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Abstract: People in the life sciences who work with Artificial Intelligence (AI) and Machine Learning
(ML) are under increased pressure to develop algorithms faster than ever. The possibility of revealing
innovative insights and speeding breakthroughs lies in using large datasets integrated on several
levels. However, even if there is more data at our disposal than ever, only a meager portion is being
filtered, interpreted, integrated, and analyzed. The subject of this technology is the study of how
computers may learn from data and imitate human mental processes. Both an increase in the learning
capacity and the provision of a decision support system at a size that is redefining the future of
healthcare are enabled by AI and ML. This article offers a survey of the uses of AI and ML in the
healthcare industry, with a particular emphasis on clinical, developmental, administrative, and global
health implementations to support the healthcare infrastructure as a whole, along with the impact
and expectations of each component of healthcare. Additionally, possible future trends and scopes of
the utilization of this technology in medical infrastructure have also been discussed.

Keywords: medical infrastructure; healthcare infrastructure; artificial intelligence; artificial intelligence
in healthcare; deep learning; machine learning; healthcare and AI

1. Introduction

Artificial Intelligence (shown in Figure 1) was initially introduced in the medical
sector in 1976 when a computer algorithm was used to determine the reasons for intense
abdominal pain [1]. From the first healthcare implementation of AI to today, numerous
applications of AI have been introduced to enhance the strength and overcome the short-
comings of available medical infrastructure. These implementations include assistance in
disease detection, like diabetes detection or cancer detection; enhancement of pathology
classification, such as classification of radiology scans and outlining electrocardiogram
qualities for cardiac study [2]; and forecasting illnesses with algorithms based on Machine
Learning (ML) and Deep Learning (DL) developed to solve problems such as the pandemic
of COVID-19 [3,4], serving as an epitome. However, despite the healthcare industry’s
considerable investment in technological advancements, its deployment and integration
in healthcare are still in their preliminary stages [5]. Workforce scarcity and exhaustion,
and the transition to long-term illness care, are among the most significant concerns in
healthcare. Thus, AI can significantly enhance the healthcare infrastructure through its
extensive applicability.

AI is revolutionizing medical infrastructure significantly in diagnosing various dis-
eases, using medical imaging from various available medical imaging formats like- X-rays,
MRI, CT, etc. AI can easily detect diseases related to the skin, lungs, organs, and viral issues.
For instance, some skin diseases include skin cancer, acne, and rashes. Early identification
of such skin illnesses can prevent critical future problems. Furthermore, in this direction,
researchers like- Shoieb et al. [6] classified skin cancer using available data consisting of
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cancer images. Their results showed a considerable increase in skin diagnostic accuracy and
precision compared to earlier studies. Zaher et al. [7] and Charan et al. [8] presented such a
model to detect breast cancer using radiology scans. Moreover, like skin and breast cancers,
lung cancer is amongst the deadliest ailments across the world [9,10] that causes 7.6 million
yearly deaths worldwide [11]. Moreover, early detection of such a deadly disease is the only
possible cure to reduce this number [12]. Many researchers [13–17] have proposed AI and
ML-based approaches for predicting lung cancer using various sources. Apart from these
applications, researchers have used AI for the detection of tumor [18], tuberculosis [19],
and even COVID-19 diagnosis [20] as well, mainly using chest X-rays. Medical imaging
for disease diagnosis and prognosis is widely accepted and increasing with boundless
expectations and improvements in conventional medical infrastructure.

Figure 1. Supervised and Unsupervised machine learning with Convolutional Neural Network
(CNN), Recurrent Neural Neural Network (RNN), Generative Adversarial Network (GAN) as
branches of Deep Learning.

The imaging data is machine-readable, allowing the ML and DL algorithms to be
run after adequate preprocessing or quality check steps. Moreover, a substantial chunk of
healthcare data, including clinical laboratory reports, physical examinations, discharge sum-
maries, and operation notes, usually remains narrative, which would be amorphous and
inaccessible to computer algorithms. In this situation, Natural Language Processing (NLP)
aims to gather relevant data from the available chunk to support clinical judgments [21].
Based on existing records, NLP uses text processing to define disease-related phrases in
medical documentation [22]. Subsequently, keywords are selected after assessing their
influence on categorizing normal and abnormal instances. For example, Miller et al. [23]
employed NLP to track undesirable events in the laboratory environment. In addition, NLP
pipelines can aid in illness detection. This technology has also been used for detecting vari-
ous disease-related factors for cerebral aneurysms using clinical notes [24] to distinguish
normal individuals from patients suffering from cerebral issues.

Moreover, Afzal et al. [22] used NLP to extract peripheral arterial disease-related
keywords from clinical narratives. These were then utilized for differentiation between
peripheral arterial disease and normal patients. Not only to collect documentation about
disease-related information but NLP is being explored to learn various suicide factors [25]
from suicide notes by developing a vocabulary or language-specific database. Moreover,
this branch of Artificial Intelligence is utilized for evaluating mental illness [26], understand-
ing the clinical workflow [27,28], classifying medical prescriptions [29], forecasting patient
predilection [30,31], predicting risk and stratification of a patient [32], making decision
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support system [33], and question answering [34]. Juhn et al. [35] have also introduced an
autonomous system that can significantly reduce the burden of medical triage by collecting
patient data and understanding it with NLP to help the patient while choosing a consultant
and completing other procedures, which usually take a long time in any hospital building.

