
Citation: Tan, Y.; Liu, Y.; Chen, Y.;

Zhang, Z.; Wu, D.; Chen, H.; Han, Y.

The Impact of Urban Construction

Land Change on Carbon

Emissions—A Case Study of Wuhan

City. Int. J. Environ. Res. Public Health

2023, 20, 922. https://doi.org/

10.3390/ijerph20020922

Academic Editors: Ying Wang,

Weiwen Wang and Bin Yang

Received: 10 November 2022

Revised: 31 December 2022

Accepted: 3 January 2023

Published: 4 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

The Impact of Urban Construction Land Change on Carbon
Emissions—A Case Study of Wuhan City
Yuchuan Tan 1 , Yanzhong Liu 1,*, Yong Chen 1, Zuo Zhang 2 , Dan Wu 1, Hongyi Chen 1 and Yufei Han 1

1 College of Resource and Environmental Engineering, Wuhan University of Science and Technology,
Wuhan 430081, China

2 School of Public Administration, Central China Normal University, Wuhan 430077, China
* Correspondence: liuyanzhong@wust.edu.cn

Abstract: Urban construction land (UCL) change is a significant cause of changes in urban carbon
emissions. However, as the extent of this effect is currently unclear, cities cannot easily formulate
reasonable carbon reduction policies in terms of land use. Taking the city of Wuhan, China, as an
example, this paper combines data on land use and carbon emissions from 1995 to 2019 and uses
spatial analysis, curve estimation, and correlation evaluation to explore the direct and indirect effects
of the UCL changes on carbon emissions. The results show that: (1) Between 1995 and 2019, the
UCL area in Wuhan increased by 193.44%, and carbon emissions increased by 78.63%; moreover,
both changes showed a gradually increasing spatial correlation, and the quantitative relationship
could be better fitted with a composite function model; (2) The UCL change had mainly an indirect
impact on carbon emissions via factors such as population and energy use intensity per unit of carbon
emissions; (3) The maximum value of carbon emissions inside a unit area decreased during the study
period, with an average annual decrease of about 2.02%. Therefore, the city of Wuhan can promote
the achievement of its carbon emissions reduction targets by improving the existing land use policies,
for example, by dividing the city into multiple functional zones.

Keywords: UCL; carbon emissions; spatial and temporal variation; Wuhan

1. Introduction

Large amounts of carbon emissions can lead to global meteorological changes, which
can cause serious natural disasters [1,2]. In Climate Change and Land, the IPCC (Inter-
governmental Panel on Climate Change) pointed out the interactive relationship between
land-use change and climate change and that reasonable land-use management policies
can help achieve the carbon emissions reduction targets of the Paris Agreement [3]. Some
scholars have demonstrated that land-use change significantly impacts carbon emissions
and meteorological changes [4–6]. Land-use change affects not only the carbon stock of
soil but also carbon emissions from human activities by changing the linkages between
socioeconomic and natural systems [7–9]. Land-use change is also the second cause of the
increase in carbon emissions from fossil energy combustion [10–12]. Therefore, it is neces-
sary to clarify the extent of the impact of land-use change on carbon emissions to support
the formulation of rational land-use policies and carbon emissions reduction measures.

Current research on the relationship between land-use change and carbon emissions
has focused on the following hot topics:

(1) Determining the role of land-use change on carbon emissions. Houghton et al. [13]
explored the relationship between land-use change and carbon emissions by taking Asia as
the research object; they found that forestry activities and land-use change in South and
Southeast Asia released 43.5 Pg of carbon into the atmosphere during the period 1850–1995.
By reconstructing Land-Use and Land-Cover Change (LUCC) data, Pacala et al. [14] found
that carbon emissions from terrestrial ecosystems in the United States from 1700 to 1945
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were about 27 ± 6 Pg. Ge [15] took China as a case study and used the “thin record model”
to measure carbon emissions due to land-use change in the previous 300 years. Later studies
focused on the effect of small-scale land-use change on carbon emissions. Ren et al. [16]
took Dongliao County, China, as the research object and used land-use change data from
1980 to 2018 to study the effect of land-use change on the carbon stock of the ecosystem.

(2) Land-use carbon emissions accounting methods and standards. In 1980, Houghton [17]
proposed and refined a thin-notation model based on an annual time-series bookkeeping
model with extensive survey and empirical data, which laid the foundations for numerous
subsequent studies proposing models to estimate carbon emissions. Ge [15] used a model
estimation method to measure the changes in carbon emissions due to land-use change in
China over the previous 300 years; Fang et al. [18] studied the forest vegetation carbon pool
in China and its spatial and temporal variation by using the resource inventory data of the
Senjin system and associated statistical records in China in the past 50 years. Zhao et al. [19]
used remote-sensing statistics and Gross Primary Productivity (GPP) data to build a model
to estimate carbon emissions changes in the United States. Although these three methods
are widely used for carbon emission calculation, due to the complexity and variability of
the underlying data, classification system, research methods, and empirical parameters,
accounting results can vary greatly for the same research object. Therefore, it is extremely
important to employ a reasonable carbon emissions accounting standard [20]. The National
Greenhouse Gas Inventory Program (NGGIP), a thematic working group under the IPCC,
has established a database of greenhouse gas emission factors, which is regularly updated
and provides a basis for carbon emission accounting in various countries and regions [21].
Fang et al. [22], Zheng et al. [23], Lai [21], Zhang et al. [24], and Ye et al. [25] estimated the
carbon sinks of various land types in China using agricultural statistics, remote sensing
images, ground observation data, and previous research results, and obtained carbon
emission factors for forest land, cropland, unused land, watershed, and grassland, which
provided a basis for later scholars to use the factor measure to calculate the carbon emissions
of different regions of China.

