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Abstract: Dabieshan cattle (DBSC) are a valuable genetic resource for indigenous cattle breeds in
China. It is a small to medium-sized breed with slower growth, but with good meat quality and fat
deposition. Genetic markers could be used for the estimation of population genetic structure and
genetic parameters. In this work, we genotyped the DBSC breeding population (n = 235) with the
GeneSeek Genomic Profiler (GGP) 100 k density genomic chip. Genotype data of 222 individuals
and 81,579 SNPs were retained after quality control. The average minor allele frequency (MAF) was
0.20 and the average linkage disequilibrium (LD) level (r2) was 0.67 at a distance of 0–50 Kb. The
estimated relationship coefficient and effective population size (Ne) were 0.023 and 86 for the current
generation. In addition, we used genotype data to estimate the genetic parameters of the population’s
phenotypic traits. Among them, height at hip cross (HHC) and shin circumference (SC) were rather
high heritability traits, with heritability of 0.41 and 0.54, respectively. The results reflected the current
cattle population’s extent of inbreeding and history. Through the principal breeding parameters,
genomic breeding would significantly improve the genetic progress of breeding.

Keywords: Dabieshan cattle; linkage disequilibrium; effective population size; heritability

1. Introduction

Studying the level of genetic diversity within populations can help us understand
population productivity, growth, and stability, as well as interspecific interactions within
communities and ecosystem-level processes [1]. People are now paying greater attention to
the protection of genetic resources.

China has plentiful ecosystems and abundant cattle resources, including 55 indige-
nous Chinese cattle breeds. They are reared in specific geographic regions, are widely
distributed across China, and possess valuable genetic resources [2]. However, since the
1980s, a great number of exotic commercial cattle breeds have been introduced to blindly
improve Chinese local cattle [3], resulting in a significant reduction in the quantity of local
cattle breeds. Fewer purebred individuals of the local cattle breeds remain, leading to
inbreeding, loss of genetic diversity, and even danger of extinction. It is urgent to protect
the local variety of resources. Dabieshan cattle (DBSC) are one of the typical Chinese native
cattle breeds, mainly distributed in the surrounding areas of the Dabie Mountains. They
express a better performance in strong resistance to local diseases and parasites, low-quality
feed (coarse fiber feed) resource tolerance, and high fat deposition capabilities [3]. The
breed population head size is approximately 300,000–400,000 and mostly breeding scale in
scatter-feed is 10–20 [3]. As such, DBSC generally have a small population size, and the
traditional breeding methods have long generation times and lower effects. Now genomic
selection (GS) is available to improve breeding efficiency and accelerate genetic progress [4]
in animals and has been studied and successfully applied in the Holstein breeding popu-
lations, with the commercial chip containing around 50,000 SNP [5]. The developments
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of genome sequencing and SNP genotyping technologies, and new statistical tools have
led to new technologies in evolutionary and developmental biology, and animal breeding.
In developed countries, whole genome sequence analysis and GS are being applied in
breeding schemes of beef cattle [6].

The estimation of the extent of the genome-wide linkage disequilibrium (LD) is vital
for the number of markers that are needed in genome-wide association analysis (GWAS),
GS, and effective population size (Ne). The availability of high-density single nucleotide
polymorphism (SNP) genotyping platforms makes it possible to investigate LD better.
The LD between molecular markers reflects the correlation between the genotypes of two
markers or the degree of non-random association between their alleles [7]. The difference of
allele frequency will affect the extent of LD, such as migration, mutation, selection, genetic
drift, or other genetic variation that is experienced by the population [8]. As such, the LD
can provide important information about population history and selection strength in a
diverse population [9,10].

