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Pancreatic cancer remains a deadly solid tumor with worst survival, and a better understanding of the mechanisms of
carcinogenesis of pancreatic cancer is critical to promote the survival of patients with pancreatic cancer. qPCR and western
blot assay were used to determine the expression of SPRR3 in pancreatic cancer. Anchorage-independent growth ability, BrdU
labeling, Transwell assay, and in vivo experiment were used to examine the functions of SPRR3 in aggressiveness of pancreatic
cancer. Luciferase reporter assay, nucleoplasmic-separation technique, qPCR, and western blot assay were used to investigate
the mechanism of SPRR3 regulating aggressiveness of pancreatic cancer. Our results showed that SPRR3 was significantly
increased in pancreatic cancer, which resulted in poor survival for patients with pancreatic cancer. Further analysis showed
that overexpression of SPRR3 contributed to anchorage-independent growth ability, growth rate, and invasion ability of
pancreatic cancer cells. While, knockdown of SPRR3 showed the reverse results. Mechanistically, overexpression of SPRR3 can
promote the transcription of NF-κB pathway, nuclear accumulation of p65, and mRNA levels of NF-κB pathway downstream
genes. But, knockdown of SPRR3 induced the reverse results. The above findings clarified the important roles of SPRR3 in the
progression of pancreatic cancer through NF-κB pathway. And targeting SPRR3 might be an effective strategy to therapy
pancreatic cancer.

1. Introduction

Despite recent advances in detection, surgical techniques,
and therapy, pancreatic cancer remains a deadly solid tumor
with worst survival [1]. Five-year survival rate of pancreatic
cancer only increased from 3% to 8% over the past 40 years
[2]. The reasons for such dismal survival were lack of specific
symptoms, early detection, and effective therapy strategy [3].
Therefore, it is essential to investigate the mechanisms of
pancreatic cancer tumorigenesis and progression and find
out the effective therapy strategy.

NF-κB pathway plays important functions in multiple
physiological and pathological processes. According to acti-

vating mechanisms, there are two types of NF-κB pathways,
the canonical and noncanonical pathway [4, 5]. The crucial
step of the canonical NF-κB pathway is phosphorylation-
dependent activation of the IKKs (IκB kinases) complex [6,
7]. In the steady state, transcript factor NF-κB is sequestered
in the cytoplasm by the IκB. In the agitated state, the acti-
vated IKKs phosphorylate the inhibitory IκB protein, which
is subsequently ubiquitination-dependently degraded
through proteasome. The degradation of IκB lets NF-κB lib-
erate, consequently translocate to nucleus and activate the
target genes [8]. Increasing evidences showed that NF-κB
pathway is closely correlated with the incidence of pancre-
atic cancer. For example, Wang et al. showed that
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overexpression of GPR87 contributes to pancreatic cancer
aggressiveness through NF-κB pathway ([9]). Ren et al.
showed that lncRNA PLACT1 can foster the progression
of pancreatic cancer through sustained activation of NF-κB
pathway ([10]). Yu et al. showed that oncogenic TRIM31
promotes gemcitabine resistance of pancreatic cancer
through activating NF-κB pathway [11]. Therefore, a better
understanding of NF-κB signaling pathway in pancreatic
cancer might provide effective therapeutic strategy for
patients with pancreatic cancer.

SPRR3, a member of the large family of the small
proline-rich proteins (SPRRs), is located in the epidermal
differentiation complex on chromosome 1q21 [12]. Abnor-
mal expression of SPRR3 has been reported to be identified
in multiple cancers. For example, Li et al. showed that dys-
regulation of SPRR3/miR-876-3p signaling axis is available
to carcinogenesis of non-small-cell lung cancer ([13]). Cho
et al. showed that increased expression of SPRR3 promotes
colorectal tumorignesis ([14]). Kim et al. showed that SPRR3
contributes to the proliferation of breast cancer cell via pro-
moting p53 degradation [15]. However, the expression,
function, and mechanism of SPRR3 in pancreatic cancer
remain unclear.