(3) The mechanism of land-use change on carbon emissions. Xia et al. [26] used
ecological network analysis to explore the ecological relationship between different land-
use changes and proposed a land-carbon correlation rate to describe the impact of land-use
changes on carbon balance. Yuan et al. [27] explored the relationship between urbanization
and land-use change in three representative models by simulating land use in 13 cities in
the Beijing–Tianjin–Hebei urban agglomeration, China and using environmental Kuznets
curves; they found that land-use patterns at different levels of urbanization have other
effects on carbon emissions. Rounsevell [28] analyzed the impact of land-use change on
carbon emissions in the UK, finding that socioeconomic and technological changes may be
the most important drivers of land-use change, which in turn determines carbon emissions
changes. The above-mentioned studies have initially revealed the role of land use on carbon
emissions; however, they mainly focused on analyzing the impact of land-use changes
on carbon emissions in provincial areas. As such, they have the following shortcomings:
(1) They lack an analysis of the impact of land-use changes on carbon emissions within
cities from a spatial perspective and fail to reveal the extent of the influence of land-
use changes on carbon emissions in a comprehensive way by establishing quantitative
models; (2) They lack an urban-scale exploration of carbon emissions from land use, and
the existing carbon emission assessments at the city level are limited to the estimation of
energy consumption [29–31], which is not helpful for urban land use and carbon reduction
development, and does not allow to provide more precise guidance.

In recent years, with the implementation of the national strategy of the “Yangtze River
Economic Belt”, the industrialization and urbanization level of the city of Wuhan, which
is located in the middle reaches of the Yangtze River, has been rapidly advancing, and
the UCL area has been rapidly increasing. The population size, technology development
level, and energy use have changed accordingly, affecting urban carbon emissions and
posing a remarkable risk to the city’s sustainable development. Therefore, the issue of
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optimizing the layout of land use and coordinating the relationship between land use and
carbon emissions has become urgent for the city of Wuhan. In this study, we quantitatively
evaluated the spatial and temporal variation characteristics between the UCL area and
carbon emissions in Wuhan and determined the spatial connection between UCL change
and carbon emissions change through spatial correlation analysis; then, we quantified
the degree of impact of the UCL change on carbon emissions using curve estimation,
and analyzed the relationship between carbon emissions influences, identified by Kaya’s
constant equation, and changes in UCL using grey correlation; finally, we established the
direct and indirect relationship between the change in UCL area and the change in carbon
emissions in Wuhan city during the study period. The results of this study can provide
suggestions for cities to formulate rational land use policies and promote sustainable urban
development.

2. Materials and Methods
2.1. Materials
2.1.1. Study Area

Wuhan is located between 29◦58′–31◦22′ N latitude and 113◦41′–115◦05′ E longitude,
at the confluence of the Yangtze River and the Han River. This area is characterized by
several lakes and a well-developed water system; the landscape is low and flat in the central
part, hilly in the northern and southern parts, and low mountainous in the north (Figure 1).
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With the implementation of the Outline of the Yangtze River Economic Belt Develop-
ment Plan in September 2016, Wuhan has become the main city for the development of the
Yangtze River Economic Belt. Therefore, its ability to achieve efficient and low-carbon land
use in rapid development is of tremendous importance for the future construction of an
ecologically prioritized, green, coordinated, and sustainable society; moreover, Wuhan will
also play a leading position in the low-carbon improvement of neighboring cities.

2.1.2. Data Collection

The main data sources employed in this study are shown in Table 1.



Int. J. Environ. Res. Public Health 2023, 20, 922 4 of 18

Table 1. Data Source.

Name of Data Source of Data

The land-use data European Space Agency (ESA)
(https://viewer.esa-worldcover.org/worldcover/ (accessed on 9 November 2022))

Socioeconomic and energy
consumption data

The Wuhan Statistical Yearbook
(http://tjj.wuhan.gov.cn/tjfw/tjnj/ (accessed on 9 November 2022))

Carbon Emission factors of
energy source

The 2006 IPCC Guidelines for National Greenhouse Gas Inventories.
(https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html

(accessed on accessed on 9 November 2022)) [32]
Carbon emission factors of

land types Research achievements of Li [21], Fang et al. [22], Zheng [23], Zhang et al. [24], Ye et al. [25].

2.2. Methods
2.2.1. Calculation of Carbon Emissions

The coefficient measurement method was used to calculate carbon emissions. This
method is easy to implement, has robust convincing power, and is widely used to calculate
carbon emissions [26,27]. The calculation formula employed is as follows:

C = ∑6
i=1 Ci = ∑6

i=1 Ai × Si, (1)

where C represents the total carbon emissions; Ci represents the carbon emissions for each
land category; Ai represents the carbon emission factor for each land category; and Si
represents the utilized area for each land category. i was assigned a value from 1 to 6 to
indicate Cropland, Water, Forestland, Grassland, Unused land, and UCL, respectively.