Understanding genetic diversity is essential for developing conservation programs in
autochthonous breeds, and Ne is one of the most commonly used parameters to assess the
loss of genetic diversity per generation and the increase in breeding per generation [11].
Ne refers to the ideal population content with the same gene frequency variance or the
same heterozygosity attenuation rate as the actual population [12,13], which is an essential
component of population genetics research. It determines the increment of the population
average inbreeding coefficient and reflects the average homozygous rate of genes in the
population genetic structure. The study of Ne is conducive to a clearer understanding of
population evolution history and the genetic mechanism of complex traits. It also plays
a critical indicator role in livestock and poultry breeding [14]. The population is very
likely to be relatively closed when the effective population of a natural population is small,
indicating that the population rarely experiences migration or is crossed with other herds or
breeds and loses genetic variation quickly. At the same time, with a small Ne, it is difficult
to avoid prematurity and high inbreeding levels, which will affect the heterogeneity and
comprehensive application value in varieties. Therefore, breeding livestock and poultry
should maintain a minimum Ne [15].

An estimation of heritability in populations depends on the partitioning of observed
variation into unobserved genetic and environmental factors. Genetic markers can help to
estimate heritability in a novel way [16]. Since quantitative traits are greatly affected by the
environment, the heritability of a quantitative trait locus (QTL) helps judge the value of
this QTL in breeding. QTLs with high heritability have a more significant effect on variety
improvement and screening. Thus, we can estimate genetic parameters to improve the
breeding efficiency and obtain faster genetic progress to carry out scientific breeding.

The main purpose of this work is to investigate allele frequency distribution and
estimate the extent of LD level (r2), Ne, and the heritability of body measurement traits
in DBSC using GGP 100 K Bovine chip. This information can help us to understand
the evolutionary history of DBSC and provide reference parameters for the conservation,
selection, and breeding of DBSC.

2. Materials and Methods
2.1. Animals and Genetic Data

There are about 20,000 DBSC in the area where the experiment was conducted,
with herding and natural mating. A total of 235 DBSC (female = 199, male = 36, adult,
3–5-year-old) constructed a population, which were randomly selected from the breeding
population of Taihu Jiuhong Agricultural Comprehensive Development Co., Ltd., Anhui
(Taihu), China. The founders of the breeding population were bought from farmers living
around Dabie Mountainous areas since 2014. Genomic DNA was extracted from blood
samples using a TIANamp Blood DNA Kit (Tiangen Biotech Co., Ltd., Beijing, China). All
the samples of 235 DBSC were genotyped with GGP Bovine 100 K (Neogen Inc., Lincoln,
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NE, USA). The principal component analysis (PCA) of the population was analyzed using
Plink v1.09 to test the genetic background differences among individuals in the population.

Only SNPs that were located on 29 autosome chromosomes were considered for sub-
sequent analyses. SNPs with (1) genotype call rate <90%, (2) MAF < 1%, (3) significant
deviation from Hardy–Weinberg equilibrium (p < 10−6), and (4) no variation among the
studied individuals were removed. Moreover, individuals with a missingness value >5%
were excluded from further analysis. If a SNP pair had r2 > 0.998, only one SNP was kept
for the next study pair. Initial data quality control of genotype data were utilized by Plink
v1.09 [17] to exclude ineligible individuals and SNPs before data analysis. The missing geno-
type data of SNPs was filled by BEAGLE v4.1. Filtering was equal across chromosomes.

2.2. Minor Allele Frequency (MAF)

The MAF for all autosomal SNPs was estimated by Plink v1.09. The distribution of
the allelic frequencies was analyzed using R and summarized as the proportion of the
SNPs that were represented in five different categories of MAF: ≥0.05 to <0.1, ≥0.1 to <0.2,
≥0.2 to <0.3, ≥0.3 to <0.4, and ≥0.4 to <0.5. The results were graphed for comparison
using R.

2.3. Phenotypic Data

The phenotypic data include adult body weight (BW) and body measurement traits.
Body measurement traits include wither height (WH), height at hip cross (HHC), diagonal
body length (DBL), chest girth (CG), abdomen circumference (AC), waist angle width
(WAW), ischial end width (IEW), and shin circumference (SC). The descriptive statistical
analysis of each trait was carried out to eliminate the abnormal value (except for three
times of standard deviation) before the follow-up analysis. After collecting the original
data, the phenotypes were corrected for fixed effects. Fixed effects in the model included
gender, farm, and birth year. The significance of fixed effects is shown in the Supplementary
Table S5.

