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Abstract: GST (glutathione S-transferases) are capable of influencing glucose homeostasis, probably
through regulation of the response to oxidant stress. The aim of our study was to investigate the
relationship between GSTP1 gene polymorphism and glycated hemoglobin (HbA1lc) levels in type
two diabetic (T2D) patients. A total of 307 T2D patients were included. Analysis of the GSTP1 gene
polymorphism (rs1695) was conducted using the TagMan qPCR method endpoint genotyping. HbAlc
was determined using a COBAS 6000 autoanalyzer. A univariable linear regression and multivariable
linear regression model were used to investigate the association between mean HbAlc level and
GSTP1 gene polymorphism, age at T2D diagnosis, T2D duration, therapy with insulin, gender, BMI,
smoking status. GSTP1 Val/Val genotype, age at T2D diagnosis, T2D duration and therapy with
insulin were statistically significant contributors to HbAlc levels (p < 0.05). Multivariable regression
analysis revealed that GSTP1 (Val/Val vs. Ile/Ile) was associated with higher HbAlc even after
adjustment for variables that showed a statistically significant relationship with HbAlc in univariable
analyses (p = 0.024). The results suggest that GSTP polymorphism may be one of the risk factors for
higher HbAlc in T2D patients. Our study is limited by the relatively small sample size, cross-sectional
design, and lack of inclusion of other oxidative stress-related genetic variants.
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1. Introduction

Type two diabetes (T2D) is caused by defects in both insulin secretion and insulin
sensitivity that result in glucose intolerance, increased gluconeogenesis, and hyperglycemia
with severe complications [1]. The genetic factors that promote inappropriate homeostatic
control in diabetes remain inadequately understood. Numerous studies indicate that
polymorphisms in the human glutathione S-transferases (GSTs) genes leading to altered
GST activity are associated with increased risk of T2D [2—4], yet the modulating role of
GSTs in this pathway is not fully known. Early evidence demonstrated that GST functions
extend beyond the enzymatic detoxification of electrophilic metabolites and xenobiotics,
and some members of this family of enzymes, especially glutathione S-transferase Pi 1
(GSTP1), have been described as critical components of the redox sensing and signaling
platform of the cell [5]. Given its role in stress kinase regulation, GSTP1 is unquestionably
capable of influencing glucose homeostasis, probably through JNK activation [6].

GSTP1 is highly polymorphic in humans. GSTP1 gene polymorphism is most often a
point mutation SNP (single nucleotide polymorphism) at exon 5, codon 313 in the GSTP1
gene, chromosome 11q13, which leads to the Ile105Val amino acid substitution. The results
of mutation are GSTP1 genotypes Ile/Ile, Ile/Val and Val/Val. The exchange of isoleucine
and valine in the amino acid chain results in decreased enzymatic activity of protein [7].
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The Val105 variant of the enzyme may be 2-3 times less stable than the Ile105 variant and
have a reduced ability to conjugate electrophilic species with reduced glutathione, leading
to lower enzyme activity towards normal GSTP1 substrates, and might therefore sensitize
cells to free-radical-mediated toxicity [8]. GSTP1 polymorphism may be an important
factor in differential susceptibility of individuals to the toxic effects of acrolein [9]. Acrolein
plays a significant role in the pathogenesis of systemic disorders such as neurodegenerative
diseases [10], cardiovascular diseases [11], and diabetes [12]. Urinary acrolein correlated
with glycated hemoglobin (HbAlc) in T2D patients [12] and with insulin resistance in
individuals not taking insulin or oral hypoglycemic agents [13]. Thus, alterations in
acrolein metabolism and detoxification due to GSTP1 gene polymorphism may potentially
contribute to the difficulty in treating and maintaining desired HbAlc values among
T2D patients.

The aim of the study was to evaluate the influence of genetic polymorphisms of the
GSTP1 on HbAlc levels in T2D patients. HbAlc depicts mean blood glucose levels over the
previous 2-3 months and is a commonly used marker of glycemic control among diabetes
patients [14]. Identification of the correlation between HbAlc and diabetic complications
has made HbAlc one of the most clinically useful biomarkers. A better understanding of
the factors that determine glycemic control is critical to improved management of patients
with diabetes mellitus.

