021, 13, 75. [CrossRef] [PubMed]

4. Kamar, N.; Marion, O.; Abravanel, F.; Izopet, J.; Dalton, H.R. Extrahepatic Manifestations of Hepatitis E Virus. Liver Int. 2016, 36,
467–472. [CrossRef]

5. Pavio, N.; Doceul, V.; Bagdassarian, E.; Johne, R. Recent Knowledge on Hepatitis E Virus in Suidae Reservoirs and Transmission
Routes to Human. Vet. Res. 2017, 48, 78. [CrossRef]

6. Ahmad, T.; Haroon, H.; Ahmad, K.; Shah, S.M.; Shah, M.W.; Shah, S.M.; Hussain, A.; Jalal, S.; Ahmad, W.; Khan, M.; et al.
Hepatitis E Vaccines: A Mini Review. Biomed. Res. Ther. 2021, 8, 4514–4524. [CrossRef]

7. Rouse, B.T.; Mueller, S.N. Host Defenses to Viruses. In Clinical Immunology; Elsevier: Amsterdam, The Netherlands, 2019; pp.
365–374.e1. ISBN 978-0-7020-6896-6.

8. Abu-Izneid, T.; AlHajri, N.; Ibrahim, A.M.; Javed, M.N.; Salem, K.M.; Pottoo, F.H.; Kamal, M.A. Micro-RNAs in the Regulation of
Immune Response against SARS-CoV-2 and Other Viral Infections. J. Adv. Res. 2021, 30, 133–145. [CrossRef]

9. Ramchandran, R.; Chaluvally-Raghavan, P. MiRNA-Mediated RNA Activation in Mammalian Cells. In RNA Activation; Li, L.-C.,
Ed.; Advances in Experimental Medicine and Biology; Springer: Singapore, 2017; Volume 983, pp. 81–89. ISBN 978-981-10-4309-3.

10. Grimson, A.; Farh, K.K.-H.; Johnston, W.K.; Garrett-Engele, P.; Lim, L.P.; Bartel, D.P. MicroRNA Targeting Specificity in Mammals:
Determinants beyond Seed Pairing. Mol. Cell 2007, 27, 91–105. [CrossRef]

11. Saetrom, P.; Heale, B.S.E.; Snøve, O.; Aagaard, L.; Alluin, J.; Rossi, J.J. Distance Constraints between MicroRNA Target Sites
Dictate Efficacy and Cooperativity. Nucleic Acids Res. 2007, 35, 2333–2342. [CrossRef]

12. Mohammad, T.; Singh, P.; Jairajpuri, D.S.; Al-Keridis, L.A.; Alshammari, N.; Adnan, M.; Dohare, R.; Hassan, M.I. Differential
Gene Expression and Weighted Correlation Network Dynamics in High-Throughput Datasets of Prostate Cancer. Front. Oncol.
2022, 12, 881246. [CrossRef]

13. Arora, S.; Singh, P.; Dohare, R.; Jha, R.; Ali Syed, M. Unravelling Host-Pathogen Interactions: CeRNA Network in SARS-CoV-2
Infection (COVID-19). Gene 2020, 762, 145057. [CrossRef] [PubMed]

14. Liu, S.; Zeng, F.; Fan, G.; Dong, Q. Identification of Hub Genes and Construction of a Transcriptional Regulatory Network
Associated with Tumor Recurrence in Colorectal Cancer by Weighted Gene Co-Expression Network Analysis. Front. Genet. 2021,
12, 649752. [CrossRef] [PubMed]

15. Liu, Y.; Chen, T.-Y.; Yang, Z.-Y.; Fang, W.; Wu, Q.; Zhang, C. Identification of Hub Genes in Papillary Thyroid Carcinoma: Robust
Rank Aggregation and Weighted Gene Co-Expression Network Analysis. J. Transl. Med. 2020, 18, 170. [CrossRef] [PubMed]

16. Liu, Y.; Gu, H.-Y.; Zhu, J.; Niu, Y.-M.; Zhang, C.; Guo, G.-L. Identification of Hub Genes and Key Pathways Associated with
Bipolar Disorder Based on Weighted Gene Co-Expression Network Analysis. Front. Physiol. 2019, 10, 1081. [CrossRef]