2.4. Estimation of LD

The r2 statistic can be used to estimate the extent of LD. We calculated the r2 between
SNP pairs with physical distances between 0 and 1 Mb of all autosomes to estimate the
extent of LD in Plink v1.9. The decays of LD were analyzed for each of 2.5 kb between SNP
pairs with an interval of less than 99,999 SNPs and 1 Mb, and plotted against the distance
range. The r2 is the squared correlation of the alleles at two loci [18] and ranges between 0
and 1, which was estimated as follows:

r2
ij =

(
pij − pi × pj

)2

pi(1− pi)× pj
(
1− pj

) (1)

where pij is the haplotype frequency between the i marker and the j marker, pi and pj are
the frequencies of the i marker, and the j marker, respectively. The average r2 within each
marker interval is the arithmetic mean of r2 between all the markers within the interval.

2.5. Estimation of Ancestral and Contemporary Ne

Estimates of Ne were implemented in the GONE software [19], which utilizes genetic
algorithms [20] in inferring demography history data and works with a small sample of
individuals. This method is based on the relationship between the linkage disequilibrium
that is observed between pairs of SNPs and Ne, and allows for nonlinear changes in Ne,
such as population bottlenecks and expansions. The GONE program was run with default
parameters, including an unknown phase, an average rate of recombination of 0.01 cm/Mb,
and a genetic distance correction based on Haldane’s function.
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2.6. Estimation of Individual’s Genomic Relationship

In this work, the genetic relationship matrix (GRM) between individuals represents the
relationship between cattle, which is constructed by the genome array data and calculated
with the following formula provided by VanRaden [21]:

G =
Z Z ′

2 ∑ pi(1− pi)
(2)

where Z is a matrix of marker genotypes of all individuals; 0, 1, and 2 represent the
genotypes AA, AB, and BB, respectively; pi is the minor allele frequency at locus i; snf Z′ is
the transpose matrix of Z.

2.7. Estimation of Genetic Parameter

We used a restricted maximum likelihood (REML) method to calculate heritability
with an animal model and accounted for relationships between animals by using a G matrix.
The animal model included random additive polygenic effects, fixed effects, and residuals
for all traits. The additive polygenic effects were treated as random and assumed to be
mutually independent.

3. Results
3.1. Genotype Data and Quality Control

The GGP 100 K contains a total of 90,349 SNPs from 235 DBSC, and 81,579 SNPs from
222 DBSC with an average distance of 30.51 kb distributed over 29 chromosomes after
quality control. The highest number of SNPs (5082 SNPs) was found on chromosome 1,
and the lowest (1523 SNPs) was found on chromosome 25 ( Figure S1). The length of each
chromosome, number, percentage of SNPs, and the average interval between SNPs for each
chromosome are shown in Table S1. The distribution of SNPs on each chromosome before
and after quality control suggested that the number of unqualified SNPs accounts for the
equivalent proportion on each chromosome.

3.2. MAF, GRM, and PCA

The distribution of MAF of all SNP markers (81,579 SNPs) on autosomes of DBSC are
illustrated in Figure 1. The number of SNPs decreased with the increase in MAF frequency.
The mean MAF across all autosomes was 0.20. The highest proportion of MAF was 31.17%
between 0.05 and 0.1, and the lowest was 11.81% between 0.4 and 0.5. 68.83% of the SNPs
show a MAF higher than 0.20.

Figure 1. Distribution of minor allele frequency (MAF) for SNP after QC.
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The PCA showed that the first two principal components (PC1 and PC2) contributed
3.39% of the marker variation. Most of the population is clustered into one group and some
individuals have high dispersion as displayed in Figure 2.

Figure 2. Principal component analysis (PCA) of the genomic relationship of the population of
Dabieshan cattle (DBSC).