Herein, we aim to investigate the expression, function,
and mechanism of SPRR3 in pancreatic cancer and make
an attempt to clarify the underlying mechanism of carcino-
genesis of pancreatic cancer and find the effective therapeu-
tic manner to therapy it.

2. Material and Methods

2.1. Cell Culture. All cell lines were purchased from Chinese
Type Culture Collection, Chinese Academy of Sciences. All
the cell lines were cultured using DMEM adding 10% fetal
bovine (FBS; HyClone, USA), 100U/ml penicillin, and
100μg/ml streptomycin (Sigma-Aldrich, USA).

2.2. Establishment of Stable Cell Lines. The plasmids of
SPRR3 upregulation, SSR2 downregulation, and correspond-
ing control were designed and synthesized by Guangzhou
RiboBio Co., Ltd. (Guangzhou, China). The process of
screening stable cell lines was performed according to previ-
ously published methods [16].

2.3. qRT-PCR Analysis. The total RNA was extracted using
TRIzol (Invitrogen, USA). And total cDNA was synthesized

Table 1: Primers for qPCR.

Primers for qPCR
SPRR3 real time primer up TGAACCAGGCAGCATCAAGGTC

SPRR3 real time primer dn GAAGGACATGGCTCTGGTAGCT

MMP3 real time primer up CACTCACAGACCTGACTCGGTT

MMP3 real time primer dn AAGCAGGATCACAGTTGGCTGG

MMP9 real time primer up GCCACTACTGTGCCTTTGAGTC

MMP9 real time primer dn CCCTCAGAGAATCGCCAGTACT

MMP13 real time primer up CCTTGATGCCATTACCAGTCTCC

MMP13 real time primer dn AAACAGCTCCGCATCAACCTGC

MYC real time primer up CCTGGTGCTCCATGAGGAGAC

MYC real time primer dn CAGACTCTGACCTTTTGCCAGG

IL1B real time primer up CCACAGACCTTCCAGGAGAATG

IL1B real time primer dn GTGCAGTTCAGTGATCGTACAGG

TWIST1 real time primer up GCCAGGTACATCGACTTCCTCT

TWIST1 real time primer dn TCCATCCTCCAGACCGAGAAGG

Snail real time primer up TGCCCTCAAGATGCACATCCGA

Snail real time primer dn GGGACAGGAGAAGGGCTTCTC

MMP1 real time primer up ATGAAGCAGCCCAGATGTGGAG

MMP1 real time primer dn TGGTCCACATCTGCTCTTGGCA

CXCL5 real time primer up CAGACCACGCAAGGAGTTCATC

CXCL5 real time primer dn TTCCTTCCCGTTCTTCAGGGAG

XIAP real time primer up TGGCAGATTATGAAGCACGGATC

XIAP real time primer dn AGTTAGCCCTCCTCCACAGTGA

CCND1 real time primer up TCTACACCGACAACTCCATCCG

CCND1 real time primer dn TCTGGCATTTTGGAGAGGAAGTG

BCL2L1 real time primer up GCCACTTACCTGAATGACCACC

BCL2L1 real time primer dn AACCAGCGGTTGAAGCGTTCCT

GAPDH real time primer up GGAGCGAGATCCCTCCAAAAT

GAPDH real time primer dn GGCTGTTGTCATACTTCTCATGG
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using Transcriptor First Strand cDNA Synthesis Kit (Roche,
Germany) according to the manufacturer’s directions. qPCR
was performed on a 7500 fast real time PCR system (Applied
Biosystems, USA) using the SYBR Green PCR Kit (Invitro-
gen, USA). The primers in the present study are shown in
Table 1.

2.4. Western Blot Assay. Total protein was obtained by radio-
immunoprecipitation assay (RIPA) lysis buffer (Beyotime
Biotechnology, China). Western blot was performed using
the extracted proteins according to previously described

methods [17]. Briefly, protein was separated using 10.5%
polyacrylamide gels and subsequently transferred onto
PVDF membranes. Then, the membranes were probed with
primary antibodies and incubated with horseradish peroxi-
dase- (HRP-) conjugated secondary antibody. α-Tubulin
was used as the loading control of total protein.