Robotics focuses on designing and developing robots. When combined with AI, the
result is an intelligent machine that can be taught to undertake complicated processes
requiring much thought and continual learning. Consequently, a further branch of AI
is interested in educating a robot to interpret the world in predicated but generic ways,
control things in intractable surroundings, and communicate with humans. Robots that
may undertake complex surgical treatments, such as minimally invasive and surgeon-less
surgeries, are known as “Surgical Robots”. The systems represented [36,37] are the gold
standard of care in many laparoscopic operations, with approximately a million operations
performed each year. Robotic surgery enhances the effectiveness, precision, and reliability
of surgical operations allowing quicker recovery and better patient outcomes. Apart from
surgical tasks, in healthcare, there are several duties related to management. The application
of AI in this domain has less adaptability than acute services, but it can deliver substantial
productivity. It is necessary for hospitals because, for instance, a US nurse spends an
average of 25% of her job tenure on administrative tasks [38]. This aim is most likely
connected to robotic process automation technology. It is used in various medical systems,
such as user registration, medical documentation, payment flow administration, and clinical
record-keeping [39,40]. Besides patient interactions, mental well-being, telemedicine, and
chatbots are often used in other medical contexts.

Research and development are some of the most critical areas, and boosting these areas
can significantly strengthen healthcare infrastructure. For example, machine (and deep)
learning algorithms have been used in a variety of drug discovery processes, including
physio-chemical, poly-pharmacology, drug repositioning, quantitative structure-activity
relationship, pharmacophore modeling, drug monitoring and revealing, toxicity prediction,
ligand-based virtual screening, structure-based virtual screening, and peptide synthesis
activities [41]. In addition, pharmacogenetics and molecular biomarker technologies may
forecast drug efficacy and medication reactions within subjects, essential to precision
medicine progress [42].

A significant number of studies [43,44] conducted in revolutionizing the conventional
drug design include DeepMind at Google and AlphaFold, a tool based on AI, trained on
protein binding domain spatial information to estimate the multi-dimensional shape of
a protein from the sequence of amino acids. AI has become an effective tool in today’s
technology because it saves time and money. Such rapid discovery and development of
drugs can save millions of lives in critical conditions like a pandemic, which can be defined
as an explicit strengthening of overall infrastructure by reducing overall development costs
with increased drug efficacy [45–47].

Furthermore, supplying incorrect dosage is one of the hackneyed issues in this sector
that not only causes the loss of millions of dollars but also weakens the whole infrastructure
by increasing the mortality rate with undesired and deadly side effects [48]. With the
rise of AI, numerous scientists are turning to ML and DL techniques to identify optimal
medicine dosages. For example, Shen et al. [49] created an AI-based system called AI-PRS to
discover the best medication doses and combinations for HIV treatment using antiretroviral
therapy. Julkunen et al. [50] also created comboFM, a unique ML-based tool for determining
optimal medication coalescing and dosing in pre-clinical investigations such as cancer cells.
CombinationFM uses factorization machines—a machine learning framework to analyze
multi-dimensional data and discover optimum medicine combinations and doses. Xue
et al. [51] have also identified a suitable bioactive agent and inspected the drug delivery.

As discussed above, AI has become an expert in many stages of drug distribution
and optimization. Studies also show how AI can further help in rapid discoveries and
development of drugs by working on various stages like predicting interactions between
proteins and their foldings [52], ligand and structure-base virtual screening [53,54], quanti-
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tative structure-activity relationship modeling and drug re-purposing [55,56], estimating
physicochemical properties and bioactivity [57,58], toxicity and mode of action prediction
of the compound [59,60], recognition of molecular pathways polypharmacology [61,62], de
novo drug designing [63], pharmaceutical manufacturing and clinical trial design [64], and
related ones [65,66], to various crucial, even may be incurable, diseases with its unbounded
intelligence and memory power on 0.9-micron thick silicon bridges, also known as mem-
ory chips. All these studies show how AI enhances drug research and development for
strengthening medical infrastructure economically and in terms of rapid processing.

This study evaluates advancements in artificial intelligence and machine learning to
strengthen medical infrastructure. We are presenting a comprehensive study on the most
widely used implementations of Artificial Intelligence, with its branches of Deep Learning
and Machine Learning, while analyzing their impacts on the healthcare infrastructure. The
existing reviews do not provide a comprehensive analysis, including the closest possible
impact of recent advancements in costs, patient-service satisfaction, healthcare staff effi-
ciency, operation time, etc. In contrast, this article draws an overview by studying various
case studies, including the employment of AI and ML-based solutions to solve one or more
problems in the medical sector and their results. We also analyze how the advanced use of
human cognitive skills in machines could change medical infrastructure in the future.

A literature search of articles published between May 2015 and 30 November 2022, was
conducted by PRISMA guidelines [67] using the search terms “Artificial Intelligence (AI)”,
“Machine Learning (ML)”, “Deep Learning (DL)”, “AI in Healthcare”, “ML in Healthcare”,
“DL in Healthcare”, “AI in medical infrastructure”, “ML in medical infrastructure”, “DL in
medical infrastructure”, “Healthcare technologies”, and “Smart healthcare infrastructure”
on IEEE Explorer, Web of Science, ScienceDirect, PubMed, and arXiv electronic databases.
Non-English and duplicate articles were excluded from the initial 135 research papers
found in the first round of search; a total of 45 articles remained. Full texts of all these
articles were acquired. After a thorough analysis and exclusion based on strict criteria of
utilizing AI and ML at an infrastructural level, 25 papers are used to write this review.