The human activities in UCL vary from city to city; hence, using a fixed carbon
emission factor was impossible. However, as UCL mainly hosts social production activities,
in this study, the method of Xiao et al. [33] was adopted, which expresses UCL carbon
emissions (C6) in terms of carbon emissions generated through energy consumption as
follows:

C6 = ∑ Bt ×Qt, (2)

where Bt represents the carbon emission factor of each energy source; and Qt represents the
quantity of use of each energy source.

The carbon emission coefficients of Forestland, Unused land, Water, Grassland, and
Cropland in Wuhan and the carbon emission coefficients of major energy sources are shown
in Table 2.

Table 2. Carbon emission coefficients for each type of land use and each major energy source.

Land Use Type Carbon Emission
Factor (t/km2) Energy Carbon Emission

Factor (t/tce) Energy Carbon Emission
Factor (t/tce)

Cropland 49.7 [23] Coal 0.7559 [32] Kerosene 0.5714 [32]
Forestland −64.4 [22] FC 0.7559 [32] RDG 0.4602 [32]
Grassland −2.4 [25] Coke 0.8559 [32] LP 0.5042 [32]

Water −46 [24] Crude Oil 0.5857 [32] COG 0.3548 [32]
Unused land −0.5 [21] Fuel Oil 0.6185 [32] Heat 0.26 [32]

UCL - Gasoline 0.5538 [32] Electricity 2.5255 [32]
Diesel 0.5921 [32] BFG 0.3548 [32]

Where the carbon emission factor of the land class is less than zero, it means that the land class is a carbon sink
class and has carbon absorption capacity; FC—Finished coal; RDG—Refinery Dry Gas; LP—Liquefied Petroleum;
COG—Coke oven gas; BFG—Blast furnace gas.

2.2.2. Land-Use Changes Dynamic Attitude

Land use dynamic attitude represents the magnitude of changes in the way various
land-use categories are utilized over a certain period and can be used to quantitatively

https://viewer.esa-worldcover.org/worldcover/
http://tjj.wuhan.gov.cn/tjfw/tjnj/
https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html
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measure the magnitude of land-use change [34]. In this study, we used a single land-use
dynamic attitude to assess the change in land-use types in Wuhan, as follows:

LCi =
Ub −Ua

Ua
× 1

T
× 100%, (3)

where LCi represents the dynamic attitude of using single land areas; Ua and Ub repre-
sent the area of single land use sorts at the beginning and the end of the study period,
respectively, and T represents the temporal interval.

2.2.3. Spatial Correlation Analysis

In this study, the spatial autocorrelation analysis was used to explore the spatial and
temporal characteristics of the impact of the UCL change on carbon emissions in Wuhan.
This type of analysis is articulated into global and local spatial autocorrelation analysis [35].

Global spatial autocorrelation analysis can be used to determine the average degree
of correlation and spatial distribution between attributes of a region and to reflect the
similarity between each unit and the neighboring units in the entire study area. The
Moran’s I index is often used to measure global spatial correlation. Its value is in the range
[−1, 1]; higher values indicate a stronger correlation between the overall attributes of a
region. The Moran’s I index was calculated as follows [36]:

Ii
pq =

Yi
p −Yp

T2
p
·∑n

j=1 Wij·
Yi

q −Yq

T2
q

, (4)

where Ii
pq denotes the spatial correlation between the p-attribute and the q-attribute of the

i-th spatial unit; Yi
p denotes the value of the p attribute on the i-th spatial unit; Yp denotes

the mean of all spatial unit p attributes in the study area; T2
p denotes the variance of all

spatial unit p attributes in the study area; Yi
q denotes the value of attribute q on the i-th

spatial unit; Yq denotes the mean of all spatial unit q attributes in the study area; T2
q denotes

the variance of all spatial unit q attributes in the study area; Wij denotes the weight matrix
based on the row criterion; and n denotes the number of spatial units.

Local spatial autocorrelation analysis can determine the possible spatial correlation
patterns and local spatial distribution characteristics of different spatial locations. The
autocorrelation of the local space can be analyzed by employing the local Moran’s I index.
A Local Indicators Spatial Autocorrelation (LISA) clustering map was drawn based on the
Z-test (p < 0.05). Five types of clusters were identified: H-H clusters, where the attribute
values of the observed area and its surrounding areas are high, and other clusters are
similar; L-L clusters; H-L clusters; L-H clusters; and NS clusters. The formula for the local
spatial Moran’s I index was as follows [36]:

Ii =
Yi −Y

T2
i
·∑n

i=1,j 6=1 Wij·
(
Yi −Y

)
, (5)

where Yi denotes the attribute value of the i-th spatial unit; Y denotes the mean of the
attribute values of all spatial units in the study area; T2 denotes the variance of the attribute
values of all spatial units in the study area; Wij denotes the weight matrix based on the row
criterion; and n denotes the number of spatial units.