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36539
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36539
http://doi.org/10.1073/pnas.2002324118
http://www.ncbi.nlm.nih.gov/pubmed/33822740
http://doi.org/10.1111/liv.14468
http://www.ncbi.nlm.nih.gov/pubmed/32281721
http://doi.org/10.3390/v13010075
http://www.ncbi.nlm.nih.gov/pubmed/33430442
http://doi.org/10.1111/liv.13037
http://doi.org/10.1186/s13567-017-0483-9
http://doi.org/10.15419/bmrat.v8i9.690
http://doi.org/10.1016/j.jare.2020.11.013
http://doi.org/10.1016/j.molcel.2007.06.017
http://doi.org/10.1093/nar/gkm133
http://doi.org/10.3389/fonc.2022.881246
http://doi.org/10.1016/j.gene.2020.145057
http://www.ncbi.nlm.nih.gov/pubmed/32805314
http://doi.org/10.3389/fgene.2021.649752
http://www.ncbi.nlm.nih.gov/pubmed/33897765
http://doi.org/10.1186/s12967-020-02327-7
http://www.ncbi.nlm.nih.gov/pubmed/32299435
http://doi.org/10.3389/fphys.2019.01081


Genes 2023, 14, 42 14 of 15

17. Zeng, F.; Shi, M.; Xiao, H.; Chi, X. WGCNA-Based Identification of Hub Genes and Key Pathways Involved in Nonalcoholic Fatty
Liver Disease. BioMed Res. Int. 2021, 2021, 5633211. [CrossRef]

18. Bhatt, S.; Singh, P.; Sharma, A.; Rai, A.; Dohare, R.; Sankhwar, S.; Sharma, A.; Ali, S.M. Deciphering Key Genes and MiRNAs
Associated with Hepatocellular Carcinoma via Network-Based Approach. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 19,
843–853. [CrossRef]

19. Barbu, M.G.; Condrat, C.E.; Thompson, D.C.; Bugnar, O.L.; Cretoiu, D.; Toader, O.D.; Suciu, N.; Voinea, S.C. MicroRNA
Involvement in Signaling Pathways During Viral Infection. Front. Cell Dev. Biol. 2020, 8, 143. [CrossRef]

20. Ghosal, S.; Das, S.; Sen, R.; Chakrabarti, J. HumanViCe: Host CeRNA Network in Virus Infected Cells in Human. Front. Genet.
2014, 5, 249. [CrossRef]

21. Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. MiRNAs
as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020, 9, 276. [CrossRef]

22. Clough, E.; Barrett, T. The Gene Expression Omnibus Database. In Methods in Molecular Biology; Humana Press: Clifton, NJ, USA,
2016; Volume 1418, pp. 93–110. [CrossRef]

23. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma Powers Differential Expression Analyses for
RNA-Sequencing and Microarray Studies. Nucleic Acids Res. 2015, 43, e47. [CrossRef]

24. Singh, P.; Rai, A.; Dohare, R.; Arora, S.; Ali, S.; Parveen, S.; Syed, M. Network-based Identification of Signature Genes KLF6 and
SPOCK1 Associated with Oral Submucous Fibrosis. Mol. Clin. Oncol. 2020, 12, 299–310. [CrossRef]

25. Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork,
P.; et al. STRING V11: Protein–Protein Association Networks with Increased Coverage, Supporting Functional Discovery in
Genome-Wide Experimental Datasets. Nucleic Acids Res. 2019, 47, D607–D613. [CrossRef] [PubMed]

26. Shannon, P. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003,
13, 2498–2504. [CrossRef] [PubMed]

27. Mohsin, M.; Singh, P.; Khan, S.; Verma, A.K.; Jha, R.; Alsahli, M.A.; Rahmani, A.H.; Almatroodi, S.A.; Alrumaihi, F.; Kaprwan, N.;
et al. Integrated Transcriptomic and Regulatory Network Analyses Uncovers the Role of Let-7b-5p, SPIB, and HLA-DPB1 in
Sepsis. Sci. Rep. 2022, 12, 11963. [CrossRef] [PubMed]

28. Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.;
Lachmann, A.; et al. Enrichr: A Comprehensive Gene Set Enrichment Analysis Web Server 2016 Update. Nucleic Acids Res. 2016,
44, W90–W97. [CrossRef]

29. Keenan, A.B.; Torre, D.; Lachmann, A.; Leong, A.K.; Wojciechowicz, M.L.; Utti, V.; Jagodnik, K.M.; Kropiwnicki, E.; Wang, Z.;
Ma’ayan, A. ChEA3: Transcription Factor Enrichment Analysis by Orthogonal Omics Integration. Nucleic Acids Res. 2019, 47,
W212–W224. [CrossRef]

30. Sticht, C.; De La Torre, C.; Parveen, A.; Gretz, N. MiRWalk: An Online Resource for Prediction of MicroRNA Binding Sites. PLoS
ONE 2018, 13, e0206239. [CrossRef]

31. Li, J.-H.; Liu, S.; Zhou, H.; Qu, L.-H.; Yang, J.-H. StarBase v2.0: Decoding MiRNA-CeRNA, MiRNA-NcRNA and Protein–RNA
Interaction Networks from Large-Scale CLIP-Seq Data. Nucleic Acids Res. 2014, 42, D92–D97. [CrossRef]

32. Kern, F.; Aparicio-Puerta, E.; Li, Y.; Fehlmann, T.; Kehl, T.; Wagner, V.; Ray, K.; Ludwig, N.; Lenhof, H.-P.; Meese, E.; et al.
MiRTargetLink 2.0—Interactive MiRNA Target Gene and Target Pathway Networks. Nucleic Acids Res. 2021, 49, W409–W416.
[CrossRef]

33. Bittrich, S.; Rose, Y.; Segura, J.; Lowe, R.; Westbrook, J.D.; Duarte, J.M.; Burley, S.K. RCSB Protein Data Bank: Improved Annotation,
Search and Visualization of Membrane Protein Structures Archived in the PDB. Bioinformatics 2022, 38, 1452–1454. [CrossRef]

34. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko,
A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [CrossRef] [PubMed]

35. Ibsen, M.S.; Gad, H.H.; Thavachelvam, K.; Boesen, T.; Desprès, P.; Hartmann, R. The 2′-5′-Oligoadenylate Synthetase 3 Enzyme
Potently Synthesizes the 2′-5′-Oligoadenylates Required for RNase L Activation. J. Virol. 2014, 88, 14222–14231. [CrossRef]
[PubMed]

36. Xue, L.C.; Rodrigues, J.P.; Kastritis, P.L.; Bonvin, A.M.; Vangone, A. PRODIGY: A Web Server for Predicting the Binding Affinity
of Protein–Protein Complexes. Bioinformatics 2016, 32, 3676–3678. [CrossRef] [PubMed]

37. Tina, K.G.; Bhadra, R.; Srinivasan, N. PIC: Protein Interactions Calculator. Nucleic Acids Res. 2007, 35, W473–W476. [CrossRef]
[PubMed]

38. Yuan, S.; Chan, H.C.S.; Hu, Z. Using PYMOL as a Platform for Computational Drug Design. WIREs Comput. Mol. Sci. 2017, 7,
e1298. [CrossRef]

39. Yung-Chi, C.; Prusoff, W.H. Relationship between the Inhibition Constant (KI) and the Concentration of Inhibitor Which Causes
50 per Cent Inhibition (I50) of an Enzymatic Reaction. Biochem. Pharmacol. 1973, 22, 3099–3108. [CrossRef]

40. Cheng, Y.; Du, L.; Shi, Q.; Jiao, H.; Zhang, X.; Hao, Y.; Rong, H.; Zhang, J.; Jia, X.; Guo, S.; et al. Identification of MiR-221 and -222
as Important Regulators in Genotype IV Swine Hepatitis E Virus ORF3-Expressing HEK 293 Cells. Virus Genes 2013, 47, 49–55.
[CrossRef] [PubMed]