2. Evolution of AI and ML in Medical Infrastructure

As shown in Figure 2, there are numerous possible applications of AI and ML algo-
rithms to develop efficient tools to strengthen the healthcare infrastructure. Over the last
five decades, AI has dramatically impacted the medical infrastructure. The scope of AI and
ML applications has increased, opening the doors to individualized medicine rather than
algorithm-based treatment. Predictive models that predict illness, treatment responses,
and even preventive medicine in the future may be developed using such models [68]. AI
may strengthen the healthcare infrastructure by improving diagnostic accuracy, clinical
operations and workflow, procedure accuracy, treatment monitoring, and overall patient
satisfaction. The evolution of AI and ML in medicine is detailed in the following timeline.

The late nineteen seventies were driven by a perceived limit of AI, which increased till
the early 1970s, driven by high expenses in establishing and sustaining an expert database
of information in digital forms. Nevertheless, while reluctantly drawing public attention,
many researchers continued their studies in this field with mutual collaborations. As a
result, in 1971, Saul Amarel of Rutgers University began working on his study on appli-
cations of computers in bio-medicine. In 1973, Stanford University also made significant
efforts to enhance communication strength among many universities to focus on clinical
and biomedical studies [69]. Rutgers University also funded an AI workshop in 1975 to
spread awareness about its applications towards strengthening medical infrastructure [70].
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Figure 2. Applications of AI and ML in Medical Infrastructure.

Further, a causal-associational network [71] was used to construct a glaucoma consul-
tation tool, one of the prototypes to show that AI might be used in medicine. This system
comprises model development, a database, and consultation. This model can apply certain
illness information to individual patients and provide treatment suggestions. Another
system called MYCIN, an AI system that uses “backward chaining” was created in the
early 1970s [72]. Physicians may enter patient information into MYCIN to get a list of
probable infections for the system to offer antibiotic treatment alternatives tailored to each
patient’s weight.

The University of Massachusetts launched DXplain in 1986 as a decision support
system. This software generates a list of diagnoses based on a patient’s symptoms. An
electronic medical textbook provides extensive explanations of illnesses and links to sup-
plementary resources. It could offer an analysis of 500 different diseases with its early
versions. Later on expanded to more than 2400 disorders [73], which can help the healthcare
sector to collect important information about many crucial diseases from a single place that
helps to escalate many processes of research and developments. At the end of the 1990s,
accelerated beliefs in machine learning capabilities, notably in the medical field, helped
pave the way for the contemporary era of AI in healthcare infrastructure, coinciding with
the aforementioned technical advancements.

Another system, similar to DXplain, Watson, was built by IBM in 2007, a question-
answering open-source system that earned first place on Jeopardy’s television show in
2011. Unlike traditional systems, using reasoning in forward-backward methodologies or
hand-crafted rules, various searches along with NLP were used to analyze unstructured
content and find probable answers [74]. Using this method was more convenient, and it
was also less expensive and simpler to maintain.

Medical records of patients, including other electronic resources, helped to use tech-
nologies like DeepQA to provide professional medical suggestions and related information.
It provided new opportunities for making therapeutic decisions based on evidence [75]. The
binding of RNA proteins was effectively identified by Bakkar et al. [76] using IBM Watson
in 2017. Digitized medicine became more accessible due to this impetus, combined with
enhanced computer hardware and software applications. Natural Language Processing
has also revolutionized chatbots by allowing them to engage in meaningful conversations.
In 2011, a virtual assistant known as Apple’s Siri used this technique. Amazon also used a
similar technique for its virtual assistant, called Alexa. Pharmabot and Mandy are chatbots
established in 2015 and 2017 to help young patients and their parents better understand
their medications [77,78].
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In image processing, convolutional neural networks (CNNs) are widely used for
feature detection and learning. To develop specialized filters, CNN uses several layers
that evaluate an image and look for certain patterns. Several CNN algorithms, such as Le-
NET [79], AlexNet [80] (shown in Figure 3), VGG [81], GoogLeNet [82], and ResNet [83], are
now readily accessible. Such models are useful for medical image analysis and working in
many other domains to strengthen the overall infrastructure by entitling every component
of the healthcare sector. For example, MetaAI is one of the major research organizations
working in the direction of utilizing AI and ML algorithms for more generalized purposes,
like Computer Vision, Conversational AI, Integrity, Natural Language Processing, Ranking
and Recommendations, Systems Research, Speech and Audio, Robotics, and Graphics-
MetaAI and other big tech companies, like Google, Amazon, and Microsoft, work in these
fields with enormous resources. One can find their research in various healthcare domains,
for example, Google’s research on disease detection in eyes using external photographs [84],
and Microsoft’s research in the biomedical natural language field processing [85]. These
advanced researches are dedicated to healthcare because they validate million-size datasets
and their diversity.

The analysis presented above shows the significant development in AI and ML-related
research and its active utilization in healthcare infrastructure and its enhancements in every
possible manner, with the employment of such advanced technologies that enable machines
to think intelligently. Therefore, AI and ML’s role is to empower medical infrastructure
from its roots by following or enhancing the fundamental requirements. Furthermore, the
involvement of AI and ML ensures precision and safety simultaneously without breaking
any ethical substance.

Figure 3. AlexNet architecture.