2.5. Anchorage-Independent Growth Assay. Anchorage-inde-
pendent growth assay was performed following the methods
described previously [18]. Firstly, complete medium con-
taining 1% agar was added into the 6-well cell plates.
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Figure 1: High levels of SPRR3 predicted poor survival for patients with pancreatic cancer. (a) Abnormally high expression of SPRR3 was
discovered using The Cancer Genome Atlas (TCGA) dataset. (b) High levels of SPRR3 predicted poor overall survival for patients with
pancreatic cancer. (c) High levels of SPRR3 predicted poor disease-free survival for patients with pancreatic cancer. (d) The mRNA levels
of SPRR3 in indicated pancreatic cancer cells. (e) The mRNA levels of SPRR3 in pancreatic cancer tissues. (f) The protein levels of
SPRR3 in indicated pancreatic cancer cells. (g) The protein levels of SPRR3 in pancreatic cancer tissues. ∗P < 0:05.
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Subsequently, 0:5 × 103 cells that were suspended using
complete medium containing 0.3% low melt agarose were
added into the top of cell plates. 10 days later, the colonies
with diameter larger than 100μm were counted.

2.6. Bromodeoxyuridine (BrdU) Labeling. Cells were seeded
onto coverslips, which were put into 24-well plates. 24 h
later, the cells were incubated using BrdU for 1 h and subse-
quently probed using anti-BrdU antibody for 2 h (Upstate
Biotechnology, USA). Images of cells were collected under
a laser scanning microscope (Carl Zeiss, Germany).

2.7. Transwell Matrix Penetration Assay. The Transwell filter
chamber was coated using Matrigel (BD Biosciences, USA).
The coated chamber was subsequently put into 24-well plate
that was added cell medium. Then, 1 × 104 cells were sus-
pended using medium containing 10% FBS (HyClone,
USA) and seeded into the coated chamber. And then, the cell
plates were maintained in a humidified cell incubator for
24 h. The cells inside the upper chamber were removed using
cotton swabs. The remaining cells were fixed using 1% para-
formaldehyde for 10min and stained using hematoxylin for
5min. Finally, the invaded cells were counted using micro-
scope (CKX41; Olympus) in 10 randomly chosen fields.

2.8. Xenografted Tumor Model. In the subcutaneous tumor
model, BALB/c nude mice were randomly divided into two
groups. Every mice were inoculated subcutaneously with 2

× 106 PANC-1/shRNA-V or PANC-1/SPRR3 sh#2 cells,
respectively, in the dorsal flank per mouse. Tumor was mon-
itored by measurements of the length and width, and the
tumor volume was calculated following the equation ðL ×
W2Þ/2. 30 days later, all mice were euthanized and dissected.
Tumors were excised and weighed. All experimental proce-
dures were approved by the Institutional Animal Care and
Use Committee of the First Affiliated Hospital of Gannan
Medical University.

2.9. Statistical Analysis. Statistical analyses were performed
using the SPSS version 19.0 statistical software package.
The data are present as the mean ± standard deviation. Stu-
dent’s paired t-test was used to analyze the statistical differ-
ence between paired tissues, and comparisons among more
than two groups were analyzed using variance (ANOVA)
followed by Dunnett’s test. P < 0:05 was considered as statis-
tically significance.