41. Elghoroury, E.A.; Abdelghaffar, E.E.; Awadallah, E.; Kamel, S.A.; Kandil, D.; Hassan, E.M.; Hassan, M.; Kamel, M.M.; Gomaa,
M.M.; Fathalla, L.A. Detection of Exosomal MiR-18a and MiR-222 Levels in Egyptian Patients with Hepatic Cirrhosis and
Hepatocellular Carcinoma. Int. J. Immunopathol. Pharmacol. 2022, 36, 3946320221097832. [CrossRef] [PubMed]

http://doi.org/10.1155/2021/5633211
http://doi.org/10.1109/TCBB.2020.3016781
http://doi.org/10.3389/fcell.2020.00143
http://doi.org/10.3389/fgene.2014.00249
http://doi.org/10.3390/cells9020276
http://doi.org/10.1007/978-1-4939-3578-9_5
http://doi.org/10.1093/nar/gkv007
http://doi.org/10.3892/mco.2020.1991
http://doi.org/10.1093/nar/gky1131
http://www.ncbi.nlm.nih.gov/pubmed/30476243
http://doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://doi.org/10.1038/s41598-022-16183-6
http://www.ncbi.nlm.nih.gov/pubmed/35831411
http://doi.org/10.1093/nar/gkw377
http://doi.org/10.1093/nar/gkz446
http://doi.org/10.1371/journal.pone.0206239
http://doi.org/10.1093/nar/gkt1248
http://doi.org/10.1093/nar/gkab297
http://doi.org/10.1093/bioinformatics/btab813
http://doi.org/10.1038/s41586-021-03819-2
http://www.ncbi.nlm.nih.gov/pubmed/34265844
http://doi.org/10.1128/JVI.01763-14
http://www.ncbi.nlm.nih.gov/pubmed/25275129
http://doi.org/10.1093/bioinformatics/btw514
http://www.ncbi.nlm.nih.gov/pubmed/27503228
http://doi.org/10.1093/nar/gkm423
http://www.ncbi.nlm.nih.gov/pubmed/17584791
http://doi.org/10.1002/wcms.1298
http://doi.org/10.1016/0006-2952(73)90196-2
http://doi.org/10.1007/s11262-013-0912-4
http://www.ncbi.nlm.nih.gov/pubmed/23579640
http://doi.org/10.1177/03946320221097832
http://www.ncbi.nlm.nih.gov/pubmed/35467432


Genes 2023, 14, 42 15 of 15

42. Wang, X.; Liao, X.; Huang, K.; Zeng, X.; Liu, Z.; Zhou, X.; Yu, T.; Yang, C.; Yu, L.; Wang, Q.; et al. Clustered MicroRNAs
Hsa-MiR-221-3p/Hsa-MiR-222-3p and Their Targeted Genes Might Be Prognostic Predictors for Hepatocellular Carcinoma. J.
Cancer 2019, 10, 2520–2533. [CrossRef]

43. Lin, X.-N.; Lin, Q.-X.; Li, S.-M.; Xie, K.-P.; Hou, J.; Chen, R. Hepatitis E Virus Re-Infection Accelerates Hepatocellular Carcinoma
Development and Relapse in a Patient with Liver Cirrhosis: A Case Report and Review of Literature. World J. Hepatol. 2020, 12,
1358–1366. [CrossRef]

44. Harms, D.; Choi, M.; Allers, K.; Wang, B.; Pietsch, H.; Papp, C.-P.; Hanisch, L.; Kurreck, J.; Hofmann, J.; Bock, C.-T. Specific
Circulating MicroRNAs during Hepatitis E Infection Can Serve as Indicator for Chronic Hepatitis E. Sci. Rep. 2020, 10, 5337.
[CrossRef] [PubMed]

45. Lin, R.-J.; Yu, H.-P.; Chang, B.-L.; Tang, W.-C.; Liao, C.-L.; Lin, Y.-L. Distinct Antiviral Roles for Human 2′,5′-Oligoadenylate
Synthetase Family Members against Dengue Virus Infection. J. Immunol. 2009, 183, 8035–8043. [CrossRef] [PubMed]

46. Kwon, Y.-C.; Kang, J.-I.; Hwang, S.B.; Ahn, B.-Y. The Ribonuclease L -Dependent Antiviral Roles of Human 2′,5′-Oligoadenylate
Synthetase Family Members against Hepatitis C Virus. FEBS Lett. 2013, 587, 156–164. [CrossRef] [PubMed]