3. ML and AI Based System for Quantitative Analysis

AI and ML applications can help sustain the medical infrastructure by playing crucial
roles in its minute components to bolster the more considerable structure while improving
from the ground. Moreover, this can only be done if this technology solves fundamen-
tal problems, such as reducing diagnostic time, hospital stays, and complications while
allowing doctors to perform finer operations to strengthen the infrastructure. However,
these advantages must be weighed against the longer intra-operative time-frames, higher
financial expenditures, and more significant training load associated with AI-powered
procedures, which should also be considered carefully. Although the results of such a
cost-benefit analysis are only sometimes, only sometimes consistent, almost every portion
of healthcare infrastructure provides significant support for their usage and further im-
provements. Such affirmative impacts can be supported by several case studies, as follows:

3.1. AI Supported Robotic Surgeries

While consuming any healthcare service, operations or surgeries are the most expen-
sive part that any patient suffers. Moreover, the cost of such surgeries is usually high
because they need individual specialists and detailed analysis of each critical detail. After
all, even a trivial tolerance can cause a life-or-death situation. Therefore, the plantation of
machine intelligence that can provide solutions without a single chance of error would not
only help to decrease the overall cost of such operations and surgeries but also help the
hospitals to reduce the queue size while attending more and more individuals every single
day, which would eventually result in a win-win situation for both patients and hospitals.
One possible solution that can work in the direction of the field mentioned above of interest
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is AI-supported robotic surgeries. For example, intra-corporeal suturing (using suture to
stitch up an incision or wound), often used in urological and gynecological operations, may
be improved with the use of robots [86].

3.1.1. Urological Applications

In the United States, radiation prostatectomy (a procedure to remove an organ or gland
using radiation therapy) has been projected to be performed with robot assistance regularly.
Urology has been the specialty most eager to embrace robotic surgery [87], beginning from
robot-assisted laparoscopic (medical process to treat internal body organs/parts without
large incisions) prostatectomy (RALP). Because of this, some studies have compared it
to open and laparoscopic radical prostate surgery (LRP). For example, Tewari et al. [88]
presented a comprehensive study on 62389 RALP, 57303 LRP, and 167184 open surgeries
while monitoring prostate-specific antigen levels, pathological features, and age. According
to their analysis, Table 1 summarises that RALP surgeries are better than open and LRP
surgeries in terms of the reduced amount of blood loss and hospital stay.

There were also reduced rates of readmission, nerve damage, and re-operations in
RALP compared to LRP, as well as higher rates of continence and the recovery of sexual
function [89,90] in RALP compared to LRP. In a further study, Sukumar et al. [91] analyzed
the oncological outcomes of 5152 patients who had RALP. A high-volume tertiary center
showed that RALP’s long-term biochemical control was successful. These studies imply
that RALPs are usually more effective and cost-efficient because of their lower side-effect
tendencies and low chances of repetition requirements. These results can help to understand
the efficiency of healthcare services from both a patient and hospital perspective.

Furthermore, researchers from European countries have also done several studies in
the direction of the utilization of robotic surgery and found significant applications for this
technology, particularly for RALP. A decade ago, open and laparoscopic procedures had
comparable, if not better, results than RALP. Research by Hakimi et al. [92] has suggested
an explanation for this, considering the brief period in which robotic surgery has been
accessible. It was discovered that in a case series of more than 300, the initial seventy-five
RALP surgeries out-performed the final seventy-five LRP cases, illustrating the shorter
learning curve of the robot vs. the conventional laparoscopic method [93]. As a result of
this, and the rising amount of evidence supporting the effectiveness and safety of RALP,
robotic surgery for prostate cancer is likely to become the procedure of choice shortly.

Table 1. Summarizing primary advantages of RALP versus, LRP and open.

Perioperative Outcomes Reduction for Reduction for
Open vs. RALP LRP vs. RALP

Blood loss estimation (mL) 562.5 127.8
Stay length, USA (days) 1.69 0.78

Stay length, non-USA (days) 3.65 1.04

3.1.2. Gynaecological Interventions

Endometrial (lining of a woman’s hollow, muscular uterus, which is located in her
pelvis) and cervical cancer patients may now undergo radical hysterectomy (uterus removal
process) using a robot-assisted surgical technique that the Food and Drug Administration
first licensed in 2002 for use in urology [94]. After that, robot-assisted surgery became a
common practice in the USA. However, despite no randomized controlled trials, the second
most common robot-assisted surgery in the United States has not been studied in the same
way as RALP.

Kruijdenberg et al. [95] looked at data from 342 hysterectomy patients and 914 total
laparoscopic radical hysterectomy patients in individual case series. Even though patients
undergoing robot-assisted radical hysterectomy required fewer blood transfusions than
those undergoing total laparoscopic radical hysterectomy (9.7% vs. 5.4%) and had shorter
lengths of stay, severe complications could occur after surgery were more common in



Healthcare 2023, 11, 207 8 of 20

robot-assisted radical hysterectomy patients. However, they did determine that trials for
this method were smaller in population and that surgical device experience after the initial
learning phase can further mitigate the complexity rate, reducing the cost of the service
consumption for the patient and increasing the hospital’s availability to attend to more
patients. However, there are some drawbacks to such surgeries in the form of possible
complications after the operation.

3.1.3. Cost Analysis

Considering the potential advantages of robotic surgery, such as shorter hospital stays
and fewer complications, we should also consider the financial support required to make it
possible for a robot to operate under the guidance of an AI and a human expert, requiring
the medical personnel to undergo technical training to cope with a machine and perform
crucial tasks while taking care of innocent lives.