2.2.4. Curve Estimation

To further quantify the influence of the UCL change on carbon emissions, scatter plots
were drawn considering the UCL area as the independent variable and carbon emissions as
the dependent variable. A suitable mathematical model was selected for curve estimation
based on the scatter plot, and the best-fit equation was determined using the significance
test. In this study, we use Linear Model (Equation (6)), Logarithmic Model (Equation (7)),
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Quadratic Model (Equation (8)), Three times Model (Equation (9)), Composite Model
(Equation (10)), Power Model (Equation (11)). These formulas employed were as follows:

y = β0 + β1x (6)

y = β0 + β1 ln x (7)

y = β0 + β1x + β2x2 (8)

y = β0 + β1x + β2x2 + β3x3 (9)

y = β0 ∗ β1
x (10)

y = β0xβ1 (11)

The goodness of match of the regression model was determined by using the equation
fit coefficient R2, whereby the closer the R2 to 1, the better the model fits the change in
carbon emissions and the change in UCL. Moreover, the significance test was employed
to determine the validity of the regression equation, whereby the smaller the significance
coefficient p, the more valid the equation is in responding to the effect of the UCL change
on carbon emissions. Generally speaking, this equation is considered extremely valid when
p < 0.05 [37].

2.2.5. Indirect Impacts of UCL Changes on Carbon Emissions

While the direct impact of UCL changes on carbon emissions was determined by
assessing the qualitative and quantitative relationship between these two elements, the
indirect impact was determined by assessing the relationship between UCL changes and
the factors influencing carbon emissions. The carbon emissions impact factors were then
determined by employing Kaya’s constant equation.

Kaya’s constant equation was first proposed by the Japanese scholar Yoichi Kaya [38].
This equation links the general macro factors, such as society and economy, to carbon
emissions, and considers carbon emissions as the result of the combined effect of four
factors: GDP per capita; energy consumption per 10,000 Yuan GDP; energy use intensity
per unit of carbon emissions; and population. Due to its simple structure and robust
explanatory power of the change factors, it is widely recommended by the IPCC to analyze
the characteristics of carbon emissions changes and its influencing factors [39,40]. As such,
it has been widely recommended by the IPCC to analyze the characteristics of carbon
emissions changes and their influencing factors. The formula employed is as follows:

C ∝
C
E
∗ E

GDP
∗ GDP

P
∗ P, (12)

where C is carbon emission; E is energy use; p is population number; C
E denotes energy

use intensity per unit of carbon emission; E
GDP denotes energy use per 10,000 Yuan; GDP

P
denotes GDP per capita.

The gray correlation analysis was used to explore the relationship between UCL
changes and factors influencing carbon emissions. The gray correlation analysis can
measure the connection between two elements and is suitable for small samples and in
cases of poor information and uncertainty. The greater the gray correlation, the closer the
relationship between the two elements [41]. The formula employed is as follows:

γ0(i) =
1
m ∑m

k=1 ξi(k), (13)

where ξi(k) =
min

i
min

k
|x0(k)−xi(k)|+ρmax

i
max

k
|x0(k)−xi(k)|

|x0(k)−xi(k)|+ρmax
i

max
k
|x0(k)−xi(k)|

; γ0(i) and ξij represent the gray cor-

relation coefficient and the correlation degree corresponding to xi(k) and the reference
sequence x0(k), respectively; ρ represents the resolution, and is generally assigned a value
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of ρ = 0.5; and x0(k) and xi(k) represent the reference series and the k-th term of the i-th
variable, respectively.

3. Results
3.1. Analysis of Urban Land-Use Change and Carbon Emissions Change
3.1.1. Urban Land-Use Change Analysis

The results of the spatial analysis of land use in Wuhan from 1995–2019 are shown
in Figure 2. UCL was mainly located in the central urban area of Wuhan, while in other
areas, it showed a concentrated distribution with multiple land-use centers, as well as a
star-shaped spreading pattern from the center to the surrounding area. The total area of
UCL increased from 391.55 km2 in 1995 to 1148.96 km2 in 2019, with an average annual
increase of 2.79%. Furthermore, the Cropland area decreased from 6382.86 km2 in 1995
to 5573.21 km2 in 2019, with an average annual decrease of 33.74 km2. The water area
is located in the central and southern sections of the city; its extension decreased from
1225.62 km2 in 1995 to 1194.268 km2 in 2019, following a fluctuating downward trend of
increase–decrease–increase–decrease. Forestland is mainly located in the northwestern
region and in the northeastern fringe area, while the other land types are scattered in the
central and southern regions, with the total area following a trend of first decreasing and
then increasing.
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In the process of UCL changes, the annual growth showed a fluctuating change of
decrease-increase-decrease; the period with the highest growth was 2005–2010, with an
average annual growth of 43.06 km2, while that with the lowest growth was 2000–2005,
with an average annual increase of 23.81 km2. The period with the greatest change in
land-use dynamics was 1995–2000, reaching as high as 6.91%, while the lowest change was
2015–2019, with 2.88% (Figure 3).
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Figure 3. Area of the UCL change and UCL dynamic attitude in Wuhan, 1995–2019 (Divide the years
1995–2019 into five time periods: 1995–2000, 2000–2005, 2005–2010, 2010–2015, and 2015–2019).

During the study period, the new UCL occupied the largest amount of Cropland, i.e.,
about 713.97 km2, accounting for about 94.40% of the new UCL, followed by water with
34.28 km2, accounting for about 4.53% of the new UCL.