47. Liang, P.-C.; Chen, K.-Y.; Huang, C.-H.; Chang, K.; Lu, P.-L.; Yeh, M.-L.; Huang, C.-F.; Huang, C.-I.; Hsieh, M.-H.; Dai, C.-Y.; et al.
Viral Interference Between Dengue Virus and Hepatitis C Virus Infections. Open Forum Infect. Dis. 2020, 7, ofaa272. [CrossRef]
[PubMed]

48. Sanada, T.; Takaesu, G.; Mashima, R.; Yoshida, R.; Kobayashi, T.; Yoshimura, A. FLN29 Deficiency Reveals Its Negative Regulatory
Role in the Toll-like Receptor (TLR) and Retinoic Acid-Inducible Gene I (RIG-I)-like Helicase Signaling Pathway. J. Biol. Chem.
2008, 283, 33858–33864. [CrossRef]

49. Green, R.; Wilkins, C.; Thomas, S.; Sekine, A.; Hendrick, D.M.; Voss, K.; Ireton, R.C.; Mooney, M.; Go, J.T.; Choonoo, G.; et al.
Oas1b-Dependent Immune Transcriptional Profiles of West Nile Virus Infection in the Collaborative Cross. G3 Genes Genomes
Genet. 2017, 7, 1665–1682. [CrossRef]

50. Yao, B.; Wang, L.; Wang, H.; Bao, J.; Li, Q.; Yu, F.; Zhu, W.; Zhang, L.; Li, W.; Gu, Z.; et al. Seven Interferon Gamma Response
Genes Serve as a Prognostic Risk Signature That Correlates with Immune Infiltration in Lung Adenocarcinoma. Aging 2021, 13,
11381–11410. [CrossRef]

51. Doostparast Torshizi, A.; Wang, K. Deconvolution of Transcriptional Networks in Post-Traumatic Stress Disorder Uncovers
Master Regulators Driving Innate Immune System Function. Sci. Rep. 2017, 7, 14486. [CrossRef]

52. Haldipur, B.; Bhukya, P.L.; Arankalle, V.; Lole, K. Positive Regulation of Hepatitis E Virus Replication by MicroRNA-122. J. Virol.
2018, 92, e01999-17. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.7150/jca.29207
http://doi.org/10.4254/wjh.v12.i12.1358
http://doi.org/10.1038/s41598-020-62159-9
http://www.ncbi.nlm.nih.gov/pubmed/32210284
http://doi.org/10.4049/jimmunol.0902728
http://www.ncbi.nlm.nih.gov/pubmed/19923450
http://doi.org/10.1016/j.febslet.2012.11.010
http://www.ncbi.nlm.nih.gov/pubmed/23196181
http://doi.org/10.1093/ofid/ofaa272
http://www.ncbi.nlm.nih.gov/pubmed/32875000
http://doi.org/10.1074/jbc.M806923200
http://doi.org/10.1534/g3.117.041624
http://doi.org/10.18632/aging.202831
http://doi.org/10.1038/s41598-017-15221-y
http://doi.org/10.1128/JVI.01999-17

	Introduction 
	Materials and Methods 
	HEV mRNA Expression Profile Extraction and Differential Expression Analysis (DEA) 
	HEV-Specific WGCN Construction and Hub Module Selection 
	PPI Network Construction and Modular Analysis 
	Pathway and Gene Ontology (GO) Term Enrichment Analyses for Hub Gene Selection 
	HEV-Specific Three-Node miRNA FFL Construction and Analysis 
	Identification of Secondary Structures and Protein-Protein Docking Studies 

	Results 
	HEV mRNA Expression Profile Extraction and DEA 
	HEV-Specific WGCN Construction and Hub Module Selection 
	PPI Network Construction and Modular Analysis 
	Pathway and GO Term Enrichment Analyses for Hub Gene Selection 
	HEV-Specific Three-Node miRNA FFL Analysis 
	Protein-Protein Docking Analysis and Interaction Studies 

	Discussion 
	Conclusions 
	References