The employment of robots in gastrointestinal, thoracic, urological, and gynecological
surgery is beneficial [96]. For instance, comparing laparoscopic and robot-assisted radical
prostatectomy for a controlled but randomized study, it was found that urine erectile
dysfunction, incontinence, and readmission rates were decreased in a group of subjects
when diagnosed one-year post surgery [97,98]. Robot-assisted laparoscopic bypass costs
lesser than its gastric version; however, new research assessed the whole expenses of
each treatment, including the complications costs, patient-stay time, and explicit process
costs [99,100]. According to these studies, laparoscopic and open surgeries cost $2334
and $3637 more than robot-assisted surgeries, respectively. The results also encourage the
wide use of robot-assisted surgeries, instead of conventional methodologies, to observe
this cost-reduction phenomenon at an infrastructural level. In addition, a unit of surgical
robots might cost anywhere from $1 million to $2.5 million to set up [101]. Robot-assisted
procedures cost around $2000 more each operation than the identical treatment done
with traditional laparoscopy, with annual maintenance expenses estimated at $138,000 per
year [102].

Robotic surgery may be cost-effective, but the initial expenditures are exorbitant for
many hospitals, making it difficult for small hospitals and healthcare units to utilize this
technology at the purchase stage. In addition, surgeons may need more expertise with
the procedures related to surgical robots and their operations, and there are a few training
facilities equipped with the requisite equipment, which results in fewer options for sur-
geons to get training [103]. Although due to a dearth of research that provides an itemized
breakdown of expenditures for robotic surgery, it seems complicated to evaluate every
minute cost efficiency [104], these studies most closely imply that robot-assisted surgeries
are cost-effective in terms of overall operational cost for both patients and hospitals. How-
ever, the cost of setting up the ground infrastructure for this purpose is relatively high, and
many hospitals or individual healthcare units may need more resources.

3.2. Tuberculosis Monitoring with AI

A cohort Markov transition state model was made by Salcedo et al. [105] to compare
the treatment completion rates and costs of traditional in-person methods called Directly
Observed Therapy (DOT) and AiCure for active Tuberculosis (TB) patients consuming
treatment in Los Angeles, USA. This model kept track of how TB patients did every
month for 16 months, which was the most prolonged period for treatment they saw in
the available data. For each sequential month, subjects with TB either continued getting
treatment, stopped getting treatment, or got cured. These probabilities were based on
specific health department monitoring data on active TB subjects at a public health clinic in
Los Angeles. It was assumed that both DOT and AiCure patients had followed a standard
treatment plan with an average of 11 doses per month. This average showed that both
daily and twice-a-week treatment plans for TB were used depending on what the patient
and provider wanted. They mentioned that patients who did not get better with AiCure
should be switched back to DOT, which usually happens in any trial, and patients who did
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not get better with DOT were lost to follow-up. A patient in the study group had to have
a confirmed diagnosis and not multidrug resistance or HIV. The health department and
the University of Southern California review board reviewed the primary case study with
AiCure on people diagnosed with TB.

According to the data of the subjects of the specified region (as shown in Table 2),
AiCure proved its usefulness for lowering patient-nurse workloads while attaining com-
parable success in DOT stages. Patients receiving AiCure finished their therapy at a rate
statistically equivalent to that of DOT while spending, on average, $2226 less. The findings
of the sensitivity analysis demonstrated that AiCure could be the most cost-effective option
for more than 95% of the instances with willingness-to-pay scales more than $50,000 for
each quality-adjusted life year, notwithstanding the uncertainty around completion time-
frames resulting from the small number of subjects in the data of the region. Even in the
cases when DOT was more affordable than AiCure, the study directs towards insignificant
inputs (per-patient saved $3672) in comparison with the most considerable reduction of
AiCure with significant inputs (per-patient $7603 saved).

Table 2. Findings from the AiCure vs DOT study on Tuberculosis Monitoring for various scenarios
captured during the study.

Situation Cost of Cost of
AiCure ($ in 2017) DOT ($ in 2017)

Base scenario 2668 4894
AI 5% worse b 2860 4894
AI 10% worse b 3011 4894
AI 15% worse b 3164 4894

AI worst case/DOT best case 5278 1607
AI best case/DOT worst case 2883 10,485

b x percent worse means that all monthly closure probabilities within 15 months are reduced by x percentage
points, with a base of 0. In the worst/best scenario, the model’s one-way sensitivity parameters are tested at the
lower or upper limits of their 95% confidence intervals.

Even with a few minor limitations, this study assures the effectiveness of an artificial
intelligence-supported tool in terms of cost without lowering the quality of care, as long
as it is only used for simple cases of pulmonary TB that are not resistant to drugs. Future
research should look into how results differ depending on the patient population and the
challenges of implementing such AI-assisted disease monitoring systems on a large scale.
Utilizing such tools in the healthcare infrastructure can help reduce the cost of monitoring
operations and the workload of a medical professional, which would help the medical staff
work more efficiently while attending to more complex cases where human intervention is
mandatory.

3.3. Polyp Detection and Treatment with AI

This research [106] is a follow-up to a clinical experiment that tested AI’s ability to
distinguish between colorectal polyps (noncancerous tumors) and normal tissues. Subjects
with a rectosigmoid (type of colorectal polyp) polyp less than 5 mm in diameter were
included in the study. A diagnosis-and-leave (DAL) method assisted by AI prediction
and a polyp resection (PLR) method were compared in terms of average colonoscopy
costs. Here, the rectosigmoid type of predicted polyps is assumed to not be completely
visible to AI but cannot be removed. However, another method can detect and remove all
types of polyps. Based on the number of colonoscopy reimbursements performed over
public health insurance plans for four countries, this study computed the gross yearly
expenditures of colonoscopies.