The average coefficient of kinship according to the genomic relationship of the whole
population was 0.023 by calculating the GRM.

3.3. LD and Ne

SNP pairs with an interval of 0–500 kb were selected from the results, and the decay of
LD (r2 was calculated for every 2.5 kb) is shown in Figure 3. The LD level of SNPs decreased
with the increase of the distance between SNP pairs on DBSC autosomes, and a sharp decay
was observed from 0 to 100 Kb (details in Table S3). The LD decay started when the level of
average r2 was 0.70 at the bin of 0–2.5 kb and reached average r2 values of 0.29 for 400–500 kb.
The average r2 was 0.50, 0.66, 0.46, 0.37, and 0.29 at an inter-marker distance of 2.5 kb, 30 kb,
50 kb, 100 kb, and 500 kb, respectively. The details of markers and LD (r2) between adjacent
markers across autosomes are shown in Supplementary Table S2.

Figure 3. Linkage disequilibrium (LD) decay in different distances of the genome and up to 500 Kb
on DBSC autosomes.
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Demographic trajectories of up to 200th generations ago for DBSC were inferred
in Figure 4. The pattern of the Ne curve was non-linear and kept fluctuating with up
and down trajectories from 1064 (200th generation ago) to 86 (one generation ago). Also,
questionable estimates were observed with a meteoric descent from 2051 (123th generation
ago) to 1256 (119th generation ago), and a meteoric rise from 1110 (108th generation ago) to
2035 (97th generation ago).

Figure 4. Genome-wide estimate of historical effective population size (Ne) over the past generations.

3.4. Estimation of Genetic Parameters of Phenotypic Traits

The coefficient of variation of each trait ranged from 6.04% to 19.83% in the population
(Table S4). The higher coefficients of variation were IEW and BW with 19.83% and 18.65%,
respectively. WH, HHC, and DBL had lower coefficients of variation, with respective values
of 6.36%, 6.04%, and 8.49%.

The estimation of additive variance (σ2
a ), residual variance (σ2

e ), and heritability (h2)
of each phenotypic trait are shown in Table 1. We found that IEW, AC, and WAW were low
heritable traits, and heritability was 0.12, 0.14, and 0.19, respectively. WH, DBL, CG, and
BW were medium heritable traits, with heritability of 0.28, 0.28, 0.3, and 0.37, respectively.
HHC and SC were high heritable traits, with a heritability of 0.41 and 0.54, respectively.

Table 1. Genetic parameters of body size and weight traits from the population.

Phenotype Trait σ2
a σ2

e h2 ± SE

Wither Height (WH) 16.523 42.488 0.28 ± 0.06
Height at Hip Cross (HHC) 22.189 31.930 0.41 ± 0.04

Diagonal Body Length (DBL) 36.585 94.075 0.28 ± 0.07
Chest Girth (CG) 133.103 310.574 0.30 ± 0.08

Abdomen Circumference (AC) 86.329 530.305 0.14 ± 0.06
Waist Angle Width (WAW) 5.049 21.525 0.19 ± 0.05

Ischial End Width (IEW) 1.523 11.167 0.12 ± 0.09
Shin Circumference (SC) 2.138 1.821 0.54 ± 0.07

Body Weight (BW) 1132.382 1928.109 0.37 ± 0.10

4. Discussion

DBSC is one of the indigenous cattle breeds in China, distributed in Dabie Moun-
tainous areas with smaller body sizes for climbing slopes. They exhibit abundant genetic
diversity [3] and have overall development and utilization prospects. However, the num-
ber of DBSC has decreased significantly as the promotion with improved breeds of cattle
could lead to the threat of loss of excellent genes and degradation of performance year by
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year. The final purpose of the breeding of DBSC is to improve meat performance, such as
increasing meat production, growth rate, and others.