Looking at different study periods, the proportion of new UCL originating from
Cropland varied widely, with the highest proportion in 2010–2015, accounting for 100.46%
of new UCL, and the lowest in 1995–2000, at 90.24%. In addition, the period with the
largest proportion of the water conversion of new UCL occurred in 2000–2005, at 8.84%.
The proportion of the sum of other land types to the new UCL fluctuated, with the highest
proportion of 1.53% calculated for 1995–2000. The proportion of the transformed part of
each land type to the new UCL continued to change due to the scattered distribution of
multiple land types within Wuhan and the principle of proximity in the expansion of the
UCL (Table 3).

Table 3. Sources of new UCL in Wuhan, 1995–2019.

Cropland Water Forest Land Grassland Wasteland Totally

1995–2000 122.10 11.12 1.02 0.87 0.18 135.19
2000–2005 107.45 10.52 0.63 0.22 0.15 118.97
2005–2010 200.74 11.57 0.76 1.37 0.24 214.68
2010–2015 169.70 −2.70 0.5 1.38 0.04 168.92
2015–2019 114.08 3.77 0.18 0.48 0.06 118.57

1995–2019 713.97 34.28 3.09 4.32 0.67 756.33

Unit: km2.

3.1.2. Carbon Emissions Analysis

In general, Wuhan’s carbon emissions showed an upward trend, rising from 21,187,800 t
in 1995 to 38,972,400 t in 2019, corresponding to an increase of 78.63% in 24 years, with
an average annual increase rate of 2.45%. More in detail, carbon emissions from energy
consumption on urban construction sites, which is the main source of carbon emissions in
Wuhan, increased from 21,594,600 t in 1995 to 38,793,700 t in 2019, with an average annual
increase rate of 2.47%. The carbon emissions coefficient of the UCL, determined as the ratio
of total carbon emissions to land area, decreased continuously throughout the study period,
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with an average annual decrease of 2.02%. The energy consumption per 10,000 Yuan GDP
in Wuhan also decreased continuously, with an average annual decrease of 10.99%; the
largest decline of 64.20% was measured from 2005 to 2010, with an average annual decrease
of 18.57% during that period. The decreasing trend of the energy use intensity per unit of
carbon emissions, on the other hand, was confirmed, with an average annual decline of
1.42%; the highest decline was measured from 2000–2005, with an average annual decline
of 2.67%, while a brief upward trend occurred from 2015–2019. However, this increase was
not significant, equaling 1.39% (Table 4).

Table 4. Wuhan Carbon Emissions-Related Indices, 1995–2019.

Total Energy Consumption Per 10,000
Yuan GDP(t of Standard Coal)

Energy Use Intensity Per Unit
of Carbon Emissions

Total Carbon
Emissions (104 t)

The Carbon Emission
Factor of UCL (104 t/km2)

1995 2.78 1.03 2181.78 5.515095
2000 1.43 0.95 2352.93 4.424664
2005 0.81 0.83 2705.73 4.155276
2010 0.29 0.76 3096.16 3.571424
2015 0.19 0.72 3662.59 3.537729
2019 0.17 0.73 3897.24 3.376421

During the study period, carbon emissions from the direct consumption of fossil
energy have always remained above 50% of total carbon emissions (Figure 4), and the
consumption of fossil energy such as coal, washed coal, coke, and crude oil has always
remained above 75% of the total energy consumption. This is consistent with the fact that
China is expected to continue using fossil energy in the future [42].
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3.2. Spatial Correlation Analysis

ArcGIS 10.2 was used to draw a 1 km × 1 km grid map, where the city of Wuhan was
divided into several spatial units according to their spatial locations, which were graded
using the natural breakpoint method to obtain the distribution of carbon emissions within
a unit area of Wuhan city during the study period. UCL area in the spatial cells was used
as the spatial indicator of the UCL, and GeoDa was used to conduct a bivariate spatial
analysis of urban land use and carbon emissions.
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3.2.1. Urban Land-Use Carbon Emissions

During the study period, the average carbon emissions of each Wuhan area showed
an increasing trend. The number of low carbon emissions areas decreased, and the number
of other types of areas increased. Moreover, the upper limit for classifying each level of
carbon emissions within a unit area also decreased (Table 5).

Table 5. Carbon emissions per unit area in Wuhan, 1995–2019.

Low Lower Medium Higher High

1995
Upper (t) 2733.84 10,072.52 22,556.94 38,686.81 55,150.90
Lower (t) −64.40 2733.85 10,072.53 22,556.95 38,686.82
Number 7795 695 238 142 146

2000
Upper (t) 2662.07 9228.44 19,773.40 32,708.65 44,246.60
Lower (t) −64.40 2662.08 9228.45 19,773.41 32,708.66
Number 7491 878 294 166 181

2005
Upper (t) 2445.65 8351.33 18,243.34 30,601.90 41,552.80
Lower (t) −64.40 2445.66 8351.34 18,243.35 30,601.91
Number 7124 1042 389 221 232

2010
Upper (t) 2646.76 8532.18 17,194.60 27,131.87 35,714.20
Lower (t) −64.40 2646.77 8532.19 17,194.61 27,131.88
Number 6938 1005 464 286 324

2015
Upper (t) 2773.28 8634.01 17,167.13 26,952.47 35,377.47
Lower (t) −64.40 2773.29 8634.02 17,167.14 26,952.48
Number 6638 1072 534 373 395

2019
Upper (t) 3024.05 9175.16 17,383.56 26,225.59 33,764.20
Lower (t) −64.40 3024.06 9175.17 17,383.57 26,225.60
Number 6559 1074 561 385 437