3. Results

3.1. High Levels of SPRR3 Predicted Poor Survival for Patients
with Pancreatic Cancer. Abnormally high expression of
SPRR3 was discovered using The Cancer Genome Atlas
(TCGA) dataset (Figure 1(a)). The correlation of SPRR3
levels and survival was further confirmed. The analysis
showed high levels of SPRR3 predicted poor overall survival
(Figure 1(b)) and poor disease-free survival (Figure 1(c)) for
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Figure 2: Overexpression of SPRR3 contributed to the aggressiveness of pancreatic cancer cells. (a) The SPRR3 protein levels in stable cell
lines overexpressing SPRR3. (b) The representative images and quantitative analysis of anchorage-independent growth assay in stable cell
lines overexpressing SPRR3. (c) The representative images and quantitative analysis of BrdU labeling in stable cell lines overexpressing
SPRR3. (d) The representative images and quantitative analysis of Transwell invasion assay in stable cell lines overexpressing SPRR3. ∗P
< 0:05.
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patients with pancreatic cancer. Consistently, the mRNA
(Figure 1(d)) and protein expression (Figure 1(f)) of SPRR3
were markedly higher in pancreatic cancer cell lines AsPC-1,
CFPAC-1, PANC-1, BxPC-3, Capan-1, Capan-2, Hs 766T,
and MIN6 than in normal human pancreatic ductal epithe-
lial cells (HPDECs). Moreover, the same situation was illus-
trated in fresh tissues. qPCR (Figure 1(e)) and western blot
(Figure 1(g)) assay showed SPRR3 levels were significantly
increased in pancreatic cancer tissues compared with normal
pancreatic tissues. These results confirmed the analysis using
TCGA dataset, suggesting that SPRR3 was upregulated in
pancreatic cancer.

3.2. Overexpression of SPRR3 Contributed to the
Aggressiveness of Pancreatic Cancer. To investigate the func-
tion of SPRR3 upregulation in pancreatic cancer, PANC-1
and AsPC-1 cell lines with stable overexpression of SPRR3
were established (Figure 2(a)). The anchorage-independent
growth assay showed that colonies formed by SPRR3-
overexpessing cells were more and larger than that formed
by control cells (Figure 2(b)). Moreover, BrdU incorporation
assay showed that overexpression of SPRR3 significantly
facilitated the growth rate of pancreatic cancer cells
(Figure 2(c)). Furthermore, Transwell assay showed that

overexpression of SPRR3 promoted the invasion ability of
pancreatic cancer cells (Figure 2(d)).

Altogether, our analysis suggested that upregulation of
SPRR3 facilitated the aggressiveness of pancreatic cancer
cells.

3.3. Knockdown of SPRR3 Inhibited the Aggressiveness of
Pancreatic Cancer Cells. We also established the stable cell
lines with SPRR3 knockdown to explore the function of
SPRR3 in the progression of pancreatic cancer
(Figure 3(a)). Our results showed that anchorage-
independent growth ability of SPRR3 downregulating pan-
creatic cancer cells significantly reduced compared with con-
trol cells (Figure 3(b)). Moreover, BrdU incorporation assay
showed that knockdown of SPRR3 dramatically inhibited
the growth rate of pancreatic cancer cells (Figure 3(c)). In
addition, the invasion ability of pancreatic cancer was signif-
icantly reduced in SPRR3-silenced pancreatic cancer cells
(Figure 3(d)). We performed the in vivo experiments
(Figures 4(a)–4(c)). The in vivo experiments showed that
the tumors formed by SPRR3-knockdown cells are smaller
than that formed by control cells. Taken together, our results
showed that knockdown of SPRR3 inhibited the aggressive-
ness of pancreatic cancer cells.
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Figure 3: Knockdown of SPRR3 inhibited the aggressiveness of pancreatic cancer cells. (a) The SPRR3 protein levels in stable cell lines with
SPRR3 knockdown. (b) The representative images and quantitative analysis of anchorage-independent growth assay in stable cell lines
downregulating SPRR3. (c) The representative images and quantitative analysis of BrdU labeling in stable cell lines downregulating
SPRR3. (d) The representative images and quantitative analysis of Transwell invasion assay in stable cell lines downregulating SPRR3. ∗P
< 0:05.
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3.4. SPRR3 Regulated NF-κB Signaling in Pancreatic Cancer.
Since NF-κB signaling plays an important role in aggressive-
ness of pancreatic cancer, we subsequently investigate
whether SPRR3 regulated the NF-κB signaling in pancreatic
cancer. NF-κB luciferase reporter assay showed that NF-κB
transcription activity was dramatically elevated in SPRR3-
upregulating cells while reduced in SPRR3-silenced cells
(Figure 5(a)). Besides, the levels of nuclear p65 were mark-
edly increased in SPRR3-upregulating cells but reduced in
SPRR3-silenced cells (Figure 5(b)). In addition, the levels
of NF-κB downstream genes were significantly increased in
SPRR3-upregulating cells but decreased in SPRR3-
knockdown cells (Figure 5(c)). These results inferred that
SPRR3 enhanced the activation of NF-κB pathway.