4.1. MAF, GRM, and PCA

In this work, we found that the 29 autosomes of DBSC had 81,579 SNPs when using
GGP 100 K for genotyping after quality control. The average MAF was 0.20, and an
immense proportion of SNPs in the low MAF categories (0.05–0.2) was found. A previous
study revealed that the average MAF of Chinese indigenous cattle and Simmental cattle
were 0.24–0.27 and 0.29, higher than the DBSC in this study [4], indicating that the number
of polymorphic loci of allele frequency is lower in DBSC. Based on the mitochondrial DNA
analysis and Y-SNPs and Y-STRs markers tests, DBSC proved to only have Bos indicus
paternal origin [22]. O’Brien et al. [10] compared the average distribution of MAF for Bos
indicus breeds and Bos taurus breeds and demonstrated a general tendency in the indicine
breeds to have more SNPs with lower MAF showing less than 0.2. Some researchers
attribute this to the SNPs that were used in the assay were detected in European Bos taurus
breeds, resulting in the polymorphism higher in Bos taurus and lower in Bos indicus [23].
However, we consider the proportion of lower MAF in Bos indicus may be greater in
comparison to Bos taurue, which seems to be a characteristic for the species with lower
genetic diversity assessed from sequence data.

The GRM was calculated based on the genome relationship G matrix construction
method that was proposed by Van Raden [21]. Compared with the relationship that was
calculated based on pedigree information, GRM could be more accurate in assessing the
genetic relationship between siblings when the marker density is appropriate (at least
2500 SNPs [24]). The average coefficient of kinship over all 235 animals was 0.023 according
to GRM. The result was lower than the corresponding estimates of 0.0533 and 0.0575 that
were reported for US and Canadian Holsteins in 2007 [25], and also lower than the grouped
American Angus cattle population (0.038–0.188) evaluated by Saatchi et al. [26]. Thus, the
population (n = 235) may have less degree of inbreeding.

Most individuals of the population are genetically similar, shown as a dense cloud
in the PCA. Although some individuals genetically diverge, they have an extent of cor-
relation with each other, indicating that they maybe derive from the same population. A
large individual variation within the population or the introduction of genetic material of
other breeds may be reasons to explain the genetic variation between some individuals in
the population.

4.2. Extent of LD

Both r2 and D’ statistics can be used to estimate the extent of LD, but D’ is more
sensitive to changes in the effective population size and gene frequency [27]. As such, we
use r2 to estimate the extent of LD. This work uses the LD decay analysis up to 500 kb
for SNP pairs. The average r2 was 0.50 at a distance of 0–50 kb. The extent of LD is
distinct among different cattle breeds. At an inter-marker distance of 10 kb, the average r2

value was 0.53 for DBSC, higher than Angus (0.46) and Hereford (0.49) [8]. Lu et al. [28]
found that the extent of LD of Angus, Charolais, and crossbred beef cattle were 0.29, 0.22,
and 0.21, respectively, at the SNP marker distance of less than 30 kb. The estimate of LD
for SNP pairs separated by 40–50 kb was higher in Simmental cattle (0.21) and Wagyu
cattle (0.21) compared to Chinese cattle (0.14–0.20) [4]. We observed that the extent of
LD is greater, and the LD decay is slower up to 500 k for DBSC than values from other
cattle breeds found in the literature [4,8,28], which is likely related to a higher ancestral
relatedness [29] or historically smaller effective population sizes [30], which may be caused
by regional isolation such as from mountains. Moreover, the slower LD decay of DBSC had
the characteristic trend of populations that has suffered a collapse in population size or a
bottleneck [31].

The estimate of LD is also affected by chip density and sample size. Reports of SNPs
with low allele frequencies tend to underestimate r2 of LD between markers. However,



Genes 2023, 14, 107 8 of 11

O’Brien et al. [10] concluded that unbiased estimates of LD were obtained provided that
MAF > 0.05, unless low-density SNP coverage assays were used. Khatkar et al. [32] reported
that a small sample size led to an overestimation of LD and also illustrated that the accuracy
of r2 values can reach 0.85 when 55 samples were used for the calculation. According to
this, the results of LD evaluation in this experiment were not affected because we used
a 100 k chip, which belongs to a medium density chip, and the sample size of this test
(n = 235) meets the requirements.