The analysis of the spatial distribution of carbon emissions per unit area in Wuhan
city indicated a gradual decrease from the central to the surrounding areas; more in
detail, the overall distribution from north to south and east to west was low-medium-high-
medium-low (Figure 5). The high-carbon emissions areas were mainly located in the city
center, gradually expanding to the surrounding areas from a scattered to a more integrated
distribution, and the area gradually increased. The carbon emissions in the central-northern
areas and local northeastern areas gradually increased, while those in the southeastern and
southwestern areas generally did not record a considerable change. It is noteworthy that
some areas with high carbon emissions were found to have low carbon emissions, and their
distribution corresponded to the distribution of water.
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3.2.2. Global Autocorrelation

The values of Moran’s I index between UCL and carbon emissions during the study
period were all greater than 0 and continued to increase, passing the significance test
(Table 6). This indicates an important and increasingly positive correlation between the
area of urban land-use change and carbon emissions change.

Table 6. Spatial correlation between carbon emissions and UCL area in Wuhan City, 1995–2019 and
the significance test results.

1995 2000 2005 2010 2015 2019

Moran’s I
index 0.799 0.808 0.817 0.829 0.832 0.833

p-value 0.001 0.001 0.001 0.001 0.001 0.001
z-value 108.73 111.48 110.88 111.79 112.26 112.30

3.2.3. Local Autocorrelation

Based on the results of the local autocorrelation analysis of carbon emissions and UCL
in Wuhan from 1995–2015 (Table 7), it clearly emerged that the overall spatial clustering
relationship between carbon emissions and UCL varied greatly over time (Figure 6).

Table 7. Results of spatial local autocorrelation analysis between carbon emissions and UCL area in
Wuhan, 1995–2019.

1995 2000 2005 2010 2015 2019

H-H 453 538 661 915 1051 1117
H-L 2 1 1 1 0 0
L-H 22 21 29 36 40 39
L-L 1353 1398 1497 1638 1786 1875
NS 7188 7060 6830 6428 6141 5987
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In 1995, the spatial clusters were mainly L-L clusters, and were scattered in various
areas of Wuhan; H-H clusters were mainly located in the central part of Wuhan and
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accounted for a small share of the whole area; in parallel, a large number of L-H clusters
were distributed in-between H-H clusters, showing a linear arrangement; finally, H-L
clusters were located in the inner part of the city, adjacent to L-L clusters. In 2000, the
spatial clustering changed compared to 1995. These changes mainly include the increase in
the number of H-H clustering areas, the gradual concentration of L-L cluster areas, and
the development trend to the periphery. More in detail, the number of L-H cluster areas
decreased; these were mainly located in-between H-H cluster areas, and the distribution
pattern did not change much. The number of H-L cluster areas decreased; these were
mainly located in the central and southern parts of the city. In 2005, some L-L cluster areas
transformed into H-H cluster areas, further increasing their extension.

Moreover, the number of L-L cluster areas continued to enlarge in the peripheral
areas of Wuhan; the number of L-H cluster areas increased, and was mainly distributed
around the H-H cluster areas, and the number of H-L cluster areas was the same as in
2000. In 2010 and 2015, the number of H-H cluster areas increased continuously; these
were mostly located in the central area of Wuhan. In 2010 and 2015, the number of H-H
clusters continued to increase; these were located in the central region of Wuhan, with a
small number located in the central-northern and central-southern areas. The number of
L-L clusters continued to increase, gradually concentrating in the urban periphery, while
the area of L-H clusters continued to increase, and the H-L clusters gradually disappeared.
In 2019, the areas of concentration of the H-H clusters continued to expand outward, and
their number increased compared to 2015. Moreover, the number of L-H clusters decreased
by one compared to 2015 and were mainly located near the H-H cluster regions. Finally,
the number of L-L cluster regions further increased, and the overall development trend
changed less compared to the past.

3.3. Impact of UCL Changes on Carbon Emissions

Using UCL area and carbon emission data of Wuhan city for the period 1995–2015, a
scatter plot was drawn to represent the changes in UCL and carbon emissions, considering
UCL area as the independent variable (x) and carbon emissions as the dependent variable
(y), as shown in Figure 7. The linear function model, the quadratic function model, the
cubic function model, the composite function model, and the power function model were
employed for curve estimation fitting. The obtained fitting results of each function model
are shown in Table 8.
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Table 8. Summary of curve estimation models and parameter estimates.

Model
Model Summary Parameter Estimates

R2 F df1 df2 Sig. Constants b1 b2 b3

Linear 0.982 162.844 1 3 0.001 1206.105 2.306
Logarithmic 0.937 44.455 1 3 0.007 −6921.337 1500.012
Quadratic 0.992 130.818 2 2 0.008 1815.085 0.405 0.001

Three times 0.993 49.190 3 1 0.104 1177.880 3.477 −0.003 2.186 × 10−6

Composite 0.991 329.357 1 3 0.000 1570.584 1.001
Power 0.964 80.619 1 3 0.003 87.136 0.533

Dependent variable: Carbon emissions. Independent variable: UCL area.