2. Results Design and Methods
2.1. Study Population

The study group consisted of 307 unrelated patients with T2D, recruited from the
diabetic outpatient center in Kielce, Poland, between 2020 and 2021. Patients were enrolled
following the inclusion criteria: diagnosed T2D and aged over 18 years old, and the
exclusion criteria: history of endocrine disorders, malignancies, blood disorders, liver
failure, alcoholism, Cushing’s disease with treatment that can induce hyperglycemia,
T1D, diabetes secondary to chronic pancreatitis, and pregnant and lactating women. The
T2D diagnosis was determined by a diabetologist according to the revised criteria of the
American Association of Diabetology [14]. All patients were on oral hypoglycemic agents,
insulin therapy, or combination therapy. The study protocol was approved by the Ethics
Committee of the Jan Kochanowski University in Kielce and all procedures were conducted
according to the principles of the Helsinki Declaration. All subjects signed a written consent
form for blood collection, biochemical and genetic analysis, and for using their results in
this report.

Basic characteristics of participants were collected using a questionnaire including
information about sex, age, age at T2D diagnosis, duration of T2D, type of administered
hypoglycemic treatment, and smoking status. A current smoker was defined as a subject
who continued to smoke cigarettes regularly. Obesity was defined as body mass index
(BMI) > 30 kg/m?. Two venous blood samples were collected from each patient after
an overnight fast: 5 mL on EDTA tubes for molecular and HbAlc analysis, and 2 mL on
NaF/EDTA for glucose analysis. HbAlc and fasting glucose were determined using a
COBAS 6000 autoanalyzer, applying ROCHE methods and reagents. Samples used for
DNA extraction were frozen at —20 °C until the time of genetic testing.

2.2. Genotyping

Peripheral blood leukocytes were the material for genetic testing. The genomic DNA
was extracted from blood samples using the automatic nucleic acid extractor and genomic
DNA whole blood kit (Magcore®, RBC BioScience, New Taipei City, Taiwan). The purity
and concentration of the isolated DNA were evaluated spectrophotometrically at 260 nm
and 280 nm (Denovix, DS-11). Analysis of the SNP (rs1695) polymorphism of the GSTP1
gene was conducted using the TagMan qPCR method—endpoint genotyping (Assay ID
C_3237198_20). In all cases, the Rotor-Gene instrument by Qiagen was used. PCR am-
plification using ~ 10 ng of genomic DNA was performed with an initial step of 95 °C
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for 10 min followed by 50 cycles of 95 °C for 15 s (denaturation step) and 60 °C for 90 s
(annealing and elongation step).

2.3. Statistical Analysis

With the predetermined test power equal to 80% and an alpha error probability of
0.05, a minimum of 64 patients in each group (Ile/Ile, Ile/Val and Val/Val) was required to
detect a clinically significant HbAlc difference of 0.5% (if this difference actually exists).

Quantitative data are described by means, standard deviations, medians, quartiles
and range (minimum and maximum). Categorical data were summarized by frequencies
and percentages. Genotype frequency distribution was tested against the Hardy—Weinberg
equilibrium with chi-square goodness-of-fit test. Normality was checked using the Shapiro—
Wilk test.

Group comparisons according to GSTP1 polymorphism were performed using the
chi-square or Fisher exact test for categorical variables, and the Kruskal-Wallis test for
quantitative variables (all these variables were non-normally distributed). Statistical tests
were two-tailed and a p-value of less than 0.05 was considered significant. A univariable
linear regression was conducted to investigate the association between HbAlc levels and
GSTP1 gene polymorphism, as well as age at T2D diagnosis, T2D duration, gender, BMI,
smoking status, and insulin therapy. Only those variables that showed a statistically
significant relationship with the level of HbAlc in univariable analyses were included in
the multivariable linear regression model. All statistical analyses were performed using R
(version 4.0.3; The R Foundation for Statistical Computing, Vienna, Austria).