4.3. Estimation of Ne

LD and Ne can be used to investigate the evolutionary history and genetic contents
of population. With the development of molecular biology, SNP as an essential genetic
marker has been used to estimate Ne [33]. Many LD-based software solutions fall short
in addressing problems including bottlenecks, migrations, expansions, and drops [34].
Santiago et al. created GONE to provide a computational framework based on intricate
theoretical and mathematical analyses to accurately estimate drastic changes in Ne and
infer recent demography history [19]. Meanwhile, over relatively recent timespans of about
200 generations back in time, the method has been shown to be more accurate than other
alternative coalescence and mutation-recombination-based methods [34]. Consequently,
we decided to estimate Ne for DBSC up to 200 generations ago. The long-term selection of
breeds in a particular direction will increase the proportion of dominant genotypes in the
population, resulting in artificial high-intensity LD, decreasing the Ne. A relatively small Ne
will also cause inbreeding, thus increasing the homozygous probability of harmful alleles
and reducing individual adaptability. It dramatically impacts species’ genetic diversity and
may eventually be on the verge of extinction. Therefore, it is crucial to know and control
the reasonable Ne. In animal breeding, FAO recommends that the Ne of the population
should be maintained at 50–100 to maintain an appropriate breeding plan [15]. In this
experiment, the Ne of the one generation ago was 86, suggesting that the population has a
size in the range of the FAO recommendation and with reasonable inbreeding control. It
may owe to the fact that individuals of the group came from different regions, isolated by
Dabie Mountainous areas, which further produced a strong isolation effect. Consequently,
235 DBSC in this test can be used as a population for further breeding.

4.4. Estimation of Genetic Parameters of Phenotypic Traits

In this work, we used REML with an animal model to estimate the genetic parameters
of BW and body measurement traits for DBSC. The animal model can maximize the use
of phenotype data and gain more accuracy in estimating genetic parameters. Heritability,
defined as the proportion of phenotypic variation that is attributable to genetic variation,
provides important information about the genetic basis of a trait [35]. Genotype data
of SNPs can be used to construct the GRM between individuals. GRM can replace the
genetic relationship matrix based on pedigree information when the pedigree records are
incomplete [6]. REML can be used to accurately evaluate the genetic parameters of each
trait of the population [36]. The heritability estimated by genotype data of SNP is generally
lower than that estimated by pedigree records. As the SNP data cannot represent all SNPs
in the whole genome, the genetic variance estimated by SNP data is also less than pedigree
data. However, for traits with high heritability or with the increase in population size, the
distance between genetic variance that is estimated by pedigree and genomic SNP data
will decrease gradually [37,38].

In this work, the estimated heritability of BW for 235 DBSC by GGP 100 K was 0.37.
The estimation of heritabilities could achieve different results using different population
sizes and methods of the relationship matrix for the same traits. Saatchi et al. [39] estimated
the heritability of birth weight, weaning weight, and the yearling weight of Simmental
cattle by Bovine SNP50 BeadChip to be 0.40, 0.30, and 0.29, respectively. Gunia et al. [40]
estimated the heritability of birth weight and weaning weight of 2682 Charolais cattle by
high-density SNP panel (777 K SNP) to be 0.36 and 0.22. Moreover, our study also estimated
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the heritability of WH, HHC, DBL, CG, AC, WAW, IEW, and SC for DBSC. The heritability
of HHC and SC of DBSC were 0.41 and 0.54, respectively, which are rather high heritability
values. Therefore, increasing the selection intensity of traits of HHC and SC will play a more
significant role in accelerating the population genetic breeding of DBSC. Unfortunately,
the heritability of these traits based on genotype data of SNPs has few related references.
However, our results can provide a relevant reference for research, which provides basic
parameters for formulating subsequent breeding programs for the population.