Under the two techniques, average colonoscopy costs and gross yearly reimbursement
were calculated (as shown in Figure 4) for four nations. Taking into account the imple-
mentation costs of the AI tool, in Japan, the average cost of colonoscopy under the DAL
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method was $119 cheaper than the PLR strategy. As a result, colonoscopies are estimated to
save $149,220,000 yearly in gross yearly reimbursement savings. According to the National
Health Service, a DAL colonoscopy was 52 dollars less expensive than the PLR approach
in England. As a result, colonoscopies are estimated to save $12,360,348 per year in gross
yearly reimbursement savings. In Norway, it costs $34 less than those in which all polyps
are removed, with a saving of $1,114,733 in gross yearly reimbursement savings. The study
also found the cost to be $125 less than the PLR strategy for a colonoscopy in the United
States, based on Medicare reimbursement rates, with a gross yearly reimbursement savings
of $85,244,220 per year.

This study shows how AI can help to lower gross yearly reimbursement for colono-
scopies by up to 18.9% in Japan, 10.9%, 7.6%, and 6.9% in the United States, Norway,
and England, respectively (Figure 4). These reductions can significantly affect the overall
infrastructural cost in any country, which directly strengthens healthcare by lowering ex-
penditures. Moreover, the combined efforts of Artificial Intelligence and DAL colonoscopy
can significantly reduce the above-discussed costs with some variations based on the region
where these implementations have been successfully employed.

Figure 4. Using the DAL method assisted by AI prediction and the PLR strategy in Japan, the United
States, Norway, and England, the estimated gross yearly reimbursement for colonoscopies in each
country’s AI cost reduction % is also given.

3.4. Sepsis Severity Prediction Using ML

In the study [107], ML-based algorithms were implemented and analyzed to predict
sepsis severity. The method developed during this research employs just six vital signs
to achieve a greater level of sensitivity and specificity than other sepsis scoring systems
utilized in hospitals. Patients in intensive care units (ICUs), a critical component of any
hospital and equally important in the overall healthcare infrastructure, were the focus of
this investigation.

From December 2016 to February 2017, a clinical study was performed at San Francisco
Medical Center to evaluate the results of the average duration of stay and the in-hospital
death rate. This open-label factorial investigation was accessible to participants ages 18 and
older who were admitted to participating facilities. A random allocation process was used
to place all enrolled patients in one of the two study fields. Machine learning algorithms
(MLA) were applied in the experimental group and the existing severe sepsis detector.
When the alarm was received, the medical team assessed the subjects and, if necessary,
started treatment related to severe sepsis. Patients who got MLA warnings had their group
assignments immediately exposed, even though they were randomly allocated.

A total of one hundred and forty-two individuals were evaluated for trial qualifica-
tion throughout the study. A halt to patient enrollment occurred before the 150-patient
maximum anticipated since the research was completed earlier than expected. However,
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they all satisfied the inclusion criterion, as none of them were under the age of 18. All the
patients were randomly allocated. Seventy-five joined the control group, and the remaining
were instructed to join the experimental group. Patient follow-up was seamless because
patients were monitored for the whole period of their stay in the hospital, and no further
interventions or questions were required. The study came to an end after analyzing data
from all subjects.

Clinical and demographic information for all subjects was gathered. The study’s
average patient age was 59 years, with women making up 53.5% of the participants and
males accounting for 46.5%. Both trails were statistically almost similar in terms of their
demographic differences. The medical-surgical high acuity ward, the transfer center, and
the emergency room were the three most popular entry points for patients in both study
groups. The primary result of this study implies that the hospital length of stay was
decreased by 20.6 percent in the experimental group (Table 3). In the group other than
experimental, 16 out of 75 patients died while in the hospital, but in the experimental
group, 6 of the 67 patients died while in the hospital (as shown in Table 3). The difference in
in-hospital mortality rates decreased significantly. There was also a statistically significant
reduction in the risk ratio of in-hospital mortality. As a result, the experimental group’s
mortality rate dropped by 12.34% compared to another group.

Table 3. Summary of sepsis severity prediction study in terms of stay length and mortality rate.

Result Controlled Experimental Reduction (%)

Hospital Stays 13.0 days 10.3 days 20.7
ICU stays 8.40 days 6.31 days 24.88

In-hospital death rate 21.3% 8.96% 12.34

This medical study showed that an ML prediction system for sepsis severity detection
improved overall patient outcomes. Compared to the existing rules-based sepsis detector,
this method reduced the length of total hospital stay and death by a significant margin.
From these findings, ML systems can help to reduce the chances of having severe sepsis
by early detection with improved patient outcomes. One of its disadvantages is that
it is only applicable to ICUs, and future studies can be focused on to solve this issue.
This study also implies the scope of such ML-based prediction systems for the early
detection of many diseases, which can significantly decrease the mortality rate and preclude
many complexities.

Each of the studies mentioned above is mainly directed toward the pros and cons
of utilizing Artificial Intelligence and Machine Learning-based solutions to enhance the
individual sectors of the overall medical infrastructure. Still, these studies imply significant
possibilities and outcomes of utilizing such advanced technology in healthcare infrastruc-
ture and its applicability on a wide scale. These studies provide important implications for
the cost-effectiveness of AI and ML-based support in healthcare not only from the patient
side in terms of overall service consumption cost but also from the perspective of infras-
tructure strengthening by the employment of this technology, in terms of reduced mortality
rates, reduced operational cost and time, attending more patients for better healthcare
distribution, equal distribution of healthcare services, and the cost of applying such tech-
nology to the current healthcare infrastructure while utilizing the available technologies to
minimize the initial cost of employment.