As shown in Table 8, although the fit of the function models used in the study (R2)
was greater than 0.9, the fit of the quadratic function (Equation (14)) and the composite
function model (Equation (15)) was higher (R2 > 0.99, p < 0.01). The following model was
thus established:

y = 1815.08512 + 0.4047x + 0.0013x2 (14)

y = 1570.5844 ∗ 1.0008x (15)

These two models were used as alternative models, and UCL area and carbon emis-
sions data of Wuhan in 2019 were used as test data to evaluate the prediction accuracy
of these two models using the error between the predicted and the true values of the
two models and to determine the final curve estimation results. The results obtained by
substituting the test data into the alternative model, are presented in Table 9.

Table 9. Results of secondary and compound model tests.

Quadratic Model Composite Function Model

Predicted results (104 t) 4035.27 3987.31
Real Results (104 t) 3897.24 3897.24

Prediction error (104 t) 138.03 90.07
Error rate 3.54% 2.31%

The prediction error of the composite model was found to be low; therefore, the
composite function model (Equation (15)) was used as the final curve estimation model.

4. Discussion
4.1. Impact of Spatial and Temporal Changes in UCL on Carbon Emissions

By investigating the land-use scenarios and carbon emissions in Wuhan from 1995–2019,
it was found that the UCL area in Wuhan increased by 757.41 km2 and carbon emissions
rose by 17,154,600 t during the study period. This is the same as the results of Houghton [13],
Pacala [14], and Ren et al. [16]. However, unlike this study, Houghton and Pacala et al.
derived their results from the analysis of a large study area of terrestrial ecology in Asia
and the United States, while Ren explored the effects of land-use change on carbon stocks.
In this study, it is worth noting that the largest change and the largest increase in the UCL
area occurred in the periods 2005–2010 and 1995–2000, respectively, while both the largest
change and the largest increase in carbon emissions occurred in the period 2010–2015.
Looking at the spatial distribution of carbon emissions, it was found that carbon emissions
from other land types in large low-carbon emission areas increased rapidly when they were
converted into UCL. High-carbon emission areas gradually spread from the urban center to
the surrounding areas, and gradually connected with high-carbon emission areas in other
areas to form a patch, roughly following the same direction as the expansion of UCL. In
contrast, the land types in the urban fringe areas mostly played the role of carbon sinks,
and their utilization changed less during urban development. Hence, it may be concluded
that the carbon emissions in the fringe areas did not change considerably from 1995 to 2019.
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At the same time, the present study found that, although overall carbon emissions in
Wuhan were increasing, the upper limit of high-carbon emission areas identified by the
natural breakpoint method was decreasing; at the same time, total energy consumption
per 10,000 Yuan GDP and carbon emission intensity per unit of energy were also found
to decrease. These outcomes were mostly due to the continuous enhancement of energy
utilization effectiveness and the partial elimination of energy-dependent industries in the
process of industrial upgrading thanks to continuous technological advances in Wuhan [43].
This indicates that reasonable carbon emission reduction policies can have an important
impact on carbon emissions.

4.2. Qualitative and Quantitative Relationships between UCL Changes and Carbon Emissions

The application of the spatial autocorrelation evaluation method allowed us to find a
positive spatial correlation between the changes in the UCL area and the changes in carbon
emissions in Wuhan, i.e., both changes showed to follow the same spatial development
trend. The finding is comparable to those of Li et al. [44], with the difference that the latter
used panel records to analyze the effect of land-use change on carbon emissions in Anhui
Province from a spatial perspective. In contrast, the finding that changes in the UCL area
and carbon emissions were not synchronized needed to be further investigated by building
a quantitative model.

The extension of H-H cluster areas increased from 1995 to 2019 in Wuhan, mainly
because of the city’s continuous development, such that the other land types around UCL
continuously transformed into UCL. The extension of the L-H cluster area changed. The
reason mainly lies in that the early development of Wuhan city relied on the convenience of
water resources conditions and that the core urban area was built by the river. In that period,
Wuhan city vigorously developed tourism and heavy industry, and human activities in
water increased together with carbon emissions. After 2010, the development strategy of
Wuhan changed; the city began to pay attention to ecological protection, and the carbon
emissions in water decreased continuously, determining the spatial clustering of some
areas in the form of L-H/H-H/L-H clusters. In the first part of the study period, the L-L
cluster areas were scattered between the urban fringe and the H-H cluster areas and then
gradually concentrated in the urban fringe. Although urban fringe areas were less affected
by land-use changes, the overall average carbon emissions in these areas increased. This
is mainly due to the development of the central part of the city and the promotion of the
synergistic development of fringe areas, accompanied by an increase in economic activities,
which in turn resulted in an increase in carbon emissions. The H-L cluster areas were not
found to have high carbon emissions per unit area; this occurred mainly because these
areas were composed mostly of Cropland and a small portion of UCL. As Cropland is also
a source of carbon emissions, carbon emissions reduction policies for Cropland should also
be considered in future development [45,46].

The results of the developed complex function model showed an overall positive
relationship between the UCL area and carbon emissions. For every 1 km2 expansion
of the UCL area, carbon emission increased to reach about 1.001 times the level before
expansion. This quantitative relationship proves that the increase of the UCL area increased
the generation of carbon emissions.