5. Conclusions

In this experiment, we analyzed the genetic diversity of autosomes using the GGP 100 k
chip, including the extent of LD, Ne, and heritability in a DBSC population (n = 235). We
found GGP 100 K markers with abundant polymorphisms (81,579 SNPs for 29 autosomes)
for DBSC. The population had a low extent of inbreeding. The extent of LD was great, and
the decay of LD was slow at the marker distance of 0–500 kb, indicating that there might
be a higher ancestral relatedness or historically smaller effective population sizes. The Ne
decreased rapidly, meaning species conservation is needed. The phenotypic traits of HHC
and SC could provide the references for selection for further breeding of DBSC.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14010107/s1, Figure S1: Number of SNPs in each autosome
for GGP 100 K before and after SNP quality control (QC); Table S1: Number of SNPs in each autosome
for GGP 100 K before and after SNP quality control in DBSC; Table S2: The details descriptive
results of markers and LD (r2) between every 2.5 kb adjacent markers across autosomes; Table S3:
Summary of SNP pairs, average, standard deviation (SD), median linkage disequilibrium (r2) for
DBSC; Table S4: The descriptive statistical results of each trait for DBSC; Table S5: Significance of the
fixed effects included in the linear model.
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Skrzypczak, E.; Bugno-Poniewierska, M. Comparison of linkage disequilibrium, effective population size and haplotype blocks
in Polish Landrace and Polish native pig populations. Livest. Sci. 2020, 231, 103887. [CrossRef]

28. Lu, D.; Sargolzaei, M.; Kelly, M.; Li, C.; Voort, G.V.; Wang, Z.; Plastow, G.; Moore, S.; Miller, S.P. Linkage disequilibrium in Angus,
Charolais, and Crossbred beef cattle. Front. Genet. 2012, 3, 152. [CrossRef]

29. Purfield, D.C.; Berry, D.P.; McParland, S.; Bradley, D.G. Runs of homozygosity and population history in cattle. BMC Genet. 2012,
13, 70. [CrossRef]

30. Villa-Angulo, R.; Matukumalli, L.K.; Gill, C.; Choi, J.; Van Tassell, C.P.; Grefenstette, J.J. High-resolution haplotype block structure
in the cattle genome. BMC Genet. 2009, 10, 1–13. [CrossRef]

31. Rogers, A.R. How Population Growth Affects Linkage Disequilibrium. Genetics 2014, 197, 1329–1341. [CrossRef]
32. Khatkar, M.S.; Nicholas, F.W.; Collins, A.R.; Zenger, K.R.; Cavanagh, J.A.L.; Barris, W.; Schnabel, R.D.; Taylor, J.F.; Raadsma, H.W.

Extent of genome-wide linkage disequilibrium in Australian Holstein-Friesian cattle based on a high-density SNP panel. BMC
Genom. 2008, 9, 1–18. [CrossRef]

http://doi.org/10.3390/ani9030083
http://www.ncbi.nlm.nih.gov/pubmed/30845681
http://doi.org/10.1534/genetics.107.084301
http://doi.org/10.3389/fgene.2018.00694
http://doi.org/10.1186/1297-9686-46-22
http://doi.org/10.1371/journal.pone.0259572
http://doi.org/10.1007/s13353-014-0202-4
http://doi.org/10.1016/j.livsci.2014.05.007
http://doi.org/10.1186/1297-9686-45-1
http://doi.org/10.1111/j.1365-294X.2008.03842.x
http://doi.org/10.2307/1529706
http://doi.org/10.3168/jds.S0022-0302(05)72861-7
http://doi.org/10.1038/nrg2322
http://doi.org/10.1086/519795
http://doi.org/10.1007/BF01245622
http://doi.org/10.1093/molbev/msaa169
http://doi.org/10.3168/jds.2007-0980
http://doi.org/10.1186/1471-2156-8-74
http://doi.org/10.1186/s12711-015-0100-1
http://www.ncbi.nlm.nih.gov/pubmed/25886167
http://doi.org/10.3168/jds.2009-2748
http://www.ncbi.nlm.nih.gov/pubmed/20630245
http://doi.org/10.1186/1297-9686-43-40
http://www.ncbi.nlm.nih.gov/pubmed/22122853
http://doi.org/10.1016/j.livsci.2019.103887
http://doi.org/10.3389/fgene.2012.00152
http://doi.org/10.1186/1471-2156-13-70
http://doi.org/10.1186/1471-2156-10-19
http://doi.org/10.1534/genetics.114.166454
http://doi.org/10.1186/1471-2164-9-187