4. Discussions: Future of Medical Infrastructure with AI

The above analysis helps one understand the role of Artificial Intelligence and Machine
Learning in automating various essential components and processes on which medical
infrastructure is based and cannot be sustained without them. For example, we find how
Deep Learning could accelerate the diagnosis procedure; even early detection can preclude
many losses; how Natural Language Processing can automate the hospital management
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processes while saving a lot of time and resources at the same time, and how AI can accom-
plish complex calculations and estimations with minimal time and resource requirements to
find every possible methodology to mitigate the effect of an incurable ailment by predicting
its root cause and related antigen to dissolve it. We also discussed the economic aspects of
utilizing Artificial Intelligence and Machine Learning based solutions from a hospital and
patient perspective. We saw that a significant improvement could be made, especially in
long-run implementations, based on the advantages and limitations presented in Table 4.

Table 4. Advantages and limitations of existing studies employing Artificial Intelligence and Machine
Learning in healthcare.

Field of Study References Advantages Limitations and Future
Research Directions

Robotic Surgeries [86,88,92,93,95,97,99–104]

Total operational time was
reduced by approx. 50%;
accuracy of performing

minute tasks such as stitching
and knotting, improved up to

90%; probability of
post-surgery infections,

decreased up to 30%; up to
77% blood losses can be

prevented; total operational
cost reduced up to 35%.

Most of the techniques are
designed to achieve

maximum precision and do
not take patient comfort into
attention; the cost of initial
setup and maintenance is

high; training methodologies
for healthcare staff still need

to be well explored.

Disease monitoring [105,108–110]

Continuous monitoring can
prevent hazardous situations;

fine-tuning of on-going
treatment is possible; total

duration from getting sick to
get cured reduces up-to 40%;

better treatments can be
planned; research and

development of medicines can
be accelerated.

Existing studies mainly focus
on case-wise studies while

generalized methodology can
be an area of interest for

researchers; mixed datasets
scenario can be an exciting

area as a future work; present
study covers most frequent

diseases while there is various
disease where AI can be

utilized; home-based
monitoring is not addressed

in these studies.

Diagnosis and prognosis [106,108,111–116]

Initial process time can be
reduced up to 70%; early

prediction can prevent worse
conditions; predicted
prognosis and expert

suggestions can be fused to
produce best possible results.

Comparatively high false
positive ratio; high

miss-classification ratio;
extrapolation accuracy still
needs to be better than an

interpolation; integration with
existing technology can be a

matter of further studies.

Prediction systems [107,117–119]

Early predictions can help
doctors to provide better

treatment; intelligent
phone-based prediction

systems help patients to know
their condition without

visiting the hospital; can be
used to find the root cause of

any disease.

High false positive ratio;
requires many data for

training; high computational
power is required for training
and prediction; technology is

comparatively costly.

At the research and development stage, identifying stones from ultrasound images
and computed tomography gets praise. Researchers utilized these images and applied
various models for detection like CNN, Discriminant analysis, Artificial neural network
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(ANN), Bayesian model-Decision Tree, and Multi-parametric algorithm. Kazemi et al. [119]
applied the Ensemble model and achieved 97.1% of accuracy. The ensemble model indicates
the combination of various models; for example, in this study, the Bayesian model–Decision
Trees, ANN, rule–based classifiers, are combined for classification. Most studies utilized
support vector machines, a method of supervised classification [120]. Artificial Neural
network has impacted the diagnosis of Tuberculosis far better than conventional ones. Since
tuberculosis data is mainly in X-rays, CNN is widely famous for detecting Tuberculosis.
Some studies developed a modified architecture for better accuracy, positively affecting the
diagnosis. Vasundhara et al. [115] proposed Deep Learning Normalization – free Network
model with 96.91% accuracy, 99.38% AUC, 91.81% sensitivity, and 98.42% specificity on a
multi-class classification dataset. Normalization–free–network is created by eliminating
normalization layers from ResNets.

Furthermore, it has been demonstrated that computer-aided polyp detection systems
utilizing deep learning improve endoscopists’ capacity to identify polyps during routine
screening and surveillance colonoscopies. Most of the extra polyps found were tiny and
hyperplastic, limiting the study’s therapeutic applicability. However, compared to regular
colonoscopy, the computer-aided detection technique produced a considerably higher ADR
(29.1% against 20.3%) and a more significant mean number of adenomas found per patient
(0.53 versus 0.31). Several CNN architectures have been presented for automated detection
in colonoscopic pictures and sequences in the last five years. For example, Mohammed
et al. [114] utilized Y-Net-architecture and achieved 85% of accuracy, Misawa et al. [116]
proposed a 3D-CNN with 76% of sensitivity, A Faster-R-CNN architecture was used by
both Mo et al. [121] and existing architecture utilized by researchers.

However, there might be some challenges to making it possible to replace every
outdated or conventionally used technical methodology that is being used in the current
healthcare infrastructure because there are certain limitations to the employment of such an
advanced technology that would be responsible for taking critical decisions related to the
lives of human beings. Overcoming these problems is only possible when each component
of the current infrastructure, including the healthcare workers, supports enhancing the
capabilities and the current situation. Moreover, it is essential to understand each possible
positive and negative aspect of employing such technology that requires a significant
number of changes in the currently available infrastructure, which would eventually
result in substantial monetary and fiscal support from the governing body of healthcare
infrastructure.