4.3. Relationship between UCL Change and Carbon Emissions Influencing Factors

Using Kaya’s constant equation, carbon emissions were decomposed into four factors:
energy consumption per 10,000 Yuan GDP; energy use intensity per unit of carbon emis-
sions; GDP per capita; and population. Then, a gray correlation analysis was conducted
between these four factors and the UCL area (Table 10). The results of this analysis showed
that the three factors of population, energy use intensity per unit of carbon emissions,
and energy consumption per 10,000 Yuan GDP were strongly correlated with the UCL
area; this indicates that the changes in the UCL area had a strong interaction with these
factors and, thus, affected carbon emissions. This is similar to the findings of Yuan [27] and
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Rounsevell M. et al. [28]: socioeconomic, technological and other elements are considered
to play an important role in the process of land-use change affecting carbon emission
changes. However, unlike this study, Yuan investigated the mechanism of land-use change
on carbon emission from the perspective of analyzing different urbanization levels of cities,
in which more socioeconomic and technological indicators are included in the indicators
of urbanization level; Rounsevell M investigated the mechanism of land-use change on
carbon emission from a macro perspective, taking the UK as an example.

Table 10. Gray correlation analysis of carbon emissions and Kaya’s constant decomposition factor.

Factor Correlation

Population 0.98
Energy use intensity per unit of carbon emissions 0.93
Total energy consumption per 10,000 Yuan GDP 0.89

GDP per capita 0.68

In the future, the relationship between the UCL area and these factors should be
coordinated to achieve carbon emissions reduction. The correlation between GDP per
capita and the UCL area was poor. This indicates that the changes in the UCL area did not
considerably influence the changes in carbon emissions through the interaction with GDP
per capita; on the other hand, it also indicates that the increase in the UCL area did not
necessarily improve GDP per capita, and urban development should be separated from
“blind expansion”.

4.4. Study Shortcomings and Future Research

The shortcomings of this study may be summarized as follows:
(1) In this study, the carbon emission coefficients of various land types in Wuhan were

calculated by summarizing those derived from previous studies. However, the latter may
vary according to the natural vegetation conditions, ground cover, and energy intensity of
each place, which may affect the accuracy of the final results.

(2) This study only focused on the impact of spatial and temporal changes in the UCL
area on carbon emissions. However, the mechanism of the effects of the UCL changes
on carbon emissions is complex. It includes several factors, such as population size and
economic development level, which are more or less related to the UCL policy [47]. In the
future, we should explore the interaction between these factors and the changes in urban
land use and assess how these elements affect carbon emissions through UCL changes from
a spatial perspective.

(3) In this study, only the effect of the UCL changes on carbon emissions was analyzed,
as this is the major factor affecting land-use change. The assessment of the influence of
the UCL changes of other land types on carbon emissions was ignored, which affected the
comprehensiveness of the study results.

5. Conclusions

Based on previous studies, this study firstly quantifies the characteristics of urban land-
use changes in Wuhan city and measures the changes in carbon emissions based on them;
after that, using spatial autocorrelation analysis and curve estimation, Kaya’s constant
equation and gray correlation analysis, the relationship between spatial and temporal
changes of the UCL on carbon emissions is explored from a spatial perspective; finally,
the direct and indirect effects of the UCL changes on carbon emissions are determined.
The results of the study are as follows: (1) In 2019, the UCL area and carbon emissions
in Wuhan were about 2.93 times and 1.79 times those in 1995. The expansion of the UCL
area showed to follow a star-shaped spreading from the central area to the surrounding
areas, and the areas of carbon emissions increase within the unit area showed an outward
expansion in all directions. The spatial distribution and development direction of the areas
of carbon emissions increase within a unit area and of the UCL change areas were roughly
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the same, and were found to have a positive spatial correlation that was increasing year
by year. The fitting effect of the composite model on the relationship between UCL area
changes and carbon emissions changes in Wuhan was more scientific and rational than
other curve estimation models. The proposed model allowed us to find that the growth
of the UCL entailed an increase in carbon emissions of about 1.001 times those before the
expansion for every 1 km2 of the UCL area.

(2) The correlation between UCL area and population, energy use intensity per unit of
carbon emission, energy consumption per 10,000 Yuan GDP, and GDP per capita gradually
decreased during the study period. More in detail, the correlation between population and
energy use intensity per unit of carbon emissions was greater than 0.9, indicating that the
UCL area changes will indirectly impact urban carbon emissions by affecting population
and energy use intensity per unit of carbon emissions.

(3) The maximum value of carbon emissions within a unit area decreased during the
study period, such that the value in 1995 was about 1.63 times that in 2019. This indicates
that reasonable policies will positively affect the reduction of carbon emissions, and reason-
able land-use policies will promote the achievement of carbon emissions reduction goals in
Wuhan on an existing basis.

To achieve the objective of decreasing carbon emissions and promoting sustainable
social development, this study suggests adopting the following measures. Firstly, suitable
functional areas, such as economic development areas and carbon sink areas, should be
established based on the actual situation of each district, avoiding encouraging economic
growth and reducing human production activities in the carbon sink areas, as well as
strengthening the construction of “satellite cities”. Secondly, we should change our thinking
on development, promote technological innovation, optimize and upgrade the existing
UCL, improve the resource allocation rate, and promote the optimization and upgrading of
existing industries and their development towards low carbonization. Finally, we should
make reasonable use of the stock of the UCL, improve land-use conservation, slow down
the expansion of the UCL, and give priority to the encroachment of land with weak carbon
sink capacity in exchange for the protection of land with strong carbon sink capacity when
expanding UCL.
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