Genes 2023, 14, 107 11 of 11

33. Barbato, M.; Orozco-Terwengel, P.; Tapio, M.; Bruford, M.W. SNeP: A tool to estimate trends in recent effective population size
trajectories using genome-wide SNP data. Front. Genet. 2015, 6, 109. [CrossRef]

34. Novo, I.; Santiago, E.; Caballero, A. The estimates of effective population size based on linkage disequilibrium are virtually
unaffected by natural selection. PLoS Genet. 2022, 18, e1009764. [CrossRef]

35. Ge, T.; Holmes, A.J.; Buckner, R.L.; Smoller, J.W.; Sabuncu, M.R. Heritability analysis with repeat measurements and its application
to resting-state functional connectivity. Proc. Natl. Acad. Sci. USA 2017, 114, 5521–5526. [CrossRef]

36. Conley, D.; Siegal, M.L.; Domingue, B.; Harris, K.M.; McQueen, M.B.; Boardman, J.D. Testing the key assumption of heritability
estimates based on genome-wide genetic relatedness. J. Hum. Genet. 2014, 59, 342–345. [CrossRef]

37. Visscher, P.M.; Hemani, G.; Vinkhuyzen, A.A.; Chen, G.B.; Lee, S.H.; Wray, N.R.; Goddard, M.E.; Yang, J. Statistical Power to
Detect Genetic (Co)Variance of Complex Traits Using SNP Data in Unrelated Samples. PLoS Genet. 2014, 10, e1004269. [CrossRef]

38. Loberg, A.; Dürr, J.W.; Fikse, W.; Jorjani, H.; Crooks, L. Estimates of genetic variance and variance of predicted genetic merits
using pedigree or genomic relationship matrices in six Brown Swiss cattle populations for different traits. J. Anim. Breed. Genet.
2015, 132, 376–385. [CrossRef]

39. Saatchi, M.; Schnabel, R.D.; Rolf, M.M.; Taylor, J.F.; Garrick, D.J. Accuracy of direct genomic breeding values for nationally
evaluated traits in US Limousin and Simmental beef cattle. Genet. Sel. Evol. 2012, 44, 38. [CrossRef]

40. Gunia, M.; Saintilan, R.; Venot, E.; Hozé, C.; Fouilloux, M.N.; Phocas, F. Genomic prediction in French Charolais beef cattle using
high-density single nucleotide polymorphism markers1. J. Anim. Sci. 2014, 92, 3258–3269. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3389/fgene.2015.00109
http://doi.org/10.1371/journal.pgen.1009764
http://doi.org/10.1073/pnas.1700765114
http://doi.org/10.1038/jhg.2014.14
http://doi.org/10.1371/journal.pgen.1004269
http://doi.org/10.1111/jbg.12142
http://doi.org/10.1186/1297-9686-44-38
http://doi.org/10.2527/jas.2013-7478

	Introduction 
	Materials and Methods 
	Animals and Genetic Data 
	Minor Allele Frequency (MAF) 
	Phenotypic Data 
	Estimation of LD 
	Estimation of Ancestral and Contemporary Ne 
	Estimation of Individual’s Genomic Relationship 
	Estimation of Genetic Parameter 

	Results 
	Genotype Data and Quality Control 
	MAF, GRM, and PCA 
	LD and Ne 
	Estimation of Genetic Parameters of Phenotypic Traits 

	Discussion 
	MAF, GRM, and PCA 
	Extent of LD 
	Estimation of Ne 
	Estimation of Genetic Parameters of Phenotypic Traits 

	Conclusions 
	References