3. Results

A total of 307 subjects were included in our cross-sectional study, 54.7% of which were
men. The majority of patients were diagnosed with T2D for more than 10 years, more than
half (59%) were on insulin therapy, and 50% were classified as obese. The prevalence of poor
glycemic control (defined as HbAlc > 7%) was 44.3%. A total of 130 patients were carriers
of the GSTP1 Ile/Ile genotype (group A), 147 patients were carriers of the GSTP1 Ile/Val
genotype (group B), and 30 patients were carriers of the GSTP1 Val/Val genotype (group C).
The GSTP1 genotype distribution of participants did not deviate from the Hardy—Weinberg
equilibrium (p = 0.2497). The characteristics of three groups of patients are presented in
Table 1.

Patients in three groups were not statistically different in terms of age and sex dis-
tribution as well as T2D duration, age at T2D diagnosis, BMI, smoking status, insulin
therapy and fasting blood glucose level. We observed statistically significant effects of
GSTP1 polymorphism on mean HbAlc level and percentage of patients with HbAlc > 7%
(Table 1). The highest mean HbAlc values (7.6; SD 1.3) and the highest percentage of
patients with HbAlc > 7% (63.3%) were seen in carriers of the GSTP1 Val/Val genotype
(group Q).

Univariable regression analysis showed that not only the GSTP1 Val/Val genotype, but
also age at T2D diagnosis, T2D duration and insulin therapy were independent variables
that were identified as statistically significant contributors to HbAlc levels (p < 0.05)
(Table 2). Multivariable regression analysis revealed that GSTP1 (Val/Val vs. Ile/Ile) is
associated with higher HbAlc levels even after adjustment for variables that showed a
statistically significant relationship with the level of HbAlc in univariable analyses (Table 2).
The linear regression multivariable model explained 24.8% of the variance in HbAlc levels
(adjusted r-squared = 0.248, F (5,301) = 21.27, p < 0.0001).
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Table 1. Demographic, clinical, and biochemical characteristics of the study population.

Variables Group A Group B Group C p-Value (for A, B, C
Ile/Ile (N = 130) Ile/Val (N = 147) Val/Val (N = 30) Group Comparison)
Age 0.9949
Mean (SD) 67.2 (8.4) 67.2(7.6) 67.4 (5.6)
Median (Q1, Q3) 67.0 (62.2,73.0) 67.0 (63.0, 72.0) 67.0 (63.2,71.0)
Range 47.0-90.0 47.0-82.0 54.0-79.0
Sex 0.203
Women 62 (47.7%) 68 (46.3%) 9 (30.0%)
Men 68 (52.3%) 79 (53.7%) 21 (70.0%)
Age at di‘abetes diagnosis 04376
(in years)
Mean (SD) 54.3 (10.3) 55.1(9.6) 52.5(10.3)
Median (Q1, Q3) 54.5 (48.0, 60.0) 56.0 (51.0, 61.0) 54.0 (46.5, 59.8)
Range 26.0-88.0 27.0-76.0 31.0-69.0
Diabetes duration (in years) 0.3598
Mean (SD) 12.9 (7.8) 12.2(7.7) 14.9 (10.0)
Median (Q1, Q3) 12.0 (7.0, 17.0) 10.0 (6.0, 15.0) 11.5 (7.5, 20.0)
Range 1.0-35.0 2.0-40.0 2.0-39.0
BMI 0.2219
Mean (SD) 30.9 (5.0) 30.5 (4.2) 29.3 (4.8)
Median (Q1, Q3) 30.8(27.1, 34.1) 30.1(28.1, 32.6) 28.5(26.4,31.9)
Range 22.3-47.9 19.2-43.4 19.6-40.6
Smoking 0.8169
No 112 (86.2%) 130 (88.4%) 27 (90.0%)
Yes 18 (13.8%) 17 (11.6%) 3(10.0%)
Insulin therapy 0.3879
No 53 (40.8%) 64 (43.5%) 9 (30%)
Yes 77 (59.2%) 83 (56.5%) 21 (70%)
Fasting glucose 0.8134
Mean (SD) 120.7 (22.2) 122.4 (23.0) 124.7 (26.2)
Median (Q1, Q3) 116.0 (107.0, 133.0) 119.0 (108.0, 129.5) 118.0 (109.5, 138.8)
Range 80.0-185.0 78.0-236.0 91.0-226.0
HbAlc 0.0235
Mean (SD) 7.0 (1.1) 7.0 (1.2) 7.6 (1.3)
Median (Q1, Q3) 6.9(6.1,7.7) 6.7 (6.2,7.6) 7.3 (6.8,8.1)
Range 5.0-10.5 4.3-11.7 5.3-11.0
HbAlc > 7% 0.0293
No 69 (53.1%) 91 (61.9%) 11 (36.7%)
Yes 61 (46.9%) 56 (38.1%) 19 (63.3%)
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Table 2. Results of univariable and multivariable regression analyses with HbAlc level as the outcome