Finally, the blockage of NF-κB pathway using NF-κB
inhibitor inhibited colonies formed in soft agar
(Figure 5(d)), BrdU positive cells (Figure 5(e)), and invaded
cells (Figure 5(f)) of SPRR3-overexpressing cells, suggesting
that activation of NF-κB is essential for SPRR3 regulating
aggressiveness of pancreatic cancer cells.

3.5. Clinical Correlation of SPRR3 Levels and NF-κB
Activation in Pancreatic Cancer. Besides, we determined

whether SPRR3 contributed to p65 accumulation in clinical
samples. As shown in Figure 6, SPRR3 expression was posi-
tively related with nuclear p65 levels (r = 0:93; P = 0:046),
which further supported that SPRR3 facilitated the aggres-
siveness of pancreatic cancer cells and the activation of
NF-κB signaling.

4. Discussion

Our study provided evidence for a new link of SPRR3 and
NF-κB pathway in pancreatic cancer. Firstly, our analysis
showed that SPRR3 was significantly increased in pancreatic
cancer and closely related with poor survival for patients
with pancreatic cancer. Secondly, cell function tests showed
that SPRR3 elevated anchorage-independent growth ability,
BrdU positive cells, and invasion ability of pancreatic cancer
cells. While, downregulation of SPRR3 showed the reverse
results. Finally, molecular mechanism analysis suggested
SPRR3 induced the activation of NF-κB pathway. The above
findings clarified the important roles of SPRR3 in progres-
sion of pancreatic cancer through NF-κB pathway.

Pancreatic cancer is still one of the deadliest cancers.
Despite much improvement in the survival rates for patients
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with other cancer types, the survival rates of patients with
pancreatic cancer have almost unchanged since 1960s [19].
Patients with pancreatic cancer often diagnosed at advanced

stage, and most therapy manners are ineffective, which result
in poor survival for patients with pancreatic cancer [20].
Therefore, understanding the mechanisms of carcinogenesis
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Figure 5: SPRR3 regulated the NF-κB signaling in pancreatic cancer. (a) NF-κB luciferase reporter assay showed that NF-κB transcription
activity was dramatically elevated in SPRR3-upregulating cells, while reduced in SPRR3-silenced cells. (b) The levels of nuclear p65 in
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of pancreatic cancer is essential. Our results showed that
SPRR3 was significantly overexpressed in pancreatic cancer,
which contributed to aggressiveness of pancreatic cancer.
Corresponding, knockdown of SPRR3 inhibited the aggres-
siveness of pancreatic cancer. Our results extended the
mechanisms of pancreatic cancer carcinogenesis and pro-
vided evidence that targeting SPRR3 might be an effective
strategy to therapy pancreatic cancer.

It has been reported that inflammation takes a central
role in pancreatic cancer development, and NF-κB pathway
is characterized as a key pathway of inflammation, and fre-
quently dysregulated in pancreatic cancer [21–23]. Our pres-
ent study showed that SPRR3 can elevate the activity of NF-
κB pathway. The activation of NF-κB pathway further pro-
motes the transcription of downstream genes that are
involved in proliferation, antiapoptosis, metastasis, and so
on, which finally contributes to the aggressiveness of pancre-
atic cancer [24]. Therefore, therapeutic targeting NF-κB
pathway has been aggressively pursued for the treatment of
a wide range of malignant pathologies in pancreatic cancer
[25–27]. Our study showed that NF-κB pathway inhibitor
can significantly inhibit the aggressiveness of pancreatic
cancer.

Besides, our study leaves much to be desired. For exam-
ple, the function of SPRR3 in vivo in pancreatic cancer needs
to be clarified, and how SPRR3 regulate NF-κB signaling is
unclear, and so on. We will continue to clarify these issues
in our future study.
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