AI and ML-based solutions are employable in various sub-fields of healthcare while
resolving existing pitfalls in the respective field of study. One such sub-field is diagnostics
of numerous widespread diseases and ailments, which cause a continuous increment in
the global mortality rate every year. The utilization of solutions based on AI, specifically
Deep Learning, can help to resolve this problem to a great extent. Also, at this high
population increment rate, it would become difficult for doctors and other workers to
complete their jobs with the same efficiency because of overburden and less available time.
Therefore, hospitals can resolve this problem with the help of ML and AI-based solutions,
which can learn to predict every possible outcome with minimal error at any stage so
that further procedures can be accelerated while saving time and other essential resources.
Even for hospitals, utilizing a virtual assistant would be economically favorable. Therefore,
implementing AI and ML-based solutions for diagnosis purposes can be done without high
monetary support. However, it requires large datasets to be prepared to implement such
solutions, and hospitals may need to spend some resources to train healthcare workers to
use this technology. Therefore, the current infrastructure can digest the involvement of
such virtual intelligence with little initial investment in setting up in-house diagnostics
centers. Long-run outcomes are expected to balance those early expenses.

Moreover, this situation continues over all possible implementations of AI and ML-
based healthcare solutions in all their respective sub-fields of the overall healthcare system,
requiring similar efforts from the available infrastructure to solve existing issues and
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accelerate various procedures to provide faster and better services to patients. Studies show
that AI-ML-based solutions can significantly reduce healthcare service costs. However, it
might not be economical for the current medical infrastructure to adopt this technology
for wide usage and may require significantly high monetary investment, which includes
discarding or reducing the use of available resources and setting up requirements for
implementing new technology. While analyzing various case studies, which may have yet
to be done at the infrastructure level but present good results in their research area, one
can draw some important implications related to the employment of AI-based healthcare
services at the infrastructure level. Studies show that the cost of many medical procedures
can be reduced by up to a significantly high proportion, relieves the patient, and is beneficial
for the healthcare service providers. Hospitals can increase their revenues by reducing
operational time and the number of resources spent on each patient while attending more
patients and utilizing that money for further developments and expansion to provide
services with better reach and efficacy.

The following implications would most closely match what these technologies mean
for healthcare to resemble the above possibilities of Machine Learning and Artificial Intelli-
gence based interventions in healthcare at the infrastructural level:

• Develop a local or nationwide AI plan for the medical sector, including short- and
long-term expectations and objectives, particular projects, finances, and evaluation
methods. Establish applicable scenarios to be supported by dedicated financing and
opportunities to allow the scalability of AI tools throughout the system; demonstrate
that these use cases produce both operational and clinical benefits.

• Set up frameworks for digitization, quality and accuracy, access to data, ownership,
risk assessment, privacy and exchange, and system connectivity. Use a mix of financial
and performance-based incentives to get people to follow the rules.

• Redefine workforce management and medicinal and pharmaceutical processes to meet
the needs of future treatment and AI-centered professionals, and engage up front in
developing skills front-line staff and constructing longstanding initiatives for health
professionals via ongoing professional growth and diplomas or degrees.

• Offer opportunities and direction for healthcare facilities to cooperate in local or
national centers of excellence or innovation clusters.

• Address AI legislation, responsibility, and funding challenges to establish the optimal
climate for deploying appropriate, secure, and efficient AI systems while limiting
practitioner risk.

Artificial intelligence and Machine Learning based methods can solve many healthcare
problems or the most pressing issues, and their advancements offer a slew of intriguing and
promising medical applications that can enhance the quality and efficiency of healthcare
services. However, significant research efforts are still required in this direction to explore
the hidden potential of this technology. Moreover, the requirement for a vast dataset
is a significant issue and impediment to making it happen. Despite all the promising
technology and machine learning algorithms, we can only achieve the full potential of
AI in healthcare if we have enough well-represented data. Digitizing medical records,
establishing a uniform data architecture, and creating a secure system to safeguard patient
data are all critical steps for the healthcare business. It would be challenging to realize the
full potential of AI to improve human health if the healthcare sector had not undergone
fundamental transformation and cooperation.

5. Conclusions

In this review, we comprehensively analyzed the applications and impacts of utilizing
Artificial Intelligence and Machine Learning in healthcare infrastructure. We saw how AI
and ML are used in the medical sector and their numerous applications, such as diagnosis,
prognosis, research and development, surgeries, administrative tasks, etc. This review
also provides a brief history of AI and ML techniques’ evolution and applicability toward
strengthening healthcare. It discusses some essential interventions that Artificial Intelli-
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gence and Machine Learning have made in this field by enabling machines to behave like
humans or intelligently. Some case studies and quantitative analysis have also been in-
cluded to understand the whole motive from an infrastructural perspective, which provides
a clear understanding of the application of such advanced technology from both a patient
and hospital point of view. Several studies and many big tech companies have shown how
AI and ML can change healthcare completely. However, it would be challenging to utilize
this technology globally in the current scenario because it would require a lot of fiscal and
monetary support to stabilize it while replacing the existing methodologies. However, with
more research and time, it may be possible to reduce healthcare costs and increase the
medical sector’s overall strength by exploring these technologies’ potential.
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