variable.
Univariable Analysis Multivariable Analysis
Variable Beta 95% CI p-Value Beta 95% CI p-Value
Age at diabetes diagnosis (years) —0.037 (—0.050)-(—0.025) <0.0001 —0.026 (—0.042)-(—0.009) 0.002
Diabetes duration (years) 0.043 0.027-0.059 <0.0001 0.021 0.00001-0.041 0.0499
Gender (reference level = female) 0.042 (—0.225)-0.309 0.756 - - -
BMI (kg/m?) 0.014 (—0.014)-0.043 0.325 - - -
Smoking (reference level = no) —0.134 (—0.538)-0.269 0.512 - - -
GSTP1 Reference
wild type (Ile/Ile) level (—0.323)-0.232 0.745 —0.011 (—0.274)-0.252 0.932
Ile/Val —0.045 0.132-1.065 0.012 0.510 0.042-0.953 0.024
Val/Val 0.599
Insulin therapy (reference level = no) 1.149 0.912-1.387 <0.0001 1.005 0.735-1.276 <0.0001

4. Discussion

In this study we investigated the relationship between GSTP1 gene polymorphism
and HbAlc levels in Polish T2D patients. We found that HbAlc levels were significantly
higher in carriers of GSTP1 105Val/Val mutation than in patients with the wild genotype
GSTP1 1051le/Ile. Regression modelling suggests that other factors such as earlier age of
T2D diagnosis, longer duration of T2D and insulin therapy were each found to positively
correlate with HbAlc levels. GSTP1 (Val/Val vs. Ile/Ile) was associated with higher HbAlc
values even after adjustment for variables that were identified as significant contributors to
HbAlc levels (p < 0.05). Previous study also observed that age, age of T2D diagnosis, T2D
duration and insulin therapy were associated with HbAlc [15,16], but the effects of GSTP1
polymorphism on HbAlc reported in our study is novel.

Given its role in cellular detoxification, maintenance of cellular redox homeostasis
and stress kinase regulation, GSTP is capable of influencing glucose homeostasis, probably
through regulation of the response to oxidant stress, generation, and adduction of critical
proteins or JNK (c-Jun N-terminal kinase) activation [6,9]. Evidence suggests that the
polymeric forms of GST proteins, arising from single-nucleotide polymorphisms (SNPs),
have altered enzyme activity [17]. It was shown that the presence of valine at position
105, which is part of the H-site, disrupts the water hydrogen-bonding network, allow-
ing GSTP to accommodate less bulky substrates [18]. The presence of valine at position
105 yields lower enzyme activity toward acrolein [9], which may contribute to insulin
resistance and higher HbAlc values through the oxidative and inflammatory toxicities of
acrolein [12,13,19,20]. Polymorphic forms of human GSTP1 differ in their ability to regulate
Prdx6 peroxidase function, a feature that may influence human population susceptibilities
to oxidant stress [21]. It has been reported that the variant of the GSTP1-Val genotype
might contribute to declined antioxidant activity in patients with heart failure and cardio-
vascular diseases [22-26]. If these results are translated to the setting of our study;, it is
speculated that GSTP1xVal/Val carriers might possibly have a lower antioxidant potential
providing a worse environment for glycemic control. Picu et al. [27] has shown a positive
correlation between total oxidant status and HbAlc. Khosrowbeygi et al. [28] observed
significant negative correlation between values of HbAlc and total antioxidant capacity.
This highlights that oxidative stress is a potential covariate in predicting patient response
to antidiabetic treatment, and GSTP1 genotyping can be relevant for better identification
of T2D patients who are likely to need specific pharmacological strategies focusing not
only on lowering glucose [29], but also on oxidative stress. Many studies showed that
Val allele of the GSTP1 Ile1l05Val polymorphism and the GSTP1 Val/Val genotype play
an important role in individual susceptibility to T2D in different populations [4,30-35],
but only one study investigated the relationship between GSTP1 gene polymorphism and
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HbAlc level in T2D patients [31]. This study demonstrated no effect of polymorphism in
the GSTP1 gene on glycemic control parameters, but in the population included in this
study (n = 300) the GSTP1105Val/ Val genotype, which significantly influenced the level of
HbA1C in the Polish diabetic population, has not been detected. It was found that the mean
HbA1lc levels in carriers of the Ile/Ile genotype and Ile/Val genotype were not significantly
different, which was also observed in our study. Taken together, our findings are the first
to identify the potential association of the GSTP1 Val/Val gene variant with HbAlc levels
in the Polish T2D population. Testing the association of GSTP1 gene variants with HbAlc
and considering other genetic and non-genetic factors could help to determine which T2D
patients will respond well to specific treatments, and to identify molecular targets for
future individualized therapy. To date, the relationship between glycemic control and
oxidative stress has received limited attention in clinical studies, but recently published
randomized controlled trials demonstrated that supplementation with substances with
anti-oxidative properties, e.g., delta-tocotrienol or resveratrol, in addition to hypoglycemic
agents, improved glycemic control in T2D patients [36,37]

5. Limitations

Our study is limited by the cross-sectional design and the relatively small sample size.
Based on sample size calculation with an alpha error probability of 0.05 and test power of
0.8, a minimum of 64 patients in each group (Ile/Ile, Ile/Val and Val/Val) was required to
detect a clinically significant HbAlc difference of 0.5% (if this difference actually exists). In
our study the sample size in the Ile/Ile, Ile/Val groups exceeded the minimum value, but
the Val/Val group consists of only 30 patients (9.8% of 307). The problem, however, is not
that the sample size is too small because the difference between Ile/Ile and Val/Val has
been shown and it was on the level 0.6%, which is slightly above the minimum clinically
significant difference of 0.5%. No difference in relation to HbAlc was shown between
Ile/Ile and Ile/Val (the difference here was 0.045%), because this difference probably does
not exist (and the samples here are much more numerous than assumed: n = 64). The
problem of insufficient sample size would be important if the difference observed for the
collected data between Ile/Ile and Ile/Val exceeded 0.5, and p in the calculations would be
>0.05 but such a phenomenon did not occur.

In the case of T2D, where both genetic and environmental components are important
throughout the duration of the disease, it is difficult to show the unambiguous influence of
individual factors. We cannot entirely rule out confounding factors, although regression
analysis has been used to minimize the impact of non-genetic factors (such as age, gender,
BMI, smoking, disease duration) on the results of our study.

In order to limit the differentiation of external determinants, recruitment was carried
out in a single center. This ensures uniform standards of treatment and care (equal access to
diagnostic tests, modern methods of treatment, specialist consultations, dietitian advice) for
T2D patients and our study group. Moreover, the study group comes from one geographical
region and is ethnically homogeneous.

We are aware that only one SNP within GSTP1 is not enough to elucidate the role of
this gene in the glucose homeostasis. Genome-wide association studies in the future should
be conducted to investigate the association between other SNPs in the GSTP1 gene and
glycemic control parameters in T2D patients. Future studies should also be performed to
see if the GSTP1 Ile105Val polymorphism or other SNPs in this gene are causally triggering
higher HbA1lc levels through mediating the expression of this gene in specific tissues, e.g.,
pancreas, liver, muscles.
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6. Conclusions

It may be concluded that the GSTP1 Val/Val genotype is significantly associated
with higher HbAlc levels in Polish T2D patients, regardless of the other factors such as
age at T2D diagnosis, T2D duration, insulin therapy, gender, BMI, and smoking status.
The potential effect of GSTP1 polymorphism on this parameter of glycemic control, most
probably through regulation of response to oxidant stress, might be useful in better selection
of T2D patients who need specific pharmacological strategies focusing not only on lowering
glucose, but also on oxidative stress